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CMB polarisation Planck Collaboration: The cosmological legacy of Planck
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Fig. 7. Enlargement of part of the Planck 2018 CMB polar-
ization map. The coloured background shows the temperature
anisotropy field smoothed to the same scale as the polarization
field, enabling us to visualize the correlation between the two
fields. The top map shows a 10� ⇥ 10� patch centred on the south
ecliptic pole, smoothed with a 200 FWHM Gaussian (the data are
natively at 50 resolution). The bottom panel is a further expan-
sion of a 2.5�⇥ 2.5�region in the same direction.
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Fig. 8. Stacked Qr image around temperature hot spots selected
above the null threshold (⌫ = 0) in the SMICA sky map. The quan-
tity Qr (and its partner Ur, introduced in Kamionkowski et al.
1997) is a transformed version of the Stokes parameters Q and
U, where Qr measures the tangential-radial component of the
polarization relative to the centre and Ur measures the polar-
ization at ±45� relative to a radial vector. The left panel cor-
responds to the observed data, and the right panel shows the en-
semble average of CMB-only maps for the fiducial cosmology.
The axes are in degrees, and the image units are µK. The black
solid lines show the polarization directions for stacked Q and U,
with lengths proportional to the polarization amplitude P. From
Planck Collaboration XVI (2016).

constraints on many inflationary models (see Sect. 5 and
Planck Collaboration X 2018). Such models also imply that the
information content in the CMB comes from its statistical prop-
erties, rather than the precise locations of individual features, and
that those properties are statistically isotropic. Since a Gaussian
field can be entirely described by its mean and correlation func-
tion, and since the mean is zero by definition for the anisotropies,
essentially all of the cosmologically-relevant information in the
CMB anisotropies resides in their correlation functions or power
spectra. This allows a huge compression, with concomitant in-
crease in S/N: the 1.16 billion pixels in the 23 maps can be com-
pressed to 106 high-S/N multipoles. As we will see later, the
⇤CDM model allows even more dramatic compression: only six
numbers describe around 103 � worth of power spectrum detec-
tion.

2.6. CMB angular power spectra

2.6.1. CMB intensity and polarization spectra

The foreground-subtracted, frequency-averaged, cross-half-
mission TT , T E, and EE spectra are plotted in Fig. 9, together
with the Commander power spectrum at multipoles ` < 30. The
figure also shows the best-fit base-⇤CDM theoretical spectrum
fitted to the combined temperature, polarization, and lensing
data.

Figure 9 clearly illustrates that Planck has determined the
angular power spectrum of the primary temperature anisotropies
to high precision across all the physically relevant scales. In this
sense, Planck brings to an end an era in CMB studies that was
opened by the first detection of these anisotropies by COBE in
1992 (Smoot et al. 1992). At the same time, Planck has made
important measurements of the polarization power spectra and
maps of the e↵ects of gravitational lensing. Improvements in
these measurements will be the focus of the field in coming
years.
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FIG. 3. Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ` < 120. Right: The equivalent maps for the first
of the lensed-⇤CDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while
the lines display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over
lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at ` ⇡ 70). (Also note that the E-mode and
B-mode maps use di↵erent color and length scales.)

the observed value against the distribution of the simu-
lations.

We evaluate these statistics both for the full set of
nine band powers (as in C10 and B14), and also for the
lower five of these corresponding to the multipole range
of greatest interest (20 < ` < 200). Numerical values
are given in Table I and the distributions are plotted in
Fig. 4. Since we have 500 simulations the minimum ob-
servable nonzero value is 0.002. Most of the TT , TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not in-
cluded in the table and figure). The signal-to-noise ratio
in TT is ⇠ 104 so tiny di↵erences in absolute calibration
between the data subsets can cause jackknife failure, and
the same is true to a lesser extent for TE and TB. Even
in EE the signal-to-noise is approaching ⇠ 103 (500 in
the ` ⇡ 110 bin) and in fact most of the low values in
the table are in EE. However, with a maximum signal-
to-noise ratio of <⇠ 10 in BB such calibration di↵erences
are not a concern. All the BB (and EB) jackknifes are
seen to pass, with the 112 numbers in Table I having one
greater than 0.99, one less than 0.01 and a distribution
consistent with uniform. Note that the four test statis-
tics for each spectrum and jackknife are correlated this
must be taken into account when assessing uniformity.

To form the jackknife spectra we di↵erence the maps
made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power spec-
trum amplitude of a contribution which is uncorrelated in
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FIG. 4. Distributions of the jackknife �2 and � PTE values
over the 14 tests and three spectra given in Table I. These
distributions are consistent with uniform.
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132 The Young Universe

space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:
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}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =
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dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =
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+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =
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dη ST (η,k) jl(k(η0 − η)) [2.90]
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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Tensor modes
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Tensor modes
GW  

Tensor temperature quadrupole 

Other tensor temperature multipoles                         Tensor polarisation multipoles 

             T-anisotropies                                                       E and B-anisotropies

h⇓ ij

Scalar and tensor sector 
statistically independent, 

solved independently, 

 
 
 

 

CTT
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CBB
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Observational constraints on ΛCDM + r
2

FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation

V⇤ =
3⇡2

As

2
rM

4
Pl < (1.4⇥1016 GeV)4 (95% CL), (4)

or on the Hubble parameter during inflation

H⇤
MPl

< 2.0 ⇥ 10�5 (95% CL). (5)

The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.
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FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation
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The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.

Energy scale of inflation V*
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Fig. 12.— Joint two-dimensional marginalized contours (68% and 95%) for infla-
tionary parameters, (r, ns) (left panel) and (r, dns/d ln k) (right panel), for Model

M11 in Table 3, with parameters defined at k = 0.002 Mpc−1. (Upper) WMAP
only. (Middle) WMAP+SDSS. (Bottom) WMAP+CBI+VSA. Note that ns > 1

is favored because r and ns are defined at k = 0.002 Mpc−1. At k = 0.05 Mpc−1

ns < 1 is favored. The data do not require a running spectral index, dns/d ln k, at

more than the 95% confidence level.

Figure 13 shows that both the power law ΛCDM model and the running spectral index
model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of running would be problematic for most inflationary mod-

els, so further testing of this suggestive trend is important for our understanding of early

3-year (2006)
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only. (Middle) WMAP+SDSS. (Bottom) WMAP+CBI+VSA. Note that ns > 1

is favored because r and ns are defined at k = 0.002 Mpc−1. At k = 0.05 Mpc−1

ns < 1 is favored. The data do not require a running spectral index, dns/d ln k, at

more than the 95% confidence level.

Figure 13 shows that both the power law ΛCDM model and the running spectral index
model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of running would be problematic for most inflationary mod-

els, so further testing of this suggestive trend is important for our understanding of early

2

FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation

V⇤ =
3⇡2

As

2
rM

4
Pl < (1.4⇥1016 GeV)4 (95% CL), (4)

or on the Hubble parameter during inflation

H⇤
MPl

< 2.0 ⇥ 10�5 (95% CL). (5)

The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.

