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Section 1

Introduction



Relativistic hydro playground: Heavy-ion collisions
[See talk by C. Werthmann (Tue, 11:15)]

▶ Shortly after the
collision, the system is
far-from-equilibrium.

▶ Pre-eq. dynamics
require a non-eq.
description.

▶ Strongly-interacting
QGP leaves imprints of
thermalization and
collectivity in final-state
observables. [Venaruzzo, PhD Thesis, 2011]



Hydro vs Kinetic theory
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[Ambrus,, Bazzanini, Gabbana, Simeoni, Succi,
Nature Comput. Sci. 2 (2022) 641]

▶ Hydro employed in HIC modelling, but it breaks down far from eq.
▶ Kinetic theory overcomes this limitation, but realistic simulations are

expensive due to C[f ]. AMPT: [He, Edmonds, Lin, Liu, Molnar, Wang, PLB 753 (2016) 506]
BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

▶ RTA: CAW[f ] = − Ek
τR

(fk − f0k) ⇒ 1 − 2 o.m. faster than BAMPS.
VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]

▶ τR fixes the IR limit of RTA by matching e.g. η to that of C[f ] ⇒
good agreement with BAMPS.

https://doi.org/10.1038/s43588-022-00333-x
https://doi.org/10.1038/s43588-022-00333-x
http://dx.doi.org/10.1016/j.physletb.2015.12.051


Section 2

Anderson-Witting (RTA) model



Anderson-Witting model [Anderson, Witting, Physica 74 (1974) 466]

▶ The Anderson & Witting RTA reads [Ek = kµuµ]

kµ∂µfk = CAW[f ], CAW[f ] = −Ek

τR
(fk − f0k). (1)

▶ Nµ and T µν are obtained from fk: [dK = g d3k/[k0(2π)3]]

Nµ =
∫

dK kµ fk, T µν =
∫

dK kµkνfk. (2)

▶ f0k describes LTE, for which [∆µν = gµν − uµuν ]

Nµ
0 = n0uµ, T µν

0 = ϵ0uµuν − P0∆µν , (3)

▶ Imposing ∂µNµ = ∂νT µν = 0 requires Landau matching:

n = n0, ϵ = ϵ0, T µ
νuν = ϵuµ. (4)

▶ CAW[f ] drives fk towards f0k on the timescale τR.

httsp://doi.org/10.1016/0031-8914(74)90355-3


Chapman-Enskog expansion
▶ Out of eq., Nµ and T µν receive dissipative corrections:

Nµ − Nµ
0 = V µ, T µν − T µν

0 = −Π∆µν + πµν . (5)
▶ The dissipative quantits. can be obtained as moments of δfk:

Π = −
m2

3

∫
dK δfk, V

µ =

∫
dK k

⟨µ⟩
δfk, π

µν =

∫
dK k

⟨µ
k

ν⟩
δfk, (6)

with k⟨µ⟩ = ∆µ
αkα and k⟨µkν⟩ = ∆µν

αβkαkβ irreducible tensors.
▶ Employing the Chapman-Enskog procedure gives

δfk ≡ fk − f0k ≃ − τR

Ek
kµ∂µf0k. (7)

▶ Taking moments as in Eq. (6) gives

Π = −ζRθ, V µ = κR∇µα, πµν = 2ηRσµν , (8)

where ζR, κR and ηR are given by

ζR = m2

3 τRα
(0)
0 , κR = τRα

(1)
0 , ηR = τRα

(2)
0 . (9)

where α
(ℓ)
0 are τR-independent thermodynamic functions.



QGP Transport coefficients
▶ Bayesian estimation shows that η/s and ζ/s can be parametrized as

J. E. Bernhard, J. S. Moreland, S. A. Bass, Nature Phys. 15 (2019) 1113

η

s
= (η/s)min + (η/s)slope(T − Tc)

(
T

Tc

)(η/s)crv

, (10)

ζ

s
= (ζ/s)max ×

[
1 +

(
T − Tpeak

(ζ/s)width

)2
]−1

. (11)
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▶ RTA allows, e.g. η to be
specified by setting

τR = η

α
(2)
0

,

however, ζ/η is fixed
uniquely by

ζ

η
= m2α

(0)
0

3α
(2)
0

,

which does not resemble the (ζ/η) in the QGP.



Section 3

First-order relativistic Shakhov model



Shakhov-like extension [VEA, Molnár, PLB 855 (2024) 138795]

▶ We consider a Shakhov-like extension: [Shakhov, Fluid Dyn. 3 (1968) 112]

CS[f ] = −Ek

τR
(fk − fSk), (12)

where fSk → f0k as δfk = fk − f0k → 0.

▶ Shakhov vs. AW: fk relaxes towards f0k on a modified path.

▶ ∂µNµ = ∂νT µν = 0 imply:

uµNµ = uµNµ
S , uνT µν = uνT µν

S , (13)

which allows for plenty of degrees of freedom (δn, δϵ, W µ, etc).

