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ICTP SAIFR, 23-26.07.2017Initial conditions

Canonical single-field inflation guarantees: 
A. stochastic perturbations with independent Fourier modes 
B. gaussian statistics for each Fourier mode / each d.o.f. 
      described by variance(wavenumber) = power spectrum 
C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on 

super-Hubble scales: “adiabatic initial conditions” 

e.g. during RD: 

(Comes from  )

∼

A(γ, 𝒪x) = Ā(γ + ηγ( 𝒪x)) = Ā(γ) + Ā↓ (γ) ηγ( 𝒪x)
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is static, with a relation between the perturbations of the metric and those of the total
density: −2φ = −2ψ = δtot. = constant18.

During radiation domination and with the adiabatic initial conditions of equation
[2.57], the total density fluctuation δtot. ≡

∑
X ρ̄XδX/

∑
X ρ̄X is approximately

equal to δtot. = δγ = δν , because (ρ̄γ + ρ̄ν) # (ρ̄b + ρ̄c). One then finds that
all density and metric perturbations are constant and related by:

−2ψ = −2φ = δγ = δν =
4

3
δb =

4

3
δc = constant (rad. dom.) [2.60]

This solution is the one that correctly describes initial conditions in our universe.
It is generally called the growing adiabatic mode, although density and metric
perturbations are actually constant in the Newtonian gauge – in other gauges, they
would indeed be growing.

During matter domination, the total density fluctuation is approximately equal to
δtot. = δb = δc, because (ρ̄γ+ ρ̄ν) $ (ρ̄b+ ρ̄c). One then finds an analogous solution
but with different coefficients:

−2ψ = −2φ = δb = δc =
3

4
δγ =

3

4
δν = constant (mat. dom.) [2.61]

This last relation will be important for the calculation of the SW effect in
section 2.6.3.1.

18. These results are reached in several steps. We explained in section 2.3.4 that as a first
approximation, we can neglect the impact of the anisotropic neutrino pressure, in order to
deduce from equation [2.21] the equality φ = ψ. Moreover, for adiabatic solutions, the
right-hand side terms of equations [2.20] and [2.18] can be written as:

−8πG
∑

X

ρ̄XδX = −8πGρtot.δtot. , 8πG
∑

X

ρ̄Xc2sXδX = 8πGc2aρtot.δtot. [2.58]

where ca is the adiabatic sound speed of the total fluid. It is thus possible to obtain a
homogeneous differential equation for φ = ψ, by combining c2a×[2.20]+[2.18]. This equation
is easy to solve in the limit k # aH = a′/a, using either a ∝ η (radiation domination) or
a ∝ η2 (matter domination), which follows from the Friedmann equation. In both cases, two
solutions are found for φ = ψ, one decaying and the other is constant. Finally, for the constant
solution, [2.20] becomes:

6
a2

(
a′

a

)
φ = −8πGρtot.δtot. [2.59]

After replacing ρtot. using the Friedmann equation, we obtain 2 = −δtot..

Einstein eq. Einstein eq.

perturbation  
in adiabatic case

ηA(γ, 𝒪x)

V

δ
slow roll
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Canonical single-field inflation guarantees: 
A. stochastic perturbations with independent Fourier modes 
B. gaussian statistics for each Fourier mode / each d.o.f. 
      described by variance(wavenumber) = power spectrum 
C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on 

super-Hubble scales: “adiabatic initial conditions” 
 need power spectrum for single degree 

 of freedom, e.g. curvature perturbation                                 in Newt. Gauge     

 Primordial spectrum:  

D. Power law, nearly scale-invariant spectrum:   

∼

∼

∼ →−(γi, 𝒪k)−*(γi, 𝒪k↓ )← = ηD( 𝒪k↓ ≃ 𝒪k) P−(k)

P−(k) = 2μ2

k3 As ( k
k* )

ns≃1
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2.5.1.4. Curvature fluctuation
The quantities in equations [2.60] and [2.61] are constant in time during either

radiation or matter domination, but not during the transition between these eras. To
link them, the linearized Einstein equation can be used to prove the existence of
conserved quantities for each Fourier mode, in the super-Hubble regime and with
adiabatic initial conditions. There are several quantities satisfying these criteria, as
shown by extensive calculations that will not be discussed here. One of them is a gauge
invariant variable, R, which coincides with the perturbation of the spatial curvature of
the universe expressed in the comoving gauge, that is, the gauge in which the total
cosmological fluid has no bulk velocity, δT 0

tot. i = 0. Therefore, R is called the
comoving curvature fluctuation.