3-year (2006)

Planck + BICEP + Keck 2021
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CMB lensing
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from W. Hu
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νTobs

T
( ∞n) = νT raw

T ( ∞n + Γd( ∞n)) = νT raw

T ( ∞n + ∑∙ Λ( ∞n))

Λ( ∞n) = ∫
δdec

δ0

dδ W(δ) μ (δ, Γr(δ)) =
l⃗m

ΛlmYlm( ∞n)

CΛΛ
γ = → |Λlm |2 −

Deflection field

CMB lensing potential

CMB lensing spectrum

easy to predict with EBS (linear pert.)

typically ~ arc minutes

Basic math
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ICTP SAIFR, 23-26.07.2017Many important goals

1. How are observable  affected? 
(needed for fitting theory) 

2. Infer map  from data  

3. Infer the  from data and fit theory                 
(more information than in 1) 

4. Delens temperature and polarisation maps 

5. Delens spectra 

CTT
γ , CEE

γ , CTE
γ , CBB

γ

Λ( ∞n)

CΛΛ
γ

CTT
γ , CEE

γ , CTE
γ , CBB

γ

Planck Collaboration: The cosmological legacy of Planck
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Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left), and the
lensing potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from
Planck, and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance,
rather than by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially
exhausted within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE

spectrum still has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection
of CMB lensing to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at
` = 30), but are plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `. In all panels, the
blue line is the best-fit Planck 2018 model, based on the combination of TT , T E, and EE.

15

2014 "MV"

(based on SMICA CMB map)

rad.
S/N�filtered, 10  L  2048

Preliminary
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ICTP SAIFR, 23-26.07.2017Basic method

Xobs( ∞n) = X raw ( ∞n + ∑∙ Λ( ∞n)) = X raw + DiΛ DiX raw + 1
2 DiΛ DjΛ DiDjX raw + . . .

Xobs
lm = X raw

lm + Il1m1l2m2
lm Λl1m1

X raw
l2m2

+ Jl1m1l2m2l3m3
lm Λl1m1

Λl2m2
X raw

l3m3
+ . . .

1. How are observable  affected?  

Compute  with  and  seen as 

gaussian independent variables:  

 smoothed by kernel that depends 

on . 

Both  and  matter!

CTT
γ , CEE

γ , CTE
γ , CBB

γ

→ |Xobs
lm |2 − X raw

lm Λlm

CXY,obs
γ = CXY,raw

γ

CΛΛ
γ

I J

Taylor

Harmonic
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ICTP SAIFR, 23-26.07.2017Basic method

Xobs( ∞n) = X raw ( ∞n + ∑∙ Λ( ∞n)) = X raw + DiΛ DiX raw + 1
2 DiΛ DjΛ DiDjX raw + . . .

Xobs
lm = X raw

lm + Il1m1l2m2
lm Λl1m1

X raw
l2m2

+ Jl1m1l2m2l3m3
lm Λl1m1

Λl2m2
X raw

l3m3
+ . . .

Taylor

Harmonic

2. Infer map  from data  

Neglect -term. Previous relation cannot be just inverted… exploit non-Gaussianity of  ! 

Imagine “average over realisations” for : 

                         

Linear combinations of many   reveals one  up to some “cosmic variance”: 

quadratic estimator of Hu & Okamoto astro-ph/0301031 

Λ( ∞n)

J Xobs
lm

l ⃗ l⇓ , m ⃗ m⇓ 

Xobs
lm Yobs

l⇓ m⇓ Λl1m1

Xobs
lm Yobs

l⇓ m⇓ = X raw
lm Y raw

l⇓ m⇓ + Kl1m1l2m2l3m3
lml⇓ m⇓ Λl1m1

X raw
l2m2

Y raw
l3m3

→Xobs
lm Yobs

l⇓ m⇓ −CMB = Kl1m1l2m2l3m3
lml⇓ m⇓ νl2l3νm2m3

CXY,raw
l2

Λl1m1
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CMB spectral distortions
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Elastic and inelastic scattering,  
 

Momentum exchange 
 

Thermal/kinetic equilibrium 
Bose-Einstein / Fermi-Dirac 

 

 
for massless particles 

̂ > H
↔

↔

f(p) = 1
e(E∼θ)/T ∼ 1

↔

f(p) = 1
e(p∼θ)/T ∼ 1

Inelastic scattering,  
 

Chemical equilibrium 
 

 
For particle without conserved numbers: 

Number-changing reactions 
 

̂ > H
↔

′θi |left = ′θi |right

↔

↔
θ = 0

Photons:    = blackbody/Planck spectrumf(p) = 1
ep/T ∼ 1

Blackbody radiation in early Universe
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Blackbody radiation in early Universe

e-

𝛾 e-

Cosmological Microwave Background 109

light-like geodesic. At first order, one merely has to consider unperturbed geodesics
of the flat Friedmann metric, that is, straight lines13 in three-dimensional space.

2.4.1.1. Geodesics equation

The geodesic equation shows that the norm of the individual momentum p of a
photon evolves along its path as:

d ln(a p)

dη
= φ′ − n̂ · #∇ψ [2.27]

where n̂ = #p/p is a vector of norm one pointing in the direction of propagation of the
photon. Equation [2.27] first indicates that in the absence of metric fluctuations, the
momentum would simply be redshifted as p ∝ a−1, due to the expansion stretching
the photon wavelength and reducing its energy. Metric fluctuations modulate this
average evolution. The dilation effect associated with φ′ represents a local fluctuation
of the expansion rate, and thereby of the stretching effect. The gravitational Doppler
effect associated with n̂ · #∇ψ represents the energy gains and losses recorded by
photons falling into or leaving a gravitational potential well.

2.4.1.2. Photon temperature

In the primordial universe, photons are in thermal and chemical equilibrium at
every point with, consequently, a Bose–Einstein distribution of zero chemical
potential, that is, a blackbody spectrum:

fγ(η,#x,#p) =
1

e
p

T (η,"x) − 1
[2.28]

where T (η,#x) is the local value of the photon temperature. This distribution is
isotropic, that is, independent of the direction n̂ of #p. In the instantaneous decoupling
approximation, this blackbody distribution freezes at the time of recombination.
Thereafter, T no longer has the thermodynamic interpretation of a temperature, but
continues to exist as a unique parameter of the blackbody distribution. For simplicity,
it will still be called “temperature”.

If the photons interact only gravitationally after decoupling, the blackbody
distribution cannot be altered. This is easily deduced from the geodesic equation
[2.27] which shows that, even in the presence of metric fluctuations, the relative

13. Genuine geodesics are slightly deflected by metric fluctuations, but this only plays a role
at second order in perturbations, relevant for the description of CMB gravitational lensing (see
section 2.7.2).

Redshifting along geodesics:

Gravity preserves blackbody, but what about late interactions?

𝛾
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Blackbody radiation in early Universe

• Compton scattering (CS): 

 (number conserving)                           Kompaneyets equation 

(solution: BE with arbitrary )   

• double Compton scattering (DC): 

 (non-number conserving) 

• Bremsstrahlung (BR): 

   (non-number conserving)

σ + e∼ ⇒ σ + e∼

θ

σ + e∼ ⇒ σ + σ + e∼

e∼ ⇒ e∼ + σ
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Blackbody radiation in early Universe

• :   CS, DC, BR efficient: BE with   = blackbody 
energy injection-> no distortion 

• :   only CS: BE with arbitrary mu, Kompaneyets can only impose 

  

energy injection-> -distortion 
• :          CS not efficient: Kompaneet at next-to-leading order in  can only impose  

 

energy injection-> -distortion 
• :           additional residuals 

• Even later: CMB photons decoupled anyway  
• Reionization:   CS again, possible -distortions (Sunyaev-Zel’dovitch 1970)

z > 3 Θ 106 θ = 0

z > 4 Θ 104

f(p; T, θ = 0) ↓ f(p; T⇓ , θ) ⋅ fBE(p; T,0){1 + θ [0.4561 ∼ T
p ]}

θ
z > 103 H/̂

f(p; T, θ = 0) ↓ fBE(p; T,0) 1 + y [ p
T

ep/T + 1
ep/T ∼ 1 ∼ 4]

y
z ∇ 103

y
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Source of distortions in standard cosmology