▶ For simplicity, we stick to the Landau matching conditions:

δn = δϵ = 0, T µνuν = ϵuµ. (14)

https://doi.org/10.1016/j.physletb.2024.138795


Shakohv-like extension
▶ Employing the Chapman-Enskog procedure gives

δfk − δfSk = − τR

Ek
kµ∂µf0k, (15)

leading to

Π − ΠS = −ζRθ, V µ − V µ
S = κR∇µα, πµν − πµν

S = 2ηRσµν .
(16)

▶ We seek to replace ζR etc by independent transport coefficients:

Π ≃ −ζSθ, V µ ≃ κS∇µα, πµν ≃ 2ηSσµν ,

ζS = τΠ

τR
ζR, κS = τV

τR
κR, ηS = τπ

τR
ηR. (17)

▶ Eq. (17) can be obtained from Eq. (16) when

ΠS = Π
(

1 − τΠ

τR

)
, V µ

S = V µ

(
1 − τV

τR

)
,

πµν
S = πµν

(
1 − τπ

τR

)
. (18)



Minimal δfSk

▶ The solution can be written as δfSk = f0kf̃0kSk, where

Sk = − 3Π
m2

(
1 − τR

τΠ

)
H(0)

k0 + k⟨µ⟩V
µ

(
1 − τR

τV

)
H(1)

k0

+ k⟨µkν⟩π
µν

(
1 − τR

τπ

)
H(2)

k0 . (19)

▶ H(ℓ)
k0 are polynomials in Ek satisfying the constraints: [DNMR, PRD 85 (2012)

114047]

Bulk visc. p.
Particle cons.
Energy cons.

⇒

ρS;0
ρS;1
ρS;2

 =
∫

dK

 1
Ek
E2

k

 δfSk =

−3ΠS/m2

0
0

 ,

Diff. current
Mom. cons.

⇒
(

ρµ
S;0

ρµ
S;1

)
=
∫

dK

(
1

Ek

)
k⟨µ⟩δfSk =

(
V µ

S
0

)
,

SS tens. ⇒ ρµν
S;0 =

∫
dKk⟨µkν⟩δfSk = πµν

S . (20)

https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.85.114047


▶ The solution can be written as δfSk = f0kf̃0kSk, where

Sk = − 3Π
m2

(
1 − τR

τΠ

)
H(0)

k0 + k⟨µ⟩V
µ

(
1 − τR

τV

)
H(1)

k0

+ k⟨µkν⟩π
µν

(
1 − τR

τπ

)
H(2)

k0 . (21)

▶ H(0)
k0 satisfies 3 constraints (ρS;0,1,2) ⇒ polynomial of order 2.

▶ H(1)
k0 satisfies 2 constraints (ρS;0,1) ⇒ polynomial of order 1.

▶ H(2)
k0 satisfies 1 constraint (ρS;0,1) ⇒ polynomial of order 0.

▶ The simplest solution is:

H(0)
k0 = G33 − G23Ek + G22E2

k
J00G33 − J10G23 + J20G22

,

H(1)
k0 = J31Ek − J41

J21J41 − J2
31

, H(2)
k0 = 1

2J42
, (22)

where Gnm = Jn0Jm0 − Jn−1,0Jm+1,0 and

Jnq = 1
(2q + 1)!!

∫
dK En−2q

k (−∆αβkαkβ)qf0kf̃0k. (23)



Entropy production [VEA, Molnár, PLB 855 (2024) 138795]

▶ The entropy current is given by [classical stat. used for simplicity]

Sµ = −
∫

dK kµ (fk ln fk − fk) . (24)

▶ In the Shakhov model, kµ∂µf = CS[f ] and

∂µSµ = −
∫

dK CS[f ] ln fk = 1
τR

∫
dK Ek(δfk − δfSk) ln fk.

(25)

▶ When ϕk = δfk/f0k is small, detailed manipulations lead to

∂µSµ ≃ β

ζS
Π2 − 1

κS
VµV µ + β

2ηS
πµνπµν ≥ 0. (26)

▶ Close to eq., the S-model satisfies the 2nd law of thermodynamics.
▶ Proof far from eq. unavailable even for non-rel. Shakhov!

https://doi.org/10.1016/j.physletb.2024.138795


Section 4

Application: Bjorken flow



Application: Bjorken flow
▶ Bjorken model: flow invariant under longitudinal boosts:

uµ∂µ = t

τ
∂t + z

τ
∂z, τ =

√
t2 − z2, ηs = tanh−1(z/t). (27)

▶ In Bjorken coordinates (τ, x⊥, ηs),

T µν = diag(e, PT , PT , τ−2PL),

PT = P + Π − πd

2 , PL = P + Π + πd. (28)

▶ In 2nd-order hydro, we have: [Denicol, Florkowski, Ryblewski, Strickland, PRC 90 (2014) 044905]

τ ϵ̇ + ϵ + PL = 0, (29a)