In the Newtonian gauge (see section 2.3.2) and in the super-Hubble regime, one
derives R from density and metric fluctuations through19:

R −−−−−−−−−→
super−Hubble

φ− 1

3

δρtot.
ρ̄tot.+p̄tot.

[2.64]

The comoving curvature fluctuation has the advantage of being constant with
respect to time in the super-Hubble regime when the initial conditions are adiabatic.
Therefore, R is often used as a reference quantity to define the primordial
perturbations. For each Fourier mode, R keeps the same value between the time each
mode reaches the super-Hubble regime during inflation and the time it enters the
sub-Hubble regime during radiation or matter domination. This is not the case for φ
and ψ. In effect, using relations [2.60], [2.61] and [2.64], it is easy to show that on
super-Hubble scales:

R =
3

2
φ (rad. dom.) [2.65]

R =
5

3
φ (mat. dom.) [2.66]

19. In reality, in the Newtonian gauge, the fluctuation R is equal on all scales to:

R ≡ φ− a′

a
vtot.
a2

= φ+
a′

a
θtot.
k2

[2.62]

This relation involves the velocity potential vtot. and the velocity divergence θtot. of the total
cosmological fluid. To obtain the limit [2.64], one must use Einstein’s equations [2.20] and
[2.19]. When k # a′

a , the gradient k2φ can be neglected in equation [2.20]. Then we obtain a
simple relation between the right-hand sides of equations [2.20] and [2.19]:

3
a′

a
(ρ̄tot.+p̄tot.)θtot. −−−−−−−−−→

super−Hubble
−k2δρtot. [2.63]

This can be substituted in equation [2.62] to get [2.64].

V

δ
slow roll

Velocity potential 
𝒪vtot = ⃗⟶ vtot
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For each Fourier mode :  
• all perturbations  system of linear coupled differential equations 
• adiabatic ICs  single constant of integration 

•

𝒪k
∝

∝
ΓA ∞ {ν, θ, ηX, σX, ⇒ρ, . . . } A(γ, 𝒪k) = TA(γ, k) −(γi, 𝒪k)
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Since R keeps the same value for each Fourier mode, φ = ψ varies by a factor
3/2× 3/5 = 9/10 during the transition between these two epochs.

2.5.1.5. Isocurvature initial conditions

It is possible to construct cosmological models in which the condition for adiabatic
initial conditions [2.53] is not applicable. There are, in fact, solutions of the equations
of motion that are non-adiabatic and non-decaying, called isocurvature modes. These
solutions were considered potentially interesting in the 1990s and 2000s, but the
Planck satellite results have set extremely strong upper bounds on the amplitude of
these modes (Akrami et al. 2018). Therefore, they are in general assumed to be zero
and we do not describe them here.

2.5.2. Power spectrum and transfer functions

2.5.2.1. Linear probability transport

In Fourier space, the density fluctuations δX(η,%k) verify a system of coupled
linear differential equations, whose solutions for each wave vector %k are independent.
Cosmological perturbation theory is a stochastic theory, but if we consider a particular
realization of this theory, initial conditions are given by a unique values of δX(ηini,%k)

and δ′X(ηini,%k) for each comoving Fourier mode %k at initial time ηini.