• Adabatic cooling of electrons and photons: 
• UR particles in equilibrium with themselves:  
• NR particles in equilibrium with themselves:  
• Efficient CS:  

• Inefficient CS:  

  energy extracted from photon,  

• Dissipation of acoustic waves:  
• Diffusion damping  superposition of BB with different temperature,  

 reprocessed as  
• Transfer of energy from small-scale anisotropies to spectral distortions 
• Accurately computed by CLASS 
• Probe of  on very small scales 

• Emission/absorption lines during H and He recombination: y-distorsions + small residuals 

• Sunyaev-Zel’dovitch effect from hot electrons during reionization   

T ⟨ a∼1

T ⟨ a∼2

Te = Tb = Tσ ⟨ a∼1

Te = Tb < Tσ

↓ θ = ∼ 3 Θ 10∼9, y = ∼ 5 Θ 10∼10

↓
↓ θ = 2 Θ 10∼8, y = 4 Θ 10∼9

P≃(k)

↓ y ∇ 10∼6

Lucca, Schöneberg, Hooper, 
JL, Chluba 1910.04619
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Source of distortions in non-minimal cosmology

• Extra power in small-scale P≃(k)

Pritchard, Byrnes, JL, Sharma 2505.08442

Exclusion plots on peaks producing PBH

J. Chluba et al., BAAS 51, 184 (2019), 1903.04218
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Source of distortions in non-minimal cosmology

• DM annihilation or decay: products end up heating electrons 

• PBH accretion or evaporation 

• Other exotic energy injection mechanisms in dark sector 

• also produces change in recombination, and thus CMB anisotropies… 
 anisotropy/distortion synergy  distorsion module in CLASS, ExoCLASS branch 

 
↓ ↓

Decaying DM PBH evaporation

Lucca, Schöneberg, Hooper, 
JL, Chluba 1910.04619
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Observations
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• CMB anisotropies: 
• 1992-94 : COBE  confirms roughly flat spectrum for l<20 
• 2000 : Boomerang 
• 2003 -2011 : WMAP 

• 2013-2015 : Planck

From COBE to Planck
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• CMB anisotropies: 
• 1992-94 : COBE 
• 2000 : Boomerang 
• 2003 -2011 : WMAP 

• 2013-2015 : Planck

CMB lensing
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• CMB anisotropies: 
• 1992-94 : COBE 
• 2000 : Boomerang 
• 2003 -2011 : WMAP 

• 2013-2015 : Planck

CMB lensing
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• CMB anisotropies: 
• 1992-94 : COBE 
• 2000 : Boomerang 
• 2003 -2011 : WMAP 

• 2013-2015 : Planck

CMB lensing
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Three main observables
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Three main observables
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2014 "MV"

(based on SMICA CMB map)

rad.
S/N�filtered, 10  L  2048

Preliminary

Three main observables
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Most recent results
12
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SPT-3G 2018 SPT-SZ/SPTpol Planck ACT DR4 POLARBEAR

FIG. 5. SPT-3G 2018 minimum-variance TT/TE/EE band powers (black) along with a selection of contemporary power
spectrum measurements: Planck (blue) [11], SPT-SZ (green, top panel only) [42], SPTpol (green, bottom two panels only,
horizontally o↵set for clarity) [45], ACT DR4 (orange) [4], POLARBEAR (pink, bottom panel only) [46]. The SPT-3G
2018 best-fit CMB power spectrum is indicated in gray. The ensemble of CMB data is visually consistent and yields a high
signal-to-noise measurement of the power spectrum.

V. THE SPT-3G 2018 POWER SPECTRA

We report the SPT-3G 2018 TT/TE/EE multifre-
quency band powers in Appendix C and plot the power
spectrum measurement in Figure 4. The SPT-3G 2018
TT power spectra are sample-variance-dominated across

the entire multipole range. The EE and TE band powers
are sample-variance-dominated for ` < 1275 and ` <

1425, respectively.

We report the minimum-variance band powers formed
in §IV B in Table III and plot them together with
other select power spectrum measurements in Figure 5.

Planck Collaboration: The cosmological legacy of Planck

2000 101 102 103

Multipole L

0.0

0.5

1.0

1.5

[L
(L

+
1
)]

2
/
(2

�
)
C

�
�

L
[1

0
7

µ
K

2
]

Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left), and the
lensing potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from
Planck, and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance,
rather than by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially
exhausted within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE

spectrum still has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection
of CMB lensing to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at
` = 30), but are plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `. In all panels, the
blue line is the best-fit Planck 2018 model, based on the combination of TT , T E, and EE.

15

+ Planck lensing spectrum

Planck Collaboration: Cosmological parameters
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Fig. 6. Comparison of the base ⇤CDM model parameter constraints from Planck temperature and polarization data.

and HFI 353 GHz maps as polarized synchrotron and dust tem-
plates, respectively. These cleaned maps form the polarization
part (“lowP’ ) of the low multipole Planck pixel-based likeli-
hood, as described in Planck Collaboration XI (2015). The tem-
perature part of this likelihood is provided by the Commander
component separation algorithm. The Planck low multipole like-
lihood retains 46 % of the sky in polarization and is completely
independent of the WMAP polarization likelihood. In combina-
tion with the Planck high multipole TT likelihood, the Planck
low multipole likelihood gives ⌧ = 0.078 ± 0.019. This con-
straint is somewhat higher than the constraint ⌧ = 0.067 ± 0.022
derived from the Planck low multipole likelihood alone (see
Planck Collaboration XI 2015, and also Sect. 5.1.2).

Following the 2013 analysis, we have used the 2015 HFI
353 GHz polarization maps as a dust template, together with the
WMAP K-band data as a template for polarized synchrotron
emission, to clean the low-resolution WMAP Ka, Q, and V
maps (see Planck Collaboration XI 2015, for further details). For
the purpose of cosmological parameter estimation, this dataset
is masked using the WMAP P06 mask that retains 73 % of
the sky. The noise-weighted combination of the Planck 353-
cleaned WMAP polarization maps yields ⌧ = 0.071 ± 0.013
when combined with the Planck TT information in the range
2  ` <⇠ 2508, consistent with the value of ⌧ obtained from
the LFI 70 GHz polarization maps. In fact, null tests described
in Planck Collaboration XI (2015) demonstrate that the LFI and
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Most recent CDM results from Planck 2018 + SPT-3Gℛ