τ Π̇ +
(

δΠΠ

τΠ
+ τ

τΠ

)
Π + λΠπ

τΠ
πd = − ζ

τΠ
,

τ π̇d +
(

δππ

τπ
+ τππ

3τπ
+ τ

τπ

)
πd + 2λπΠ

3τπ
Π = − 4η

3τπ
. (29b)

▶ We employ the Shakhov model to control ζ independently from η.

https://doi.org/10.1103/PhysRevC.90.044905


Shakhov model: ζ vs. η
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▶ Choosing τR = τΠ, the Shakhov distribution becomes

fSk = f0k

[
1 + β2kµkνπµν

2(e + P )

(
1 − τΠ

τπ

)]
. (30)

▶ Left panel: τπ is fixed and τΠ is varied using the Shakhov model.
▶ Right panel: τΠ is fixed and τπ is varied using the Shakhov model.
▶ m = 1 GeV; τ0 = 0.5 fm; β−1

0 = 0.6 GeV; For τπ = 0.5 fm, 4πη/s ≃ 3.3 at τ = τ0.
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Application: Sound waves



Application: Sound waves
▶ We now consider an infinitesimal perturbation propagating in an

ultrarelativistic fluid at rest.
▶ Writing uµ ≃ (1, 0, 0, δv), ϵ = ϵ0 + δϵ and n = n0 + δn, we have

∂tδn + n0∂zδv + ∂zδV = 0,

∂tδϵ + (ϵ0 + P0)∂zδv = 0,

(ϵ0 + P0)∂tδv + ∂zδP + ∂zδπ = 0,

τV ∂tδV + δV + κ∂zδα − ℓV π∂zδπ = 0,

τπ∂tδπ + δπ + 4η

3 ∂zδv + 2
3ℓπV ∂zδV = 0, (31)

where δV = V z and δπ = πzz/γ2.
▶ In RTA, ℓV π = ℓπV = 0. [VEA, Molnár, Rischke, PRD 106 (2022) 076005]

▶ We track the time evolution of the amplitudes

δ̃V = 2
L

∫ L

0
dz δV cos(kz), δ̃π = 2

L

∫ L

0
dz δπ sin(kz). (32)

▶ We employ the Shakhov model to control κ independently from η.

https://doi.org/10.1103/PhysRevD.106.076005


Shakhov model: κ vs. η
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▶ Setting τR = τπ, the Shakhov distribution becomes

fSk = f0k

[
1 + kµV µ

P
(βEk − 5)

(
1 − τπ

τV

)]
. (33)



Section 6

Second-order relativistic Shakhov model



Beyond first order: second-order transport coefficients?
▶ Navier-Stokes hydrodynamics is acausal ⇒ a-relativistic!
▶ One example of causal hydro is MIS 2nd order hydro, by which e.g.

πµν evolves according to τππ̇⟨µν⟩ + πµν = 2ησµν + J µν + Rµν , with

J µν = 2τππ
⟨µ
λ ων⟩λ − δπππµνθ − τπππλ⟨µσ

ν⟩
λ + λπΠΠσµν

− τπV V ⟨µu̇ν⟩ + ℓπV ∇⟨µV ν⟩ + λπV V ⟨µ∇ν⟩α,

Rµν = φ6Ππµν + φ7πλ⟨µπ
ν⟩
λ + φ8V ⟨µV ν⟩. (34)

▶ In RTA, Rµν = 0.
▶ 2nd-order t.c. are

important e.g. in preeq!
▶ In conformal RTA,

δππ + τππ/3 = 38/21.
▶ Solving hydro with

δππ + τππ/3 = 31/15
gives much better
agreement with RTA!
[J.-P. Blaizot, L. Yan, PRC 104 (2021) 055201]

▶ Etc...



Second-order hydro from KT
▶ In the method of moments, second-order hydro can be derived using:

Irreducible moments of δfk: ρ
µ1···µℓ
r =

∫
dKEr

kk⟨µ1 · · · kµℓ⟩δfk.
Irreducible moments of C[f ]: C

µ1···µℓ
r =

∫
dKEr

kk⟨µ1 · · · kµℓ⟩C[f ].

Define collision matrix via C
µ1···µℓ
r−1 = −

∑
n

A(ℓ)
rn ρ

µ1···µℓ
n .

Define inverse matrix τ
(ℓ)
rn via

∑
n

τ
(ℓ)
rn A(ℓ)

nm = δrm.
▶ The 1st-order transport coeffs. are

ζr =
m2

3

∑
n

τ
(0)
rn α

(0)
n , κr =

∑
n

τ
(1)
rn α

(1)
n , ηr =

∑
n

τ
(2)
rn α

(2)
n .

▶ The relaxation times can be obtained via [Wagner, Palermo, VEA, PRD 106 (2022) 016013]

τΠ =
∑

r

τ
(0)
0r C(0)

r , τV =
∑

r

τ
(1)
0r C(1)

r , τπ =
∑

r

τ
(2)
0r C(2)

r , (35)

with C(0)
r = ζr/ζ0, C(1)

r = κr/κ0 and C(2)
r = ηr/η0.

