Stochastic theory of cosmological perturbations

Initial conditions

Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
 - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"

e.g. during RD:
$$-2\psi = -2\phi = \delta_{\gamma} = \delta_{\nu} = \frac{4}{3}\delta_{b} = \frac{4}{3}\delta_{c} = \text{constant}$$
 Einstein eq.

(Comes from
$$A(\eta, \vec{x}) = \bar{A}(\eta + \delta \eta(\vec{x})) = \bar{A}(\eta) + \bar{A}'(\eta) \, \delta \eta(\vec{x})$$
)

perturbation $\delta A(\eta, \vec{x})$

in adiabatic case

Primordial power spectrum

Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
 - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"
 - \Rightarrow need power spectrum for single degree of freedom, e.g. curvature perturbation $\mathcal{R} \equiv \phi \frac{a'}{a} \frac{v_{\mathrm{tot}}}{a^2}$ in Newt. Gauge
 - \Rightarrow Primordial spectrum: $\langle \mathcal{R}(\eta_i, \vec{k}) \mathcal{R}^*(\eta_i, \vec{k}') \rangle = \delta_D(\vec{k}' \vec{k}) \ P_{\mathcal{R}}(k)$
- D. Power law, nearly scale-invariant spectrum: $P_{\mathcal{R}}(k) = \frac{2\pi^2}{k^3} A_s \left(\frac{k}{k_*}\right)^{n_s-1}$

Transfer functions

For each Fourier mode \vec{k} :

- all perturbations → system of linear coupled differential equations
- adiabatic ICs \rightarrow single constant of integration $\mathcal{R}(\eta_{\mathrm{ini}}, \dot{k})$
- $\forall A \in \{\phi, \psi, \delta_X, \theta_X, \Theta_\ell, \dots\}$ $A(\eta, \vec{k}) = T_A(\eta, k) \, \mathcal{R}(\eta_i, \vec{k})$ stochastic Fourier mode

Deterministic solution of e.o.m. normalised to $\mathcal{R}=1$

= transfer function of A

Isotropic background \Rightarrow depends only on k \Rightarrow denoted later as A(t,k)

Linear transport of probability

Linearity of solutions ⇒ probability shape always preserved (standard model: Gaussian)

⇒ variance evolves like square of transfer function

Power spectrum

Adiabatic initial conditions

⇒ for <u>any</u> perturbation at <u>any</u> time:

$$\langle A(\eta,\vec{k})A^*(\eta,\vec{k}')\rangle = A(\eta,k)A^*(\eta,k') \left\langle \mathcal{R}(\eta_i,\vec{k})\,\mathcal{R}^*(\eta_i,\vec{k}')\right\rangle$$

$$= |A(\eta,k)|^2 P_{\mathcal{R}}(k) \qquad \delta_D(\vec{k}-\vec{k}')$$
transfer function of A

power spectrum $P_A(\eta,k)$ of A at η

primordial curvature spectrum

Spectrum of temperature anisotropies

Temperature multipoles

 $g(\eta)$ very peaked at $\eta_{\rm dec}$ \downarrow last scattering sphere

inversion + Fourier + Legendre
$$\Rightarrow a_{lm} = (-i)^l \int \frac{d^3\vec{k}}{2\pi^2} Y_{lm}(\hat{k}) \Theta_l(\eta_0, \vec{k})$$

stochastic, Gaussian ← stochastic, Gaussian

Temperature power spectrum

Defined as:
$$C_l = \langle a_{lm} a_{lm}^* \rangle = \frac{2}{\pi} \int dk \, k^2 \Theta_l^2(\eta_0, k) \, P_{\mathcal{R}}(k)$$
 photon primordial spectrum function

theory \(\to\) observations

Estimator:
$$\hat{C}_l(a_{lm}) \equiv \frac{1}{2l+1} \sum_{-l \leq m \leq l} |a_{lm}|^2$$
 $\sum_{l=1}^{c_l = 1} |a_{lm}|^2$ Cosmic variance: $\langle (\hat{C}_l - C_l)^2 \rangle = \frac{2}{2l+1} C_l^2$