18

SPT-3G 2018
SPT-3G 2018

+ Planck
SPT-3G 2018

+ WMAP
Planck

⌦bh
2 0.02224 ± 0.00032 0.02233 ± 0.00013 0.02240 ± 0.00020 0.02236 ± 0.00015

⌦ch
2 0.1166 ± 0.0038 0.1201 ± 0.0012 0.1171 ± 0.0027 0.1202 ± 0.0014

100✓MC 1.04025 ± 0.00074 1.04075 ± 0.00028 1.04016 ± 0.00067 1.04090 ± 0.00031

109
Ase

�2⌧ 1.871 ± 0.030 1.884 ± 0.010 1.867 ± 0.016 1.884 ± 0.012

ns 0.970 ± 0.016 0.9649 ± 0.0041 0.9671 ± 0.0063 0.9649 ± 0.0044

H0 [km s�1 Mpc�1] 68.3 ± 1.5 67.24 ± 0.54 68.2 ± 1.1 67.27 ± 0.60

�8 0.797 ± 0.015 0.8099 ± 0.0067 0.796 ± 0.012 0.8120 ± 0.0073

S8 ⌘ �8

p
⌦m/0.3 0.797 ± 0.042 0.832 ± 0.014 0.799 ± 0.031 0.834 ± 0.016

⌦⇤ 0.700 ± 0.021 0.6835 ± 0.0075 0.698 ± 0.015 0.6834 ± 0.0084

Age/Gyr 13.815 ± 0.047 13.807 ± 0.021 13.804 ± 0.037 13.800 ± 0.024

TABLE IV. Marginalized constraints and 68% uncertainties on ⇤CDM parameters from SPT-3G 2018 TT/TE/EE, along with
joint constraints from SPT-3G 2018 TT/TE/EE + Planck , SPT-3G 2018 TT/TE/EE + WMAP , and results from Planck
alone [1, 15]. We show constraints on the baseline ⇤CDM parameters in the top half of the table, combining the optical depth
to reionization and amplitude of primordial fluctuations into 109

Ase
�2⌧ . The bottom half shows select derived parameters.

Note that we do not use WMAP polarization data at ` < 24 and SPT-3G data alone do not constrain the optical depth to
reionization ⌧ ; instead, we use a Planck -based Gaussian prior of ⌧ = 0.0540± 0.0074.

precision and SPT-3G 2018 TT/TE/EE yields a 0.07%
measurement. ACT data yield a value 2.0 � and 1.7 �

larger than SPT-3G and Planck data, respectively. Aiola
et al. [5] note an o↵set in the cosmological parameter
constraints on ns and ⌦bh

2 when comparing Planck
and ACT results (also visible in Fig. 7). Due to the
degeneracy of these parameters with ✓MC, the observed
o↵set between ACT and SPT-3G constraints is likely
related and from a similar origin. Regardless, the multi-
dimensional test indicates that the observed parameter
shifts are compatible with statistical fluctuations.

We report joint constraints from SPT-3G 2018
TT/TE/EE and Planck data in Table IV and find
H0 = 67.24 ± 0.54 km s�1 Mpc�1. This is a refinement
of the Planck constraint on H0 by 11%. The precision
measurement of the CMB anisotropies at small angular
scales in temperature and polarization provided by SPT-
3G shrinks the Planck posteriors by approximately 10%
for each ⇤CDM parameter. Across the six-dimensional
parameter space we report a reduction of the allowed
volume by a factor of 1.7; for comparison, only adding
the SPT TE/EE data to Planck leads to a reduction of
the allowed parameter volume by a factor of 1.4. Due
to the excellent agreement of SPT and Planck data, the
shift to central values of parameter constraints compared
to Planck alone is small.

The SPT-3G 2018 data are in good agreement with
WMAP and we report a PTE value for a five-dimensional
parameter-space comparison of 95%. Combining the
SPT-3G and WMAP data yields constraints largely
independent of Planck , which we list in Table IV. We
report H0 = 68.2 ± 1.1 km s�1 Mpc�1, which lies 3.2 �

below the distance-ladder analysis of Riess et al. [47]
and deepens the Hubble tension. We report a constraint
on the combined structure growth parameter of S8 =
0.799±0.031, which is compatible with Planck , as well as
DES Y3 and KiDS-1000 data and the SZ-cluster analysis

of Bocquet et al. [53] within 1�. [1, 51, 52]. The addition
of the low ` power spectrum measurement of WMAP to
SPT-3G data refines our ns constraint by 62%. We report
ns = 0.9671 ± 0.0063, which disfavors a scale-invariant
Harrison-Zel’dovich spectrum at 5.2 �. For comparison,
from WMAP data alone we infer ns = 0.967 ± 0.012,
which is 2.8 � from unity; the addition of SPT data
tightens the ns constraint derived from WMAP data
alone by 46%.

B. Gravitational Lensing, AL

The lensing of CMB photons emitted at the surface
of last scattering by intervening large scale structure
causes a characteristic distortion of the CMB anisotropies
leading to changes in the power spectrum: a smoothing
of acoustic peaks and a transfer of power to the damping
tail. Though the magnitude of this e↵ect is derived
from the values of cosmological parameters in the ⇤CDM
model, marginalizing over the e↵ect of lensing on the
primary CMB power spectra assesses the compatibility
of the data with the standard model [56–58]. Planck
Collaboration et al. [1] find a preference for increased
lensing at 2.8 �.

We marginalize over an artificial scaling of the lensing
power spectrum that smears the primary CMB, AL, and
report parameter constraints in Table V. We find

AL = 0.87 ± 0.11. (13)

which is compatible with the standard model prediction
of unity at 1.3 �. Adding AL does not lead to a
statistically significant improvement to the goodness-of-
fit compared to ⇤CDM (��

2 = �1.3).
The SPT-3G 2018 TT band powers provide a sample-

variance-limited measurement of the third and higher
order acoustic peaks, which helps constrain cosmological
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volume by a factor of 1.7; for comparison, only adding
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the allowed parameter volume by a factor of 1.4. Due
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of the low ` power spectrum measurement of WMAP to
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Harrison-Zel’dovich spectrum at 5.2 �. For comparison,
from WMAP data alone we infer ns = 0.967 ± 0.012,
which is 2.8 � from unity; the addition of SPT data
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alone by 46%.

B. Gravitational Lensing, AL

The lensing of CMB photons emitted at the surface
of last scattering by intervening large scale structure
causes a characteristic distortion of the CMB anisotropies
leading to changes in the power spectrum: a smoothing
of acoustic peaks and a transfer of power to the damping
tail. Though the magnitude of this e↵ect is derived
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model, marginalizing over the e↵ect of lensing on the
primary CMB power spectra assesses the compatibility
of the data with the standard model [56–58]. Planck
Collaboration et al. [1] find a preference for increased
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We marginalize over an artificial scaling of the lensing
power spectrum that smears the primary CMB, AL, and
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Results beyond CDMℛ

In ΛCDM + , same 8 effects only, but tight to 7 parameters: CMB also mesures  ∀k ∀k

• spatial curvature ∀k
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Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

A6 The curvature of space is very small.
A7 Variations in density were laid down everywhere at early

times, and are Gaussian, adiabatic, and nearly scale invari-
ant (i.e., proportionally in all constituents and with similar
amplitudes as a function of scale) as predicted by inflation.

A8 The observable Universe has “trivial” topology (i.e., likeR3).
In particular it is not periodic or multiply connected.

With these assumptions it is possible to predict a wide range
of observations with a very small number of parameters. The
observed fact that the fluctuations in temperature and polariza-
tion in the CMB are small makes the calculation of CMB ob-
servables an exercise in linear perturbation theory (see Peacock
1999, Dodelson 2003, Mukhanov 2005, Peter & Uzan 2009 and
Lyth & Liddle 2009 for textbook treatments, and Partridge 1995
and Peebles et al. 2009 for historical discussions). The evolu-
tion of the perturbations in each species can be computed to
high accuracy using a “Boltzmann code” once the initial con-
ditions, constituents, and ionization history are specified. The
initial conditions are part of our assumptions. The high-z part of

the ionization history can be computed to high accuracy given
the assumptions above (see, e.g., extensive discussion and refer-
ences in Planck Collaboration Int. XLVII 2016). Thus one needs
to specify only the values of the constituents and the low-z part
of the ionization history.