▶ ...all other 2nd-order t.c. are computed using τ
(ℓ)
0n and C(ℓ)

n .
▶ NOTE! C0 = C1 = Cµ

1 = 0 to conserve mass & energy-momentum!
▶ Idea: Use Shakhov model to “manipulate” A(ℓ)

rn .

https://doi.org/10.1103/PhysRevD.105.016013


From RTA to Shakhov
▶ In RTA, C[f ] = − Ek

τR
δfk and [VEA, Molnár, Rischke, PRD 106 (2022) 076005]

Cµ1···µℓ

r−1 = − 1
τR

ρµ1···µℓ
r ⇒ A(ℓ)

rn = δrn

τR
⇒ τ (ℓ)

rn = τRδrn. (36)

▶ In the Shakhov model, CS = − Ek
τR

[δfk − δfSk] and

Cµ1···µℓ

r−1 = − 1
τR

[ρµ1···µℓ
r − ρµ1···µℓ

S;r ], (37)

where ρµ1···µℓ

S;r are essentially arbitrary.

▶ Imposing Cµ1···µℓ

r−1 = −
∑

n A(ℓ)
rn ρµ1···µℓ

n suggests taking

ρµ1···µℓ

S;r =
∑

n

[δrn − τRA(ℓ)
rn ]ρµ1···µℓ

n , (38)

where A(ℓ)
rn is the desired collision matrix.

https://doi.org/10.1103/PhysRevD.106.076005


Constructing Sk [VEA, Wagner, PRD 110 (2024) 056002]

▶ Our approach is to fix a subset of ρµ1···µℓ

S;r with:

0 ≤ ℓ ≤ L = 2, −sℓ ≤ r ≤ Nℓ, (39)

where sℓ ≡ “shift” and Nℓ ≥ {2, 1, 0}. [VEA, Molnár, Rischke, PRD 106 (2022) 076005]

▶ We construct δfSk ≡ f0kf̃0kSk as

Sk =
L∑

ℓ=0

Nℓ∑
n=−sℓ

ρµ1···µℓ

S;n E−sℓ

k k⟨µ1 · · · kµℓ⟩H̃
(ℓ)
k,n+sℓ

, (40)

with H̃(ℓ)
kn ensuring ρµ1···µℓ

S;n =
∫

dKEn
k k⟨µ1 · · · kµℓ⟩δfSk.

https://doi.org/10.1103/PhysRevD.110.056002
https://doi.org/10.1103/PhysRevD.106.076005


Shakhov collision matrix
▶ Eq. (40) sets ρµ1·µℓ

S;n for −sℓ ≤ n ≤ Nℓ.
▶ In general ρµ1···µℓ

S;r ̸= 0 when r < −sℓ and r > Nℓ.

▶ ⇒ A(ℓ)
S;rn contains non-trivial entries when r < −sℓ and r > Nℓ:

A(ℓ)
rn =


1

τR
δrn A(ℓ)

<;rn 0
0 A(ℓ)

S;rn 0
0 A(ℓ)

>;rn
1

τR
δrn

 , (41)

where A(ℓ)
</>;rn correspond to r < −sℓ and r > Nℓ, respectively.

▶ These entries supplement the τ−1
R δrn structure of AW with

A(ℓ)
</>;rn = − 1

τR
F̃ (ℓ)

−(r+sℓ),n+sℓ
+

Nℓ∑
j=−sℓ

F̃ (ℓ)
−(r+sℓ),j+sℓ

A(ℓ)
S;jn, (42)

with F̃ (ℓ)
rn ≡ ℓ!

(2ℓ+1)!!
∫

dK f0kf̃0kE−2sℓ−r
k (∆αβkαkβ)ℓH̃(ℓ)

kn.



Inverse collision matrix
▶ The inverse matrix τ

(ℓ)
rn reads

τ (ℓ)
rn =

τRδrn τ
(ℓ)
<;rn 0

0 τ
(ℓ)
S;rn 0

0 τ
(ℓ)
>;rn τRδrn

 , (43)

with τ
(ℓ)
S;rn = [A(ℓ)

S;rn]−1 a finite (Nℓ + sℓ + 1)2 matrix and

τ
(ℓ)
<,>;rn = −τRF̃ (ℓ)

−(r+sℓ),n+sℓ
+

Nℓ∑
j=−sℓ

F̃ (ℓ)
−(r+sℓ),j+sℓ

τ
(ℓ)
S;jn. (44)

▶ For example, the shear viscosities ηr =
∑

n τ
(2)
rn α

(2)
n are

η−sℓ≤r≤Nℓ
=

N2∑
n=−s2

τ
(2)
S;rnα(2)

n ,

ηr,</> = τRα(2)
r +

N2∑
n=−s2

F̃ (2)
−r−s2,n+s2

(ηn − τRα(2)
n ). (45)



