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Evolution for one mode with given k

Metric damped near Hubble crossing during RD 
  

—> photon pressure, Poisson: 
—> very different from MD: 
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Evolution for one mode

neutrino shear 
(unimportant)

γ

γ



CMB physics - J. Lesgourgues44

Evolution for one mode

photon 
equilibrium 

= -2/3

photon IC 
 = -1/3
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Evolution for one mode

photon 
equilibrium 

= -2/3

photon IC 
 = -1/3
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Evolution for one mode
γ
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Evolution for one mode

Gravity boost effect from  

Will be important for effect of neutrinos, DR…
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Evolution for one mode

symmetric and stationary oscillation 
(deep sub-Hubble, deep DR)
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Evolution for one mode

exponentially damped oscillations 
(approaching recombination)
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Evolution for one mode

Final goal: 
(MZ’s line-of-sight  

integral)

γ

γ

132 The Young Universe

space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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Evolution for all wavenumbers
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Evolution for all wavenumbers
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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Evolution for all wavenumbers
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:
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[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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Evolution for all wavenumbers
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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Using the definition of the primordial spectrum and of transfer functions, as well
as equations [2.75] and [2.81], we can derive a simpler expression for this variance22:

〈alma∗l′m′〉 = δKll′δ
K
mm′

[
1

2π2

ˆ
dk

k
Θ2

l (η0,k)PR(k)

]
[2.85]

The quantity in square brackets plays a fundamental role for three reasons:

– it contains all the statistical information about the CMB temperature map, since
it represents the variance of Gaussian random quantities;

– it can be deduced from the observations, since the multipoles alm can be
measured (the multipole will then be denoted aobslm );

– it can be deduced from a theoretical model, since the transfer functions Θl(η0,k)
and the primordial spectrum PR(k) can be computed.

This quantity is therefore the appropriate one for testing cosmological models
against observations of CMB temperature anisotropies. It is called the temperature
anisotropy spectrum Cl:

Cl ≡ 〈|alm|2〉 = 1

2π2

ˆ
dk

k
Θ2

l (η0,k)PR(k) [2.86]

2.5.3.3. Cosmic variance

Let us reconsider the meaning of the symbol 〈...〉 in equation [2.86]. In
cosmological perturbation theory, each alm is considered to be a stochastic number,
and the average is taken over all realizations of the theory, that is, over the CMB
maps of all possible universes corresponding to a given cosmological model.
However, we observe only one map of the CMB, in other words, only one realization
of the theory. As such, we cannot know exactly the average theoretical value Cl. At
best, we can estimate it from each observed realization |aobslm |2. Fortunately, all alm
with fixed l and m comprised in the interval −l ≤ m ≤ l follow the same probability
distribution, namely a Gaussian of variance Cl. Therefore, we have the opportunity to

22. In this calculation, the fact that 〈alma∗
l′m′〉 is zero for l #= l′ or m #= m′ comes from the

orthogonality relation. However, more fundamentally, it is a consequence of the assumption of
statistical homogeneity of the universe, as in the case of Fourier space where the correlation
functions are zero for !k #= !k′. On the other hand, statistical isotropy implies that the term
between square brackets depends only on l and not on m: statistical properties can depend on
the angular scale θ considered, thus on l = 2π/θ, but not on the configuration and orientation
of the axes, thus not on m.

μ

μ /2
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Visibility function 
 

 
g(γ) ≃ σ(γ − γdec)

⟶
g(γ) ≃ e−ρreio σ(γ − γdec) + (1 − e−ρreio) σ(γ − γreio)
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Le fond diffus cosmologique 179

FIGURE 2.9 : Effet sur le spectre Cl des anisotropies de température du CMB de la
variation d’un des paramètres du modèle ⇤CDM dans la base [2.157], tous les autres
paramètres étant fixés. Le spectre noir est le spectre de référence. L’intensité croissante
de rouge correspond à des valeurs croissantes du paramètre libre. Obtenu avec CLASS
(class-code.net).

– une augmentation de !b augmente l’amplitude du premier et du troisième pic, et
abaisse celle du deuxième et du quatrième pic (C2). De plus, elle décale les pics (C1)
et leur enveloppe (C4) vers les grands multipôles (vers la droite).

Extended cosmologies? … more parameters … but also more effects …

8 physical governing Cl’s shape 

• C1: angular scale of the peaks, θs 
• C2: gravity/pressure at rec., Rrec 
• C3: interval between zeq and zdec 
• C4: angular scale of damping, θd 
• C5: global amplitude 
• C6: global tilt 
• C7: plateau tilting by late ISW 
• C8: reionisation steplike suppression 

but all tight to 6 parameters in ΛCDM