3.2. Planck’s constraints on ⇤CDM parameters

To fully prescribe the ⇤CDM model we need to specify its pa-
rameters. Adopting the convention that the Hubble parameter
today is H0 = 100 h km s�1Mpc�1, we take these to be: the den-
sity of cold dark matter, !c = ⌦ch

2; the density of baryons,
!b = ⌦bh

2 (consisting of hydrogen, and helium with mass frac-
tion YP obtained from standard BBN); the amplitude, As, and
spectral index, ns, of a power-law spectrum of adiabatic pertur-
bations; a proxy (✓MC; Eq. 6 of Planck Collaboration XVI 2014)
for the angular scale of the acoustic oscillations, ✓⇤; and the opti-
cal depth to Thomson scattering from reionization, ⌧. The best-fit
model and constraints on these parameters are given in Tables 6
and 7.

We assume that the radiation is made up of photons (as a
blackbody with T = 2.7260 K, Fixsen 2009) and neutrinos with
⇢⌫ = Ne↵(7/8)(4/11)4/3⇢� and9

Ne↵ = 3.046 (Mangano et al.
2002). The neutrinos are assumed to have very low masses,
which we approximate as a single eigenstate with m⌫ = 0.06 eV.
Other parameters can be derived from these and the assump-
tions that we already spelled out. For example, since |⌦K | ⌧

1, we have ⌦⇤ = 1 � ⌦m, and the redshift of equality can
be found from ⇢� + ⇢⌫ = ⇢c + ⇢b (assuming neutrinos are
relativistic at z > 103, as required by the current data). A
list of derived parameters and their relation to the base pa-
rameters can be found in Planck Collaboration XIV (2016) or
Tables 6 and 7. Further discussion of how the parameters af-
fect the anisotropy spectra can be found in the aforemen-
tioned textbooks or in Planck Collaboration XIV (2016) and
Planck Collaboration Int. LI (2017).

Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.
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Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).
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Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.
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Results beyond CDMℛ
• Total neutrino mass Mπ

In ΛCDM +  , new effects (early ISW, extra lensing)Mπ
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Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

A6 The curvature of space is very small.
A7 Variations in density were laid down everywhere at early

times, and are Gaussian, adiabatic, and nearly scale invari-
ant (i.e., proportionally in all constituents and with similar
amplitudes as a function of scale) as predicted by inflation.

A8 The observable Universe has “trivial” topology (i.e., likeR3).
In particular it is not periodic or multiply connected.

With these assumptions it is possible to predict a wide range
of observations with a very small number of parameters. The
observed fact that the fluctuations in temperature and polariza-
tion in the CMB are small makes the calculation of CMB ob-
servables an exercise in linear perturbation theory (see Peacock
1999, Dodelson 2003, Mukhanov 2005, Peter & Uzan 2009 and
Lyth & Liddle 2009 for textbook treatments, and Partridge 1995
and Peebles et al. 2009 for historical discussions). The evolu-
tion of the perturbations in each species can be computed to
high accuracy using a “Boltzmann code” once the initial con-
ditions, constituents, and ionization history are specified. The
initial conditions are part of our assumptions. The high-z part of

the ionization history can be computed to high accuracy given
the assumptions above (see, e.g., extensive discussion and refer-
ences in Planck Collaboration Int. XLVII 2016). Thus one needs
to specify only the values of the constituents and the low-z part
of the ionization history.

3.2. Planck’s constraints on ⇤CDM parameters

To fully prescribe the ⇤CDM model we need to specify its pa-
rameters. Adopting the convention that the Hubble parameter
today is H0 = 100 h km s�1Mpc�1, we take these to be: the den-
sity of cold dark matter, !c = ⌦ch

2; the density of baryons,
!b = ⌦bh

2 (consisting of hydrogen, and helium with mass frac-
tion YP obtained from standard BBN); the amplitude, As, and
spectral index, ns, of a power-law spectrum of adiabatic pertur-
bations; a proxy (✓MC; Eq. 6 of Planck Collaboration XVI 2014)
for the angular scale of the acoustic oscillations, ✓⇤; and the opti-
cal depth to Thomson scattering from reionization, ⌧. The best-fit
model and constraints on these parameters are given in Tables 6
and 7.

We assume that the radiation is made up of photons (as a
blackbody with T = 2.7260 K, Fixsen 2009) and neutrinos with
⇢⌫ = Ne↵(7/8)(4/11)4/3⇢� and9

Ne↵ = 3.046 (Mangano et al.
2002). The neutrinos are assumed to have very low masses,
which we approximate as a single eigenstate with m⌫ = 0.06 eV.
Other parameters can be derived from these and the assump-
tions that we already spelled out. For example, since |⌦K | ⌧

1, we have ⌦⇤ = 1 � ⌦m, and the redshift of equality can
be found from ⇢� + ⇢⌫ = ⇢c + ⇢b (assuming neutrinos are
relativistic at z > 103, as required by the current data). A
list of derived parameters and their relation to the base pa-
rameters can be found in Planck Collaboration XIV (2016) or
Tables 6 and 7. Further discussion of how the parameters af-
fect the anisotropy spectra can be found in the aforemen-
tioned textbooks or in Planck Collaboration XIV (2016) and
Planck Collaboration Int. LI (2017).

Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.

19

Planck Collaboration: The cosmological legacy of Planck

Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

A6 The curvature of space is very small.
A7 Variations in density were laid down everywhere at early

times, and are Gaussian, adiabatic, and nearly scale invari-
ant (i.e., proportionally in all constituents and with similar
amplitudes as a function of scale) as predicted by inflation.

A8 The observable Universe has “trivial” topology (i.e., likeR3).
In particular it is not periodic or multiply connected.

With these assumptions it is possible to predict a wide range
of observations with a very small number of parameters. The
observed fact that the fluctuations in temperature and polariza-
tion in the CMB are small makes the calculation of CMB ob-
servables an exercise in linear perturbation theory (see Peacock
1999, Dodelson 2003, Mukhanov 2005, Peter & Uzan 2009 and
Lyth & Liddle 2009 for textbook treatments, and Partridge 1995
and Peebles et al. 2009 for historical discussions). The evolu-
tion of the perturbations in each species can be computed to
high accuracy using a “Boltzmann code” once the initial con-
ditions, constituents, and ionization history are specified. The
initial conditions are part of our assumptions. The high-z part of

the ionization history can be computed to high accuracy given
the assumptions above (see, e.g., extensive discussion and refer-
ences in Planck Collaboration Int. XLVII 2016). Thus one needs
to specify only the values of the constituents and the low-z part
of the ionization history.

3.2. Planck’s constraints on ⇤CDM parameters

To fully prescribe the ⇤CDM model we need to specify its pa-
rameters. Adopting the convention that the Hubble parameter
today is H0 = 100 h km s�1Mpc�1, we take these to be: the den-
sity of cold dark matter, !c = ⌦ch

2; the density of baryons,
!b = ⌦bh

2 (consisting of hydrogen, and helium with mass frac-
tion YP obtained from standard BBN); the amplitude, As, and
spectral index, ns, of a power-law spectrum of adiabatic pertur-
bations; a proxy (✓MC; Eq. 6 of Planck Collaboration XVI 2014)
for the angular scale of the acoustic oscillations, ✓⇤; and the opti-
cal depth to Thomson scattering from reionization, ⌧. The best-fit
model and constraints on these parameters are given in Tables 6
and 7.