Tunable coefficients in the Shakhov model
▶ The transport coefficients depend on

τ
(0)
0,n̸=1,2 :N0 + s0 − 1 entries; C(0)

n ̸=1,2 ≡ ζn

ζ0
: N0 + s0 − 2 extra lines,

τ
(1)
0,n̸=1 :N1 + s1 entries; C(1)

n ̸=1 ≡ κn

κ0
: N1 + s1 − 1 extra lines,

τ
(2)
0n :N2 + s2 + 1 entries; C(2)

n ≡ ηn

η0
: N2 + s2 extra lines,

so in total:

[2(N0 + s0 + N1 + s1 + N2 + s2) − 3] transport coefficients, (46)

plus a hidden degree of freedom given by τR.
▶ For an UR gas, the scalar sector is not important, leaving in total

[2(N1 + s1 + N2 + s2)] transport coefficients, (47)

plus τR.



Section 7

Application: Shear-bulk coupling



Example: shear-bulk coupling [VEA, Wagner, PRD 110 (2024) 056002]

▶ To illustrate the capabilities of the Shakhov model in the case of
finite m, we consider again the Bjorken flow problem.

▶ In MIS hydro, the diffusive quantities evolve according to

τΠ
dΠ
dτ

+ Π = − 1
τ

(ζ + δΠΠΠ + λΠππd) ,

τπ
dπd

dτ
+ πd = − 1

τ

[
4η

3 +
(

δππ + τππ

3

)
πd + 2λπΠ

3 Π
]

. (48)

▶ Our aim is to separately tune ζ, η and λΠπ, i.e.

λΠπ

τΠ
= A

λR
Ππ

τR
, η = HηR, ζ = ζR, (49)

where λR
Ππ = m2

3 τR

(
R(2)

−2 + J10
J30

)
is the RTA expression, while A

and H are arbitrary functions.
▶ This can be achieved using the following collision matrix:

A(2)
S = 1

τRH

(
1 (1 − A)

(
R(2)

−2 + J10
J30

)
0 1

)
, R(2)

−2 =
α

(2)
−2

α
(2)
0

. (50)

https://doi.org/10.1103/PhysRevD.110.056002


Example: shear-bulk coupling [VEA, Wagner, PRD 110 (2024) 056002]
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▶ For definiteness, we consider AH = 1 ⇒ bulk response λΠππd

remains unchanged (see central panel).
▶ The Shakhov fSk = f0kf̃0kSk has f̃0k = 1 (classical gas) and

Sk =
(

πS;−2h
(2)
k0 + πS;0h

(2)
k2

)( k2
η

τ2k2
τ

− k2
⊥

2k2
τ

)
,

πS;r = πr − τRA(2)
S;rnπn, kτ = tkt − zkz

τ
, kη = tkz − zkt

τ2 ,

h
(2)
k0 = J42 − J22E2

k
2(J02J42 − J2

22) , h
(2)
k2 = −J22 + J02E2

k
2(J02J42 − J2

22) . (51)

https://doi.org/10.1103/PhysRevD.110.056002


Section 8

Application: Shear-diffusion coupling



Example: shear-diffusion coupling [VEA, Wagner, PRD 110 (2024) 056002]

▶ Consider a longitudinal wave propagating along z.
▶ The linearized hydro equations for δπ ≡ πzz and δV ≡ V z read

τV ∂tδV + δV = −κ∂zδα + ℓV π∂zδπ,

τπ∂tδπ + δπ = −4η

3 ∂zδv − 2
3ℓπV ∂zδV, (52)

where the cross couplings read (for an UR classical gas):

ℓV π =
∑
r ̸=1

τ
(1)
0r

(
βJr+2,1

ϵ + P
− C(2)

r−1

)
, ℓπV = 2

5
∑

r

τ
(2)
0r C(1)

r+1. (53)

▶ In RTA, ℓV π = τR

(
βJ21
ϵ+P − C(2)

−1

)
and ℓπV = τRC(1)

1 both vanish:

J21 = nT = 1
3ϵ, C(2)

−1 =
α

(2)
−1

α
(2)
0

= β

4 ⇒ ℓV π = 0,

κ1 = α
(1)
1 = 0, C(1)

1 = α
(1)
1

α
(1)
0

= 0 ⇒ ℓπV = 0. (54)

▶ We aim to control independently 4 t.c.: κ, η, ℓV π and ℓπV .

https://doi.org/10.1103/PhysRevD.110.056002


Example: shear-diffusion coupling [VEA, Wagner, PRD 110 (2024) 056002]

▶ To fix κ, η, ℓV π, ℓπV , we use (N1, N2, s1, s2) = (1001) having

2(N1 + s1 + N2 + s2) = 4 degrees of freedom. (55)

▶ We take A(1)
S = 1/τV with τV = 12κ/βP .

▶ Introducing the notation

H = 5η

4τπP
, LV π = 4ℓV π

βτV
, LπV = 5βℓπV

8τπ
, (56)

we have the constraint H = 1 + LV πLπV , i.e.