If the universe contains N fluids, the perturbation evolution satisfies a coupled
system of N second-order linear differential equations. In general, the solution of such
a system for each δX is a linear combination depending on 2N integration constants
δY (ηini,%k) and δ′Y (ηini,

%k), which reads formally:

δX(η,%k) =
∑

Y=1,...,N

[
αXY (η,k)δY (ηini,%k) + βXY (η,k)δ

′
Y (ηini,%k)

]
[2.67]

In other words, for each fluctuation δX , there are 2N independent solutions
αX1,...,αXN ,βX1,...,βXN . We have voluntarily written the solutions αXY (η,k) and
βXY (η,k) as functions of the wave number k rather than of the wave vector %k,
because in a universe with an isotropic background metric, the perturbation equations
only depend on the modulus k.

If the initial conditions are adiabatic, we know that δ′X(ηini,%k) = 0 and that
the integration constants δX(ηini,%k) are related to R(ηini,%k) by the simple numerical
factors of equations [2.60] and [2.65]. Consequently, the solutions take a much simpler
form, which depends only on a single integration constant:

∀X, δX(η,%k) = α̃X(η,k)R(ηini,%k) [2.68]

Deterministic solution of e.o.m. normalised to   =1 
= transfer function of  

Isotropic background  depends only on  
 denoted later as 

−
A

∼ k
∼ A(t, k)

stochastic Fourier mode stochastic IC
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initial time

later time

Probability

Probability

Time

Linearity of solutions  probability shape always preserved 
                                       (standard model: Gaussian) 
                                   variance evolves like square of transfer function

∼

∼

ΓA, A(γ, 𝒪k) = A(γ, k) −(γi, 𝒪k)

A(γ, 𝒪k)

A(γ, 𝒪k)
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Adiabatic initial conditions  
 for any perturbation at any time: 

 

                               

∼

→A(γ, 𝒪k) A*(γ, 𝒪k↓ )← = A(γ, k) A*(γ, k↓ ) →−(γi, 𝒪k) −*(γi, 𝒪k↓ )←

= |A(γ, k) |2 P−(k) ηD( 𝒪k ≃ 𝒪k↓ )

power spectrum  of  at          primordial curvature spectrumPA(γ, k) A γ

transfer function of A
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Spectrum of temperature anisotropies
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during inflation, in the so-called slow-roll regime. The simplest inflationary models
predict a slight dependency of PR on k, described in excellent approximation by a
power law:

PR(k) = As

(
k

k∗

)ns−1

[2.78]

where the amplitude As ∼ O(10−10) gives the variance of primordial curvature
perturbations, ns " 1 is the scalar spectral index and k∗ ∼ O(10−2)Mpc−1 is an
arbitrarily scale of reference called the pivot scale.

2.5.2.4. Transfer functions
The different power spectra PA are related to the primordial spectrum by the

functions α̃A(η,k) appearing in equation [2.69]. These functions, which are simply
the solutions to the equations of motion for adiabatic initial conditions normalized to
R(ηini,#k) = 1, are called transfer functions.

By convention, instead of introducing a new notation like α̃A for each transfer
function, we use the same letter as for the perturbation itself, but with, as argument,
the wave number k instead of the wave vector #k:

A(η,k) ≡ A(η,#k)

R(ηini,#k)
[2.79]

Consequently, any function of #k denotes a stochastic variable for each Fourier
mode, while any function of k denotes a deterministic solution of the equations of
motion for each comoving wavelength.

In conclusion, section 2.5.2 can be summarized as follows: within the framework
of linear cosmological perturbation theory, any problem breaks down into two parts,
the calculation of the primordial spectrum and transfer functions. The final observables
can then be derived from the power spectrum PA of several perturbations A, given by
PA(k,η) = |A(η,k)|2PR(k).