We assume that the radiation is made up of photons (as a
blackbody with T = 2.7260 K, Fixsen 2009) and neutrinos with
⇢⌫ = Ne↵(7/8)(4/11)4/3⇢� and9

Ne↵ = 3.046 (Mangano et al.
2002). The neutrinos are assumed to have very low masses,
which we approximate as a single eigenstate with m⌫ = 0.06 eV.
Other parameters can be derived from these and the assump-
tions that we already spelled out. For example, since |⌦K | ⌧

1, we have ⌦⇤ = 1 � ⌦m, and the redshift of equality can
be found from ⇢� + ⇢⌫ = ⇢c + ⇢b (assuming neutrinos are
relativistic at z > 103, as required by the current data). A
list of derived parameters and their relation to the base pa-
rameters can be found in Planck Collaboration XIV (2016) or
Tables 6 and 7. Further discussion of how the parameters af-
fect the anisotropy spectra can be found in the aforemen-
tioned textbooks or in Planck Collaboration XIV (2016) and
Planck Collaboration Int. LI (2017).

Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.
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Results beyond CDMℛ
• Density of relativistic relics in units of neutrino density, Ne∈

In ΛCDM +  , new effects (peak shift, damping scale relative to sound scale)Ne∈
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Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

A6 The curvature of space is very small.
A7 Variations in density were laid down everywhere at early

times, and are Gaussian, adiabatic, and nearly scale invari-
ant (i.e., proportionally in all constituents and with similar
amplitudes as a function of scale) as predicted by inflation.

A8 The observable Universe has “trivial” topology (i.e., likeR3).
In particular it is not periodic or multiply connected.

With these assumptions it is possible to predict a wide range
of observations with a very small number of parameters. The
observed fact that the fluctuations in temperature and polariza-
tion in the CMB are small makes the calculation of CMB ob-
servables an exercise in linear perturbation theory (see Peacock
1999, Dodelson 2003, Mukhanov 2005, Peter & Uzan 2009 and
Lyth & Liddle 2009 for textbook treatments, and Partridge 1995
and Peebles et al. 2009 for historical discussions). The evolu-
tion of the perturbations in each species can be computed to
high accuracy using a “Boltzmann code” once the initial con-
ditions, constituents, and ionization history are specified. The
initial conditions are part of our assumptions. The high-z part of

the ionization history can be computed to high accuracy given
the assumptions above (see, e.g., extensive discussion and refer-
ences in Planck Collaboration Int. XLVII 2016). Thus one needs
to specify only the values of the constituents and the low-z part
of the ionization history.

3.2. Planck’s constraints on ⇤CDM parameters

To fully prescribe the ⇤CDM model we need to specify its pa-
rameters. Adopting the convention that the Hubble parameter
today is H0 = 100 h km s�1Mpc�1, we take these to be: the den-
sity of cold dark matter, !c = ⌦ch

2; the density of baryons,
!b = ⌦bh

2 (consisting of hydrogen, and helium with mass frac-
tion YP obtained from standard BBN); the amplitude, As, and
spectral index, ns, of a power-law spectrum of adiabatic pertur-
bations; a proxy (✓MC; Eq. 6 of Planck Collaboration XVI 2014)
for the angular scale of the acoustic oscillations, ✓⇤; and the opti-
cal depth to Thomson scattering from reionization, ⌧. The best-fit
model and constraints on these parameters are given in Tables 6
and 7.

We assume that the radiation is made up of photons (as a
blackbody with T = 2.7260 K, Fixsen 2009) and neutrinos with
⇢⌫ = Ne↵(7/8)(4/11)4/3⇢� and9

Ne↵ = 3.046 (Mangano et al.
2002). The neutrinos are assumed to have very low masses,
which we approximate as a single eigenstate with m⌫ = 0.06 eV.
Other parameters can be derived from these and the assump-
tions that we already spelled out. For example, since |⌦K | ⌧

1, we have ⌦⇤ = 1 � ⌦m, and the redshift of equality can
be found from ⇢� + ⇢⌫ = ⇢c + ⇢b (assuming neutrinos are
relativistic at z > 103, as required by the current data). A
list of derived parameters and their relation to the base pa-
rameters can be found in Planck Collaboration XIV (2016) or
Tables 6 and 7. Further discussion of how the parameters af-
fect the anisotropy spectra can be found in the aforemen-
tioned textbooks or in Planck Collaboration XIV (2016) and
Planck Collaboration Int. LI (2017).

Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.
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Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization, and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

A6 The curvature of space is very small.
A7 Variations in density were laid down everywhere at early

times, and are Gaussian, adiabatic, and nearly scale invari-
ant (i.e., proportionally in all constituents and with similar
amplitudes as a function of scale) as predicted by inflation.

A8 The observable Universe has “trivial” topology (i.e., likeR3).
In particular it is not periodic or multiply connected.

With these assumptions it is possible to predict a wide range
of observations with a very small number of parameters. The
observed fact that the fluctuations in temperature and polariza-
tion in the CMB are small makes the calculation of CMB ob-
servables an exercise in linear perturbation theory (see Peacock
1999, Dodelson 2003, Mukhanov 2005, Peter & Uzan 2009 and
Lyth & Liddle 2009 for textbook treatments, and Partridge 1995
and Peebles et al. 2009 for historical discussions). The evolu-
tion of the perturbations in each species can be computed to
high accuracy using a “Boltzmann code” once the initial con-
ditions, constituents, and ionization history are specified. The
initial conditions are part of our assumptions. The high-z part of

the ionization history can be computed to high accuracy given
the assumptions above (see, e.g., extensive discussion and refer-
ences in Planck Collaboration Int. XLVII 2016). Thus one needs
to specify only the values of the constituents and the low-z part
of the ionization history.

3.2. Planck’s constraints on ⇤CDM parameters

To fully prescribe the ⇤CDM model we need to specify its pa-
rameters. Adopting the convention that the Hubble parameter
today is H0 = 100 h km s�1Mpc�1, we take these to be: the den-
sity of cold dark matter, !c = ⌦ch

2; the density of baryons,
!b = ⌦bh

2 (consisting of hydrogen, and helium with mass frac-
tion YP obtained from standard BBN); the amplitude, As, and
spectral index, ns, of a power-law spectrum of adiabatic pertur-
bations; a proxy (✓MC; Eq. 6 of Planck Collaboration XVI 2014)
for the angular scale of the acoustic oscillations, ✓⇤; and the opti-
cal depth to Thomson scattering from reionization, ⌧. The best-fit
model and constraints on these parameters are given in Tables 6
and 7.

We assume that the radiation is made up of photons (as a
blackbody with T = 2.7260 K, Fixsen 2009) and neutrinos with
⇢⌫ = Ne↵(7/8)(4/11)4/3⇢� and9

Ne↵ = 3.046 (Mangano et al.
2002). The neutrinos are assumed to have very low masses,
which we approximate as a single eigenstate with m⌫ = 0.06 eV.
Other parameters can be derived from these and the assump-
tions that we already spelled out. For example, since |⌦K | ⌧

1, we have ⌦⇤ = 1 � ⌦m, and the redshift of equality can
be found from ⇢� + ⇢⌫ = ⇢c + ⇢b (assuming neutrinos are
relativistic at z > 103, as required by the current data). A
list of derived parameters and their relation to the base pa-
rameters can be found in Planck Collaboration XIV (2016) or
Tables 6 and 7. Further discussion of how the parameters af-
fect the anisotropy spectra can be found in the aforemen-
tioned textbooks or in Planck Collaboration XIV (2016) and
Planck Collaboration Int. LI (2017).