Cosmic variance:
$$\langle (\hat{C}_l - C_l)^2
angle = rac{2}{2l+1}C_l^2$$

Physics of temperature anisotropies

"Line-of-sight" integral in Fourier space

Boltzmann hierarchy ⇒ formal solution Zaldarriaga & Harari <u>astro-ph/9504085</u>:

$$\Theta_l(\eta_0, \overset{(\rightarrow)}{k}) = \int_{\eta_{\rm ini}}^{\eta_0} d\eta \left\{ g\left(\Theta_0 + \psi\right) j_l(k(\eta_0 - \eta)) \right. \\ + g \, \overset{(\rightarrow)}{k^{-1}} \theta_{\rm b} \, j_l'(k(\eta_0 - \eta)) \\ + e^{-\tau} \left(\phi' + \psi'\right) j_l(k(\eta_0 - \eta)) \right\} \\ \text{transfer function with } k$$

structure:
$$\int d\eta \ f(\eta) \ A(\eta,\vec{k}) \ j_{\ell}(k(\eta_0-\eta))$$

"Physical effects relevant at times described by $f(\eta)$ imprint CMB photon anisotropies described in Fourier space by $A(\eta, \vec{k})$, that project to multipole space according to $j_{\ell}(k(\eta_0 - \eta))$ "

Angular projection of Fourier modes

Role of $j_{\ell}(k(\eta_0 - \eta))$?

Main contribution:
$$\theta = \frac{\pi}{l} = \frac{\lambda/2}{d_{\rm a}} = \frac{a(\eta) \pi/k}{a(\eta) (\eta_0 - \eta)} \quad \Leftrightarrow \quad l = k(\eta_0 - \eta)$$

Other contributions: harmonics

Sachs-Wolfe term

$$\Theta_{l}(\eta_{0}, \vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{\text{b}} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization: $g(\eta)$ very peaked at η_{dec}

⇒ effect takes place only on last scattering sphere

$$\Rightarrow$$
 mode k project to $\ell = k(\eta_0 - \eta_{\rm dec})$

$$\Theta_0(\eta_{\rm dec}, \vec{k}) + \psi(\eta_{\rm dec}, \vec{k})$$
 = intrinsic fluctuation + gravitational Doppler shift

/ super-Hubble modes with adiabatic IC: $\psi = -2\Theta_0$, Sachs-Wolfe effect wins, negative picture of last scattering sphere!

Doppler term

$$\Theta_{l}(\eta_{0}, \vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{b} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization: $g(\eta)$ very peaked at $\eta_{
m dec}$

⇒ effect takes place only on last scattering sphere

$$\Rightarrow$$
 mode k project to $\ell = k(\eta_0 - \eta_{\rm dec})$

$$\hat{n} \cdot \vec{v}_{\rm b}^{\rm scalar} \to k^{-1}\theta_{\rm b}$$
 = velocity Doppler shift (j_{ℓ}') from a gradient

Integrated Sachs-Wolfe (ISW) term

$$\Theta_l(\eta_0, \vec{k}) = \dots + e^{-\tau} (\phi' + \psi') j_l(k(\eta_0 - \eta))$$

Neglecting reionization: $e^{-\tau}$ negligible before $\eta_{\rm dec}$, $\simeq 1$ after

- \Rightarrow effect takes place at all times $\eta > \eta_{\rm dec}$ along each line of sight
- \Rightarrow mode k projects from each sphere to $\ell = k(\eta_0 \eta)$

 $\partial_{\eta} \{ \phi(\eta, \vec{k}) + \psi(\eta, \vec{k}) \}$ comes from dilation + gravitational Doppler effects

- ϕ, ψ static: no dilation, gravitational Doppler effect is conservative: only $(\psi_{
 m dec} \psi_{
 m obs})$
- ϕ, ψ time-dependent: net effect (e.g. net redshift when crosses deepening potential wells)