2.5.3. Spectrum of temperature anisotropies

2.5.3.1. Multipoles alm

In order to construct a quantity that can be both predicted theoretically and
observed experimentally, we expand the map of CMB temperature anisotropies,
introduced in equation [2.41], into spherical harmonics:

δT

T̄
(n̂) = Θ(η0,#o,− n̂) =

∑

lm

almYlm(n̂) [2.80]

 very peaked at  
 

last scattering sphere

g(γ) γdec
⇓

λ

λ λ

λ
∙n
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We recall that n̂ is a unit vector, described by two angles (θ,φ). Thereby, the
function δT

T̄
(n̂) is defined on a sphere. For functions defined on a sphere, expansions

into spherical harmonics play the same role as Fourier transforms. As l gets larger,
the multipoles alm (with −m ≤ l ≤ m) account for anisotropies on smaller angular
scales. The fact that the temperature map is a real function gives the constraint a∗lm =
al−m. To obtain the inverse relation of [2.80], we use the orthogonality relation of
spherical harmonics:

ˆ
dn̂ Ylm(n̂)Yl′m′(n̂) = δKll′δ

K
mm′ [2.81]

where δKll′ is the Kronecker symbol, as well as the expansion of the temperature
perturbation into Legendre multipoles (equation [2.35]) and the relation between
Legendre polynomials and spherical harmonics:

Pl(n̂ · n̂′) =
l∑

m=−l

4π

2l + 1
Ylm(n̂)Ylm(n̂′) [2.82]

After about 10 lines of calculation, we obtain the expression for each multipole
alm of the temperature map as a function of the Legendre multipole Θl evaluated at
the present time:

alm = (−i)l
ˆ

d3%k

2π2
Ylm(k̂)Θl(η0,%k) [2.83]

where we defined defining the unit vector k̂ ≡ %k/k.

2.5.3.2. Cl spectrum

We saw in the previous section that each Fourier mode of a given perturbation
can be considered as a Gaussian random variable. This is notably the case for the
multipole Θl(η0,%k). The multipole alm is thus given by a sum of independent Gaussian
variables. Therefore, it is also a Gaussian random variable, whose properties are
entirely described by its variance. The latter is inferred from:

〈alma∗l′m′〉 =
ˆ

d3%k

2π2

d3%k′

2π2
Ylm(k̂)Y ∗

l′m′(k̂′)〈Θl(η0,%k)Θ
∗
l′(η0,%k

′)〉 [2.84]

inversion + Fourier + Legendre ∼
stochastic, Gaussianstochastic, Gaussian

correlation/variance     ∼ →alma*l↓ m↓ 
← = ηK

ll↓ 
ηK

mm↓ [ 2
μ ∫ dk k2⇒2

l (γ0, k) P−(k)]photon   primordial 
transfer   spectrum 
function
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Defined as:       

Estimator: 

Cosmic variance: 

Cl = →alma*lm← = 2
μ ∫ dk k2⇒2

l (γ0, k) P−(k)

32
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theory  observationsΛ

Ĉl(alm) ≡ 1

2l + 1

∑

−l≤m≤l

|alm|2

〈(Ĉl − Cl)
2〉 =

(2

−

=
2

2l + 1
C2

l

photon   primordial 
transfer   spectrum 
function
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Physics of temperature anisotropies
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ICTP SAIFR, 23-26.07.2017“Line-of-sight” integral in Fourier space

Boltzmann hierarchy  formal solution Zaldarriaga & Harari astro-ph/9504085:∼

132 The Young Universe

space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

valid both for  
single mode  or  

transfer function with 
𝒪k

k

structure: ∫ dγ f(γ) A(γ, 𝒪k) jρ(k(γ0 ≃ γ))

“Physical effects relevant at times described by  

imprint CMB photon anisotropies described in Fourier space by ,  
that project to multipole space according to ” 

f(γ)
A(γ, 𝒪k)

jρ(k(γ0 ≃ γ))

( ∝ )
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2.6.1.2. Angle projection

The previous computation involves a spherical Bessel function evaluated in
jl(k(η0 − η)). Mathematically, this function appears in the computation of the
line-of-sight integral when a Legendre transformation of the plane wave e−i!k·!x is
performed. More intuitively, it plays the role of a projection coefficient from Fourier
space to multipole space l. In multipole space, each l corresponds to a configuration
on a sphere such that the angle between a maximum and an adjacent minimum is
given by θ = l/π. Let us try to answer the following question: can a Fourier mode $k
of a given perturbation A(η,$k) contribute to the multipole l of the transfer function
Θl(η0,k)?