Figure 9 shows the measured angular power spectra from
Planck, with the blue line representing the best-fit ⇤CDM
model. Beginning with the TT spectrum, one can see three re-
gions, separated by two characteristic scales. On scales larger
than the Hubble scale at last scattering (low `) the almost scale-
invariant spectrum is a pristine imprint of the initial condi-
tions. On degree angular scales the almost harmonic sequence
of power maxima represents the peaks and troughs in density
and temperature of the baryon-photon fluid as it oscillates in the
gravitational potentials prior to recombination. On scales smaller
than the geometric mean10 of the Hubble scale and the mean
free path, photon di↵usion during the epoch of recombination
erases the fluctuations. A similar behaviour is seen in the polar-
ization spectra, without the low-` plateau and with sharper peaks
that are sourced primarily by the quadrupole anisotropy gener-
ated during last scattering. Not visible by eye, but included in
the calculation, are slight changes to the primordial signal due
to gravitational lensing by large-scale structure along the line of
sight.

9A newer evaluation gives Ne↵ = 3.045 (de Salas & Pastor 2016).
The di↵erence is negligible for our purposes, so we keep the older num-
ber for consistency with previous results.

10The di↵usion scale is the mean free path times the square root of
the number of scatterings. Since photons travel at c, Nscatter scales as c

times the Hubble time divided by the mean free path, so N
1/2
scatter�mfp is

the geometric mean of the Hubble scale and �mfp.
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ΛCDM + r 
ΛCDM + r + running 
ΛCDM + r + running + running of the running 
ΛCDM + r + primordial spectra with parametrised features 
ΛCDM + r + binned primordial spectra 
ΛCDM + r + parametrised inflation potential  
ΛCDM + r + isocurvature modes 
etc.
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crossed the Hubble radius during inflation and the end of infla-
tion. The full shape of the potential was used in order to identify
when inflation ends, and thus the field value �⇤ when the pivot
scale crosses the Hubble radius.

In section 6 of PCI13, we explored another approach, con-
sisting of reconstructing the inflationary potential within its ob-
servable range without making any assumptions concerning the
inflationary dynamics outside that range. Indeed, given that the
number of e-folds between the observable range and the end of
inflation can always be adjusted to take a realistic value, any po-
tential shape giving a primordial spectrum of scalar and tensor
perturbations in agreement with observations is a valid candi-
date. Inflation can end abruptly by a phase transition, or can last
a long time if the potential becomes very flat after the observ-
able region has been crossed. Moreover, there could be a short
inflationary stage responsible for the origin of observable cos-
mological perturbations, and another inflationary stage later on
(but before nucleosynthesis), thus contributing to the total N⇤.

In section 6 of PCI13, we performed this analysis with a full
integration of the inflaton and metric perturbation modes, so that
no slow-roll approximation was made. The only assumption was
that primordial scalar perturbations are generated by the fluctu-
ations of a single inflaton field with a canonical kinetic term.
Since, in this approach, one is only interested in the potential
over a narrow range of observable scales (centered around the
field value �⇤ when the pivot scale crosses the Hubble radius), it
is reasonable to test relatively simple potential shapes, described
by a small number of free parameters.

This approach gave very similar results to calculations based
on the standard slow-roll analysis. This agreement can be ex-
plained by the fact that the Planck 2013 data already preferred a
primordial spectrum very close to a power law, at least over most
of the observable range. Hence the 2013 data excluded strong
deviations from slow-roll inflation, which would either produce
a large running of the spectral index or imprint more compli-
cated features on the primordial spectrum. However, this con-
clusion did not apply to the largest scales observable by Planck,
for which cosmic variance and slightly anomalous data points
remained compatible with significant deviations from a simple
power-law spectrum. The most striking result in section 6 of
PCI13 was the fact that, when giving enough freedom to the
functional form of the inflation potential, the results were com-
patible with a rather steep potential at the beginning of the ob-
servable window, leading to “not-so-slow” roll during the first
few observable e-folds. This explains the shape of the potential
in figure 14 of PCI13 for a Taylor expansion at order n = 4 and
in the region where � � �⇤  �0.2. However, such features were
only partially explored because the method used for potential re-
construction did not allow for an arbitrary value of the inflation
velocity �̇ at the beginning of the observable window. Instead,
our code imposed that the inflaton already tracked the inflation-
ary attractor solution when the largest observable modes crossed
the Hubble scale.

Given that the Planck 2015 data establish even stronger con-
straints on the primordial power spectrum than the 2013 re-
sults, it is interesting to revisit the reconstruction of the po-
tential V(�). Section 7.1 presents some new results follow-
ing the same approach as in PCI13 (explained previously in
Lesgourgues & Valkenburg (2007) and Mortonson et al. (2011)).
But in the present work, we also present some more general
results, independent of any assumption concerning the initial
field velocity �̇ when the inflaton enters the observable win-
dow. Following previous studies (Kinney, 2002; Kinney et al.,
2006; Peiris & Easther, 2006a; Easther & Peiris, 2006; Peiris
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Fig. 13. Posterior distributions for the first four potential slow-
roll parameters when the potential is Taylor-expanded to
nth order, using Planck TT+lowP+BAO (filled contours) or
TT,TE,EE+lowP (dashed contours). The primordial spectra are
computed beyond any slow-roll approximation.

& Easther, 2006b, 2008; Lesgourgues et al., 2008; Powell &
Kinney, 2007; Hamann et al., 2008; Norena et al., 2012), we re-
construct the Hubble function H(�), which determines both the
potential, V(�), through

V(�) = 3M2
Pl H2(�) � 2M4

Pl
⇥
H0(�)

⇤2 , (60)

and the solution �(t), through

�̇ = �2M2
PlH

0(�) , (61)

with H0(�) = @H/@�. Note that these two relations are exact. In
Sect. 7.2, we fit H(�) directly to the data, implicitly including
all canonical single-field models in which the inflaton is rolling
not very slowly (✏ not much smaller than one) just before en-
tering the observable window, and the issue of having to start
sufficiently early in order to allow the initial transient to decay
is avoided. The only drawback in reconstructing H(�) is that
one cannot systematically test the most simple analytic forms
for V(�) in the observable range (for instance, polynomials of
order n = 1, 3, 5, . . . in (� � �⇤)). But our goal in this section is
to check how much one can deviate from slow-roll inflation in
general, independently of the shape of the underlying inflation
potential.

7.1. Reconstruction of a smooth inflation potential

Following exactly the approach of PCI13, we Taylor-expand the
inflaton potential around � = �⇤ to order n = 2, 3, 4. To obtain
faster converging Markov chains, instead of imposing flat pri-
ors on the Taylor coefficients {V,V�, . . . ,V����}, we sample the
potential slow-roll (PSR) parameters {✏V , ⌘V , ⇠2V ,$

3
V }, related to

the former as indicated in Table 2. We stress that this is just a
choice of prior, and does not imply that we are using any kind
of slow-roll approximation in the calculation of the primordial
spectra.

The results are given in Table 7 (for Planck TT+lowP+BAO)
and Fig. 13 (for the same data set, and also for Planck
TT,TE,EE+lowP). The second part of Table 7 shows the corre-
sponding values of the spectral parameters ns, dns/d ln k, and
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Fig. 15. Observable range of the best-fit inflaton potentials, when
V(�) is Taylor expanded to the nth order around the pivot value
�⇤, in natural units (where

p
8⇡Mpl = 1), assuming a flat prior on

✏V , ⌘V , ⇠2V , and$3
V , and using Planck TT+lowP+BAO. Potentials

obtained under the transformation (� � �⇤)! (�⇤ � �) leave the
same observable signature and are also allowed. The sparsity of
potentials with a small V0 = V(�⇤) comes from the flat prior on
✏V rather than on ln(V0); in fact, V0 is unbounded from below in
the n = 2 and 3 results. The axis ranges are identical to those in
Fig. 20, to make the comparison easier.