τπ = τR

1 + LV πLπV
, (57)

where we take τR = 5η/4P .
▶ Then, the matrix reads:

A(2)
S = 1 − α

αHτπ(1 − αH)

(
H − LπV − β

4 x
− 4

β LπV H(1 − LV π) − x

)
, (58)

with x = H(1 − α − LV π) − LπV − 1−H
1−α and α = 1/2.

https://doi.org/10.1103/PhysRevD.110.056002


Example: shear-diffusion coupling [VEA, Wagner, PRD 110 (2024) 056002]
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▶ We first consider ℓπV = 0 (left panel) and ℓV π = 0 (right panel):

ℓπV = 0 : ℓV π = 0 :

A(2)
S =

1
τπ

(
2 − β

4 (1 − 2LV π)
0 1

)
, A(2)

S =
2

τπ

(
1 − LπV −β( 1

2 − LπV )
−4βLπV

1
2 + LπV

)
.

(59)

▶ Very good agreement with hydro observed!

https://doi.org/10.1103/PhysRevD.110.056002


Example: shear-diffusion coupling [VEA, Wagner, PRD 110 (2024) 056002]
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▶ The requirement ∂µSµ ≥ 0 imposes

ℓV π

κ
+ ℓπV

2ηT
= 0 ⇒ LπV = −3HLV π. (60)

▶ In this case, the Shakhov matrix reads:

A(2)
S =

2
τπ(2 − H)

(
1 + 3LV π

β
8 (12L2

V π − 4LV π − 1)
12
β LV π 6L2

V π − 3LV π + 1
2

)
, (61)

▶ Again, very good agreement with hydro observed!

https://doi.org/10.1103/PhysRevD.110.056002


Section 9

Application: Ultrarelativistic hard spheres
(Riemann problem)



Ultrarelativistic hard spheres (URHS)

▶ The t.c. of the URHS model are: [Wagner, Palermo, VEA, PRD 106 (2022) 016013]
[Wagner, VEA, Molnár, PRD 109 (2024) 056018]

κσ τV [λmfp] δV V [τV ] ℓV π[τV ] = τV π [τV ] λV V [τV ] λV π[τV ]
0.15892 2.0838 1 0.028371β 0.89862 0.069273β

ησβ τπ [λmfp] δππ [τπ ] ℓπV [τπ ] τπV [τπ ] τππ [τπ ] λπV [τπ ]
1.2676 1.6557 4/3 −0.56960/β −2.2784/β 1.6945 0.20503/β

▶ The t.c. of RTA with ηR = ηHS are
κσ τV [λmfp] δV V [τV ] ℓV π[τV ] = τV π[τV ] λV V [τV ] λV π[τV ]

0.13204 1.5845 1 0 3/5 β/16

ησβ τπ [λmfp] δππ [τπ ] ℓπV [τπ ] τπV [τπ ] τππ [τπ ] λπV [τπ ]
1.2676 1.5845 4/3 0 0 10/7 0

▶ RTA-HS mismatch for almost all coefficients, except δV V = τV and
δππ = 4τπ/3, which are fixed for an UR gas.

▶ To align all transport coefficients, we need 11 parameters!

https://doi.org/10.1103/PhysRevD.105.016013
https://doi.org/10.1103/PhysRevD.109.056018


Various (N1, N2, s1, s2) models

▶ A Shakhov model with (N1, N2, s1, s2) provides
2(N1 + N2 + s1 + s2) params.

▶ To test the effect of various t.c., we employed several models:
▶ AW: τR is used to fix ηR = ηHS.
▶ (1000): Fixes η and κ.
▶ (1001): discussed previously, fixes (κ, η, ℓV π, ℓπV ).
▶ (1012): has 2 × 4 = 8 free entries and fixes everything except λV V

and λV π.
▶ (2102): has 2 × 5 = 10 free entries and fixes everything.



Models used

Model ησβ τπ/λmfp ℓπV /τπ τππ/τπ βλπV /τπ

HS 1.2676 1.6557 −0.56960 1.6945 0.20503
AW 1.2676 1.5845 0 1.4286 0
1000 1.2676 1.5845 0 1.4286 0
1001 1.2676 1.6457 −0.56960 1.7607 0
1012 1.2676 1.6557 −0.56960 1.6945 0.20503
2012 1.2676 1.6557 −0.56960 1.6945 0.20503

Model κσ τV /λmfp ℓV π/βτV λV V /τV λV π/βτV

HS 0.15892 2.0838 0.028371 0.89862 0.069273
AW 0.13204 1.5845 0 0.6 0.0625
1000 0.15892 1.5845 0 0.6 0.0625
1001 0.15892 1.9070 0.028371 0.6 0.055407
1012 0.13204 2.0838 0.028371 0.762023 0.062933
2012 0.15892 2.0838 0.028371 0.89862 0.069273



Sod shock tube: convergence properties

0

2

4

6

8

10

12

14

−3 −2 −1 0 1 2 3

(a)
n0

n4

Rarefaction
wave

Contact discontinuity

Shock front

(0) (1) (2) (3) (4)

n
[f
m

−
3
]

z [fm]