Summary

Final goal: compute
$$C_{\ell} = \langle a_{lm} a_{lm}^* \rangle = \frac{2}{\pi} \int dk \, k^2 \Theta_{\ell}^2(\eta_0, k) \, P_{\mathcal{R}}(k)$$

with transfer functions $\Theta_l(\eta_0,k) = \int_{\eta_{\rm ini}}^{\eta_0} d\eta \left\{ g\left(\Theta_0 + \psi\right) j_l(k(\eta_0 - \eta)) + g k^{-1} \theta_{\rm b} j_l'(k(\eta_0 - \eta)) \right\}$

+
$$e^{-\tau} (\phi' + \psi') j_l(k(\eta_0 - \eta))$$

behaviour of

$$\Theta_0(\eta_{\rm dec}, k)$$

$$\theta_{\rm b}(\eta_{\rm dec},k)$$

$$\psi(\eta \ge \eta_{\rm dec}, k) \simeq \phi$$

Tight-Coupling Approximation (TCA)

$$\begin{array}{l} \text{When } \Gamma_{\gamma} \gg \frac{a'}{a} : \\ \text{tightly-coupled baryon-photon fluid:} \end{array} \left\{ \begin{array}{l} \Theta_0 = \frac{1}{4} \delta_{\gamma} = \frac{1}{3} \delta_b \\ 3k\Theta_1 = \theta_{\gamma} = \theta_b \\ \Theta_{l \geq 2} = 0 \end{array} \right. \begin{array}{l} \text{from thermal equilibrium} \\ \text{Thomson scattering} \end{array} \right.$$

⇒ photon Boltzmann hierarchy + baryon fluid equations —> single TCA equation:

$$\Theta_0'' + \frac{R}{1+R} \frac{a'}{a} \Theta_0' + \frac{k^2 c_{\rm s}^2 \Theta_0}{r^{\rm pressure}} = -\frac{k^2}{3} \psi + \frac{R}{1+R} \frac{a'}{a} \phi' + \phi''$$
 baryon pressure gravity local baryon dilation damping force force damping

Squared sound speed / baryon-to-photon ratio: $\,c_{
m s}^2=rac{1}{3(1+R)}\,\,,\,\,\,\,\,\,\,R\equivrac{3ar
ho_{
m b}}{4ar
ho_{\gamma}}\propto a$

Tight-coupling equation

$$\Theta_0'' + \frac{R}{1+R} \frac{a'}{a} \Theta_0' + \frac{k^2 c_{\rm s}^2 \Theta_0}{1+R^2 c_{\rm s}^2 \Theta_0} = -\frac{k^2}{3} \psi + \frac{R}{1+R} \frac{a'}{a} \phi' + \phi''$$
 baryon damping pressure force gravity force damping

Squared sound speed / baryon-to-photon ratio: $c_{
m s}^2=\frac{1}{3(1+R)}\;,\quad R\equiv\frac{4\bar{\rho}_{
m b}}{3\bar{\rho}_{\gamma}}\propto a$

Equilibrium point neglecting metric time derivatives: $\Theta_0^{
m equi.} = -\frac{1}{3c_{
m s}^2}\psi = -(1+R)\psi$

WKB TCA solution " " " $\Theta_0 = A(1+R)^{-1/4}\cos\left(k\int c_{\rm s}(\eta)d\eta\right) - (1+R)\psi$

Very good approximation up to gravity boost + (Silk) damping/diffusion effects

Evolution for one mode with given k

Metric damped near Hubble crossing during RD

—> photon pressure, Poisson: $-k^2\phi=4\pi G\,a^2\,\delta\rho_r\propto a^2\rho_r\,\delta_r\sim a^{2-4+0}\sim a^{-2}$

—> very different from MD: $-k^2\phi = 4\pi G\,a^2\,\delta\rho_m \propto a^2\rho_m\,\delta_m \sim a^{2-3+1} \sim {\rm constant}$