To address this, one must bear in mind the diagram on the left of Figure 2.4. If the
mode propagates at time η, the observer perceives a cross-sectional view of this mode
along a sphere whose radius is given by the angular distance da until time η:

da = a(t)

ˆ t0

t

dt

a
= a8′(η)

ˆ η0

η
dη = a(η) (η0 − η) [2.93]

The contribution of this Fourier mode to the multipole l is non-zero if the observer
perceives differences between the values of the perturbation at two points on the sphere
separated by an angle θ = l/π. The perceived contribution is the difference averaged
over all pairs of points separated by θ. The strongest contribution to this average
always comes from pairs of points on the sphere defining a segment parallel to the
wave vector, such as the vertically aligned pairs of points on the left of Figure 2.4(a).

A
B

k

C

F

E

D

θ

a) b)

Figure 2.4. a) Contribution of a Fourier mode A(η,"k) with fixed "k and variable η
to a multipole Θl(η0,k) for a fixed l = π/θ. b) Spherical Bessel function j10(x). For a

color version of this figure, see www.iste.co.uk/taillet/universe.zip

Main contribution: 

Other contributions: harmonics

134 The Young Universe

There exists a unique value of the distance da(η), and thereby of the time η, such
that these points correspond to an adjacent maximum and minimum of the Fourier
mode. On the figure, this happens for the sphere B. This value of η is the solution of
the equation λ/2 = θ da, where λ/2 is the half-wavelength, related to the comoving
Fourier mode by λ/2 = a(η)π/k. So the contribution is maximal if the relation:

θ =
π

l
=

λ/2

da
=

a(η)π/k

a(η) (η0 − η)
⇔ l = k(η0 − η) [2.94]

is satisfied. If a mode of the same k propagates later, the observer perceives a
cross-sectional view of it along a smaller sphere, such as sphere A in the figure. It is
immediately obvious that this mode cannot contribute at the desired angle (it can only
contribute at larger angles). If the mode propagates earlier, the observer perceives a
cross-sectional view of it along a larger sphere, such as spheres C, D, E and F in the
figure. For a certain value of η corresponding to sphere D, the angle subtends a
min–max–min–max contribution that also contributes, but with an opposite sign. For
the sphere F, the angle θ subtends a max–min–max–min–max–min contribution that
is of the same sign. Sphere C, halfway between B and D, gives a zero contribution
(the compared points have the same value), as does sphere E between D and F.

In a totally equivalent way, we could have fixed the diameter of the sphere da(η),
and thus the time η, and searched for values of k such that A(η,%k) gives a contribution
to the multipole l. The largest contribution comes from the modes verifying l =
k(η0 − η): this is the main harmonic. At larger ks, one finds the first harmonic, which
contributes with an opposite sign, the second harmonic, which contributes with the
same sign, and so on.

The spherical Bessel function jl(k(η0− η)) can be seen as a projection coefficient
that takes exactly all these effects into account. Its characteristic shape appears in
Figure 2.4(b). It always has a maximum near k(η−η0) = l, giving the contribution of
the main harmonic. For k(η − η0) < l, it tends rapidly to zero and for k(η − η0) > l,
it has an oscillatory behavior taking into account all harmonics.

The line-of-sight integral is often presented as a neat way to split the problem
among physics and geometry. It shows that the physics of the CMB is governed by
the evolution of the transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k), while
geometrical (projection) effects are handled by Bessel functions that not depend on
the cosmological model.