BAMPS
Inviscid

ηIS/s = 0.1
ηIS/s = 0.01

ηIS/s = 0.001

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3

(b)

P0

P4

Rarefaction
wave

Shock front

(0) (1) (2)+(3) (4)

P
[G
eV

/
fm

3
]

z [fm]

BAMPS
Inviscid

ηIS/s = 0.1
ηIS/s = 0.01

ηIS/s = 0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−3 −2 −1 0 1 2 3

(c)

Rarefaction wave

Shock front

(0) (1) (2)+(3)

(4)

u
z
/
c

z [fm]

BAMPS
Inviscid

ηIS/s = 0.1
ηIS/s = 0.01

ηIS/s = 0.001

▶ To validate the numerical scheme,
we compared AW results to
BAMPS for various fixed η/s.

▶ As η/s → 0, our results
approach the inviscid (analytical)
solution.

▶ AW and all Shakhov implementa-
tions are in excellent agreement w.
BAMPS for the eq. quantits. (n, P , u). [Bouras et al, PRC 82 (2010) 024910]

http://dx.doi.org/10.1103/PhysRevC.82.024910


Sod shock tube: Comparison to BAMPS [Bouras et al, PRC 82 (2010) 024910]

−0.3

−0.2

−0.1

0

0.1

0.2

−3 −2 −1 0 1 2 3

(b) (ηIS/s = 0.1)

π
[G
eV
/
fm

3
]

z [fm]

BAMPS
AW
1000
1001
1012
2012

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−3 −2 −1 0 1 2 3

(d)(ηIS/s = 0.1)

0

0.02

0.04

2.25 2.5 2.75 3

q
z
[G
eV
/
fm

3
]

z [fm]

BAMPS
AW
1000
1001
1012
2012

▶ In the frame of the Sod shock tube, we considered a comparison to
BAMPS for hard-sphere interactions.

▶ Using τR to tune η, shear comes out well with AW and Shakhov.
▶ For diffusion: 1000 ≡ first-order Shakhov underestimates peak.
▶ All high-order Shakhov models perform well!

http://dx.doi.org/10.1103/PhysRevC.82.024910


Heat flow problem: Comparison to BAMPS [DNBMXRG, PRD 89 (2014) 074005]
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▶ Case 1: const. initial λ, pressure jump.
▶ All models recover π/P .
▶ For qz, both AW (fixing only η) and 1000 (fixing η and κ) fail.
▶ All high-order Shahkov models perform well!

http://dx.doi.org/10.1103/PhysRevD.89.074005


Heat flow problem: Comparison to BAMPS [DNBMXRG, PRD 89 (2014) 074005]
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▶ Case 2: cons. initial P , jump in λ.
▶ AW and 1000 give π/P = 0; all high-order models recover π/P .
▶ For qz, AW is off by ≃ 10%, while 1000 and high-order Shahkov

models perform well!

http://dx.doi.org/10.1103/PhysRevD.89.074005


IReD Supremacy: Problem with DNMR
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▶ So far, we used the IReD method for the t.coeffs computation.
▶ Now we tune the S-model to capture the O(Re−1Kn) t.coeffs to the

DNMR values, ignoring the O(Kn2) t.coeffs.
▶ While π is recovered well, in all S-models the DNMR coefficients

lead to wrong results for qz.



Section 10

Code availability



Code availability

▶ The kinetic equation is solved using a discrete velocity method
algorithm based on the relativistic lattice Boltzmann method.

▶ The source code, run scripts, as well as plotting scripts are available
to download from CodeOcean, as follows:

0 + 1-D massless Bjorken flow: DOI: 10.24433/CO.5625382.v2
[VEA et al, Nature Comput. Sci. 2 (2022) 641]

0 + 1-D massive Bjorken flow (hydro, aHydro, Boltzmann-RTA):
DOI: 10.24433/CO.1942625.v1 [VEA, Molnár, Rischke, PRD 109 (2024) 076001]

First-order Shakhov model (Bjorken flow, longitudinal waves): DOI:
10.24433/CO.6267589.v1 [VEA, Molnár, PLB 855 (2024) 138795]

High-order Shakhov model (Bjorken flow, longitudinal waves, shock
waves): DOI: 10.24433/CO.8322373.v1 [VEA, Wagner, PRD 110 (2024) 056002]

https://doi.org/10.24433/CO.5625382.v2
https://doi.org/10.1038/s43588-022-00333-x
https://doi.org/10.24433/CO.1942625.v1
https://doi.org/10.1103/PhysRevD.109.076001
https://doi.org/10.24433/CO.6267589.v1
https://doi.org/10.24433/CO.6267589.v1
https://doi.org/10.1016/j.physletb.2024.138795
https://doi.org/10.24433/CO.8322373.v1
https://doi.org/10.1103/PhysRevD.110.056002


Kinetic solver: 1 + 1-D flows

▶ For 1 + 1-D flows, the kinetic equation reduces to

kt∂tfk + kz∂zfk = −Ek

τR
(fk − fSk). (62)

▶ We parametrize fk ≡ f(xµ; m⊥, vz, φk), with(
kt

kz

)
= m⊥

(
cosh y
sinh y

)
= m⊥√

1 − v2
z

(
1
vz

)
,

(
kx

ky

)
= k⊥

(
cos φk
sin φk

)
,

(63)
where m⊥ =

√
k2

⊥ + m2 is the transverse mass, y = tanh−1 vz is
the rapidity, and vz = kz/kt.

