Evolution for one mode with given k Metric damped near Hubble crossing during RD —> photon pressure, Poisson: $-k^2\phi=4\pi G\,a^2\,\delta\rho_r\propto a^2\rho_r\,\delta_r\sim a^{2-4+0}\sim a^{-2}$ —> very different from MD: $-k^2\phi = 4\pi G\,a^2\,\delta\rho_m \propto a^2\rho_m\,\delta_m \sim a^{2-3+1} \sim {\rm constant}$ Gravity boost effect from $\frac{R'}{1+R}\phi'+\phi''$ Will be important for effect of neutrinos, DR... symmetric and stationary oscillation (deep sub-Hubble, deep DR) exponentially damped oscillations (approaching recombination) Final goal: (MZ's line-of-sight integral) $$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau} (\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$ (MZ's line-of-sight integral) $$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau}(\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$ Final goal: (MZ's line-of-sight integral) $$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau}(\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$ Metric $\phi(\eta,k)$: Metric $\phi(\eta,k)$: #### Transfer functions at recombination/decoupling k [h/Mpc] 10^{-2} 10^{-3} 10^{-1} 1.0 Hubble cross. sound hor. cross. Transfer($\eta_{ m dec}$, k) -1.00.4 Transfer(η_{dec} , k)² 5.0 0.0 0.00.0 $- \Theta_0 + \psi$ ### from transfer to C_{ℓ} : $\Theta_0(\eta_{\rm dec},k) + \psi(\eta_{\rm dec},k)$ independent of k would give $l(l+1)C_l = {\rm constant}$ #### Projection effects two reasons for smoothing when going from k-space to l-space: $$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(g \left(\Theta_0 + \psi \right) + \dots \right) j_l(k(\eta_0 - \eta))$$ $$C_l \equiv \langle |a_{lm}|^2 \rangle = \frac{1}{2\pi^2} \int \frac{dk}{k} \Theta_l^2(\eta_0, k) \mathcal{P}_{\mathcal{R}}(k)$$ -> contribution of wide range of *times* and *wavenumber* to single C_l ### 1.0 Hubble cross. sound hor. cross Transfer(η_{dec}, k) 0.0 0.7 0.7 0.7 0.7 0.9 -1.00.4 Transfer(η_{dec} , k)² 0.0 0.0 0.1 9.0 $\ell(\ell+1)C_l^{TT}/2\pi~[\times 10^{10}]$ 10^{-3} 10^{-2} 10^{-1} $\ell/(\eta_0$ - $\eta_{ m dec})$ [h/Mpc] k [h/Mpc] 10⁻² 10^{-1} Ψ Θ_0 θ_b $\Theta_0 + \psi$ $-(1+R)\psi$ $\Theta_0 + \psi$ T + SW 10^{-3} from transfer to $C_{\mathcal{C}}$: $\Theta_0(\eta_{\rm dec},k) + \psi(\eta_{\rm dec},k)$ independent of k would give $l(l+1)C_l=$ constant #### ISW contribution ### **∧CDM** parameter effects on temperature spectrum # Why can we measure 6 ΛCDM parameters independently with CMB? - Flat FLRW ($\Omega_k = 0$), - Cosmological constant (w = -1), - Plain decoupled / stable / cold dark matter, - Neutrino mass neglected or fixed to minimal value, - $N_{\rm eff} = 3.044$, - Power-law primordial spectrum... Possible basis: $$\{\omega_b,\omega_m,\Omega_\Lambda,\tau_{\rm reio},A_s,n_s\}$$ $$\omega_{\!\scriptscriptstyle X}=\Omega_{\!\scriptscriptstyle X}\!h^2$$ parameter of CMB, not of LSS $$C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) \qquad \mathcal{P}_{\mathcal{R}}(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1}$$ $$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\mathrm{reio}}, A_s, n_s\}$$ $$C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) \qquad \mathcal{P}_{\mathcal{R}}(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1}$$ ### $\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$ ### $\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$ #### 8 physical governing C₁'s shape - C1: angular scale of the peaks, θ_s - C2: gravity/pressure at rec., R_{rec} - C3: interval between z_{eq} and z_{dec} - C4: angular scale of damping, θ_d - C5: global amplitude - C6: global tilt - C7: plateau tilting by late ISW - C8: reionisation steplike suppression but all tight to 6 parameters in ΛCDM Extended cosmologies? ... more parameters ... but also more effects ...