2.6.1.3. Instantaneous decoupling approximation

In section 2.4.2, we introduced a double approximation: no reionization and
instantaneous decoupling. This allowed us to simplify the integral [2.48] and to

Role of   ?jρ(k(γ0 ≃ γ))

π

π /2
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

Neglecting reionization:  very peaked at  

 effect takes place only on last scattering sphere 

 mode  project to  

 = intrinsic fluctuation + gravitational Doppler shift

g(γ) γdec

∼
∼ k ρ = k(γ0 ≃ γdec)

⇒0(γdec, 𝒪k) + θ(γdec, 𝒪k)

θ hot photons get redshifted by potential well

super-Hubble modes with 
adiabatic IC:  , 
Sachs-Wolfe effect wins, 
negative picture of last 

scattering sphere !

θ = ≃ 2⇒0

cold photons get blueshifted
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

Neglecting reionization:  very peaked at  

 effect takes place only on last scattering sphere 

 mode  project to  

 = velocity Doppler shift                (  from a gradient)

g(γ) γdec

∼
∼ k ρ = k(γ0 ≃ γdec)

∙n ⃗ 𝒪vscalar
b ∝ k≃1σb j↓ ρ

𝒪vb

photons get e.g. redshifted by emission velocity

photons get e.g. blueshifted by emission velocity
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

ν, θ
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

…

Neglecting reionization:  negligible before , after 

 effect takes place at all times  along each line of sight 

 mode  projects from each sphere to  

 comes from dilation + gravitational Doppler effects

e≃ϕ γdec ̂ 1
∼ γ > γdec

∼ k ρ = k(γ0 ≃ γ)
↔γ{ν(γ, 𝒪k) + θ(γ, 𝒪k)}

photons get continuously red/blue-shifted by metric fluctuations

•  static: no dilation, gravitational Doppler effect is conservative: only   

•  time-dependent: net effect (e.g. net redshift when crosses deepening potential wells)

ν, θ (θdec ≃ θobs)
ν, θ
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with transfer functions
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μ ∫ dk k2⇒2

ρ(γ0, k) P−(k)
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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of the ClTT shape
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⇒0(γdec, k)
σb(γdec, k)

θ(γ ′ γdec, k) ̂ ν
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tightly-coupled baryon-photon fluid: 

 photon Boltzmann hierarchy + baryon fluid equations —> single TCA equation: 

                        baryon                pressure              gravity        local baryon      dilation 
                      damping                  force                  force            damping 

Squared sound speed / baryon-to-photon ratio:  

∼
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Cosmological Microwave Background 139

Fourier modes of photon and baryon density fluctuations, δb(η,#k) = 3
4δγ(η,

#k): these
are called acoustic oscillations.

In our case, one can combine the continuity and Euler equations for photons [2.38],
[2.39] and baryons [2.23], [2.25] in the tight-coupling limit [2.96]. After a few lines
of computation, we obtain a second-order linear inhomogeneous differential equation
for the temperature fluctuation Θ0:

Θ′′
0 +

R

1 +R

a′

a
Θ′

0 + k2c2sΘ0 = −k2

3
ψ +

R

1 +R

a′

a
φ′ + φ′′ [2.100]

This is the equation of a forced oscillator. On the left-hand side, the last term
contains (up to a factor −ρ̄γ) the product −k2c2sδργ = −k2δpγ , which is the Fourier
transform of the Laplacian of pressure: it represents the pressure force, which resists
compression and thus allows for the propagation of sound waves. The second term is
related to gravity in an expanding universe. In general, an inhomogeneous
non-relativistic fluid is subject to gravitational collapse, but the expansion slows
down this collapse. In equation [2.100], this is represented by a Hubble friction term
proportional to a′/a. This friction is important only when the contribution of
non-relativistic baryons to the density of the photon–electron–baryon fluid is large: it
is therefore multiplied by R/(1 +R).

The right-hand side represents the source term of the oscillator. It shows how
fluctuations in the metric can generate density fluctuations in the
photon–electron–baryon fluid or amplify existing fluctuations. The term −k2ψ
comes from the Laplacian of the gravitational potential in real space: it represents the
gravitational force, which stimulates gravitational collapse. The other terms on the
right-hand side account for the dilation effect (see section 2.4.1.1). This effect can
redshift or blueshift photons due to variations in the local expansion rate, and amplify
or attenuate photon overdensities.