▶ Assuming uµ∂µ = γ(∂t + βz∂z), Eq. (62) leads to

∂tfk + vz∂zfk = −γ(1 − βzvz)
τR

(fk − fSk). (64)



Kinetic solver: Rapidity-based moments
▶ Going from k = (kx, ky, kz) to (m⊥, vz, φk) implies:∫

d3k

k0 →
∫ 1

−1

dvz

1 − v2
z

∫ 2π

0
dφk

∫ ∞

m

dm⊥m⊥ . (65)

▶ The m⊥ and φk dofs can be integrated out by introducing
rapidity-based moments:

Fn(vz) = g

(2π)3

∫ 2π

0
dφk

∫ ∞

m

dm⊥ mn+1
⊥

(1 − v2
z)(n+2)/2 fk. (66)

▶ For the longitudinal waves and shock waves problems, Eq. (64) can
be integrated w.r.t. m⊥ and φk, leading to

∂Fn

∂t
+ vz ∂Fn

∂z
= −γ(1 − βzvz)

τ
(Fn − F S

n ). (67)

▶ The equation is closed since all required macroscopic quantits.
entering fSk → F S

n can be recovered from Fn:(
Nt

r
Nz

r

)
=

∫ 1

−1

dv
z
(

1
vz

)
(u · v)r

Fr+1 ,

(
T tt

r
T tz

r
T zz

r

)
=

∫ 1

−1

dv
z

( 1
vz

v2
z

)
(u · v)r

Fr+2 . (68)



Kinetic solver: Non-conformal Bjorken flow
▶ Due to the symmetries of Bjorken flow, it is convenient to employ

(τ, η), defined by

t = τ cosh η, z = τ sinh η. (69)
▶ Due to boost invariance, fk depends on y and η only through y − η.
▶ Then, fk → f(τ ; m⊥, φk, vz), where vz = tanh(y − η) instead of

tanh y.
▶ The kinetic eq. for Bjorken flow becomes:

∂fk

∂τ
− vz(1 − v2

z)
τ

∂fk

∂vz
= − 1

τR
(fk − fSk). (70)

▶ Defining again the rapidity-based moments,

Fn(vz) = g

(2π)3

∫ 2π

0
dφk

∫ ∞

m

dm⊥ mn+1
⊥

(1 − v2
z)(n+2)/2 fk, (71)

one obtains
∂Fn

∂τ
+ 1

τ
[1 + (n − 1)v2

z ]Fn − 1
τ

∂[vz(1 − v2
z)Fn]

∂vz
= − 1

τR
(Fn − F S

n ).
(72)

▶ The equation is again closed w.r.t. n.



Momentum-space discretization: vz

▶ vz is discretized via the Gauss-Legendre quadrature.
▶ The continuous functions Fn(vz) are replaced by

Fn;j = wjFn(vz
j ), wj =

2(1 − v2
z;j)

[(K + 1)PK+1(vz
j )]2 , (73)

where vz
j (1 ≤ j ≤ K) satisfy PK(vz

j ) = 0
▶ The derivative w.r.t. vz is replaced by the finite sum[

∂[vz(1 − v2
z)Fn]

∂vz

]
j

=
K∑

j′=1
Kj,j′Fn;j′ , (74)

where Kj,j′ is obtained by projection onto Legendre polynomials:
[VEA, Blaga, PRC 98 (2018) 035201]

Kj,j′ = wj

K−3∑
m=1

m(m + 1)(m + 2)
2(2m + 3) Pm(vz

j )Pm+2(vz
j′)

−wj

K−1∑
m=1

m(m + 1)
2 Pm(vz

j )
[ (2m + 1)Pm(vz

j′)
(2m − 1)(2m + 3) + m − 1

2m − 1Pm−2(vz
j′)
]

.

(75)

https://doi.org/10.1103/PhysRevC.98.035201


Section 11

Conclusions



Conclusions

▶ Shakhov model generalized for the relativistic Anderson-Witting
RTA, allowing ζ, κ and η to be controlled independently.

▶ Numerical simulations of the Bjorken flow and of sound waves
damping confirmed that the model is robust.

▶ Extending the Shakhov model allows 2nd-order t. coeffs. to be
controlled ⇒ agreement with BAMPS in Sod shock tube.

▶ This work was supported through a grant of the Ministry of
Research, Innovation and Digitization, CNCS - UEFISCDI, project
number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.
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