As long as the dilation effect is neglected, one can find an approximate solution
for the effective temperature Θ0 + ψ within the Hubble radius, using the WKB
approximation scheme for second-order differential equations:

Θ0 + ψ =
1

3
(1 +R)−1/4 cos

(
k

ˆ η

0
cs(η̃) dη̃

)
−Rψ [2.101]

As expected, this is an oscillating solution. The phase of the oscillation depends
on the ratio between the wavelength and the sound horizon, since the argument of the
cosine is equal to 2πds(η)/λ(η), where we used the expression of the sound horizon
[2.99] and λ = a 2π

k . Since ds(η) increases faster than λ(η), the phase increases
with time. Thus, the modes start to oscillate when they cross the sound horizon. The



CMB physics - J. Lesgourgues41

                        baryon                pressure              gravity        local baryon      dilation 
                      damping                  force                  force            damping 

Squared sound speed / baryon-to-photon ratio:  

Equilibrium point neglecting metric time derivatives: 

WKB TCA solution  “   “   “   :  

Very good approximation up to gravity boost + (Silk) damping/diffusion effects

Tight-coupling equation
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Fourier modes of photon and baryon density fluctuations, δb(η,#k) = 3
4δγ(η,

#k): these
are called acoustic oscillations.

In our case, one can combine the continuity and Euler equations for photons [2.38],
[2.39] and baryons [2.23], [2.25] in the tight-coupling limit [2.96]. After a few lines
of computation, we obtain a second-order linear inhomogeneous differential equation
for the temperature fluctuation Θ0:

Θ′′
0 +

R

1 +R

a′

a
Θ′

0 + k2c2sΘ0 = −k2

3
ψ +

R

1 +R

a′

a
φ′ + φ′′ [2.100]

This is the equation of a forced oscillator. On the left-hand side, the last term
contains (up to a factor −ρ̄γ) the product −k2c2sδργ = −k2δpγ , which is the Fourier
transform of the Laplacian of pressure: it represents the pressure force, which resists
compression and thus allows for the propagation of sound waves. The second term is
related to gravity in an expanding universe. In general, an inhomogeneous
non-relativistic fluid is subject to gravitational collapse, but the expansion slows
down this collapse. In equation [2.100], this is represented by a Hubble friction term
proportional to a′/a. This friction is important only when the contribution of
non-relativistic baryons to the density of the photon–electron–baryon fluid is large: it
is therefore multiplied by R/(1 +R).

The right-hand side represents the source term of the oscillator. It shows how
fluctuations in the metric can generate density fluctuations in the
photon–electron–baryon fluid or amplify existing fluctuations. The term −k2ψ
comes from the Laplacian of the gravitational potential in real space: it represents the
gravitational force, which stimulates gravitational collapse. The other terms on the
right-hand side account for the dilation effect (see section 2.4.1.1). This effect can
redshift or blueshift photons due to variations in the local expansion rate, and amplify
or attenuate photon overdensities.

As long as the dilation effect is neglected, one can find an approximate solution
for the effective temperature Θ0 + ψ within the Hubble radius, using the WKB
approximation scheme for second-order differential equations:

Θ0 + ψ =
1

3
(1 +R)−1/4 cos

(
k

ˆ η

0
cs(η̃) dη̃

)
−Rψ [2.101]

As expected, this is an oscillating solution. The phase of the oscillation depends
on the ratio between the wavelength and the sound horizon, since the argument of the
cosine is equal to 2πds(η)/λ(η), where we used the expression of the sound horizon
[2.99] and λ = a 2π

k . Since ds(η) increases faster than λ(η), the phase increases
with time. Thus, the modes start to oscillate when they cross the sound horizon. The

γ γ
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Evolution for one mode with given k

Metric damped near Hubble crossing during RD 
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