With the Planck TT+lowP+BAO and TT,TE,EE+lowP
datasets, models with a large running or running of the running
can be compatible with an unusually large value of the optical
depth, as can be seen in Table 7. Including lensing informa-
tion allows breaking the degeneracy between the optical depth
and the primordial amplitude of scalar perturbations. Hence the
Planck lensing data could be used to strengthen the conclusions
of this section.

Since in the n = 4 model, slow roll is marginally satisfied at
the beginning of observable inflation, the reconstruction is very
sensitive to the condition that there is an attractor solution at that
time. Hence this case can in principle be investigated in a more
conservative way using the H(�) reconstruction method of the
next section.

7.2. Reconstruction of a smooth Hubble function

In this section, we assume that the shape of the function H(�)
is well captured within the observable window by a polynomial
of order n (corresponding to a polynomial inflaton potential of
order 2n):

H(�) =
nX

i=0

Hi
�i

i!
. (62)

We vary n between 2 and 4. To avoid parameter degeneracies, as
in the previous section we assume flat priors not on the Taylor
coefficient Hi, but on the Hubble slow-roll (HSR) parameters,
which are related according to

✏H = 2M2
pl

 
H1

H0

!2

, ⌘H = 2M2
pl

H2

H0
, (63)

⇠2H = (2M2
pl)

2 H1H3

H2
0
, $3

H = (2M2
pl)

3 H2
1 H4

H3
0

. (64)

Fig. 16. Posterior distribution for the tensor-to-scalar ratio (at
k = 0.002 Mpc�1) and for the running parameter dns/d ln k
(at k = 0.05 Mpc�1), for the potential reconstructions in
Sects. 7.1 and 7.2. The V(�) reconstruction gives the solid curves
for Planck TT+lowP+BAO, or dashed for TT,TE,EE+lowP.
The H(�) reconstruction gives the dotted curves for Planck
TT+lowP+BAO, or dashed-dotted for TT,TE,EE+lowP. The
tensor-to-scalar ratio appears as a derived parameter, but by tak-
ing a flat prior on either ✏V or ✏H , we implicitly also take a nearly
flat prior on r. The same applies to dns/d ln k.

n 2 3 4

✏H < 0.0073 < 0.011 < 0.020

⌘H �0.010+0.011
�0.009 �0.012+0.015

�0.013 �0.001+0.033
�0.027

⇠2
H . . . 0.08+0.12

�0.12 �0.01+0.19
�0.19

$3
H . . . . . . 1.0+2.3

�1.8

⌧ 0.082+0.038
�0.036 0.096+0.042

�0.043 0.096+0.042
�0.042

ns 0.9693+0.0094
�0.0093 0.9680+0.0096

�0.0096 0.967+0.010
�0.010

103dns/d ln k �0.251+0.41
�0.41 �13+18

�19 �8+21
�21

r0.002 < 0.11 < 0.16 < 0.32

��2
e↵ . . . ��2

3/2 = �0.6 ��2
4/3 = �2.3

Table 8. Numerical reconstruction of the Hubble slow-roll pa-
rameters beyond any slow-roll approximation, using Planck
TT+lowP+BAO. We also show the corresponding bounds on
some related parameters (here ns, dns/d ln k, and r0.002 are de-
rived from the numerically computed primordial spectra). All
error bars are at the 95 % CL. The effective �2 value of model n
is given relative to model n � 1.

This is just a choice of prior. This analysis does not rely on the
slow-roll approximation.

Table 8 and Fig. 19 show our results for the reconstructed
HSR parameters. Figure 20 shows a representative sample of
potential shapes V(� � �⇤) derived using Eq. (60), for a sample
of models drawn randomly from the chains, for the three cases
n = 1, 2, 3.

Planck 2015 XX constraints on inflation 1502.02114 (see also 1807.06211)

Observational constraints on ΛCDM + r
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Future observations
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• Current status with Planck, ACT, SPTpol… 
• temperature error bar below C.V. till  
• polarisation error bar below C.V. till  

• Future objectives: 
• Low-l polarisation:  

• primordial B-mode,  , inflation,  , reionisation 

• LiteBIRD (JAXA) ( ) 
• High-l polarisation:  

• polarisation peak scale and damping tail,  , exotic models (EDE, shifted 

recombination, etc.) 

• lensing,  , exotic models (non-standard neutrino/DM, modified gravity, EDE, shifted 

recombination, etc.) 

• Simons Observatory, CMB-S4 ( )

l ∇ 1800
l ∇ 700

r ρreio
λ(r0.01) ∇ 0.003

Ne∈

Mπ

λ(Ne∈) ∇ 0.04

Targets and future observations
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THE END
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Books: 
• The Young Universe: Primordial Cosmology,  

edited by R. Taillet (John Wiley & Sons, 2022) ISBN : 1789450322 

 Chapter 2: Cosmological Microwave Background, by JL 

• Neutrino cosmology, 
JL, G. Mangano, G. Miele, S. Pastor (Cambridge University Press 2013) 

 Chapter 5: Cosmological Microwave Background, by JL 

Notes from Master course on advanced Cosmology: 

• The Ingredients of the Universe,                   -> link on Indico page of this school 
JL, course at RWTH Aachen University 
1. Recalls on homogeneous cosmology 
2. Thermal history of the Universe 
3. Linearised gravity 
4. Inflation 
5. CMB anisotropies 
6. Large Scale Structure

↓

↓
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Scalar versus tensor spectra
136 CHAPTER 5. CMB ANISOTROPIES
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Figure 5.12: Data from Planck, BICEP2/Keck and other experiments on the
temperature spectrum CTT

l
, on the polarisation spectra CEE

l
and CBB

l
(top),

and on the cross-spectrum CTE

l
(middle). (The bottom spectrum has to do

with gravitational lensing e↵ects not discussed in this course). Extracted from
Astron. Astrophys. 641 (2020) A1 (e-Print: 1807.06205 [astro-ph.CO]). For
temperature and polarization, the quantities plotted here are the renormalized
spectra D

XY

l
related to the spectra CXY

l
defined in this chapter by D

XY

l
⌘

l(l + 1)CXY

l
T 2

0
/(2⇡).

confirms the prediction by inflation of a nearly scale-invariant spectrum (ns = 1).

• The baryon density is given by !b = 0.02237 ± 0.00015, in remarkable
agreement with the value deduced from the observation of the relative density
of hydrogen, deuterium and helium in the universe and the standard model of
primordial Nucleosynthesis studied in chapter 2, section 2.2.5. This agreement
between two completely di↵erent and independent ways of measuring the same
parameter is one of the most spectacular achievements of modern cosmology.
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FIG. 7. Summary of CMB B-mode polarization upper lim-
its [20, 25, 36–45] and detections [46–48]. Theoretical pre-
dictions are shown for the lensing B-modes (solid red) which
peak at arcminute scales (multipole ` ⇠ 1000), and for gravi-
tational wave B-modes (dashed red) for two values of r peak-
ing at degree scales (` ⇠ 80). The BK18 data are shown after
removing Galactic foregrounds.
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derived parameters that have non-uniform priors (unlike
the primary parameters). We often report r at some mid-
dle scale between k1 and k2. If we want to show how the
results would look like if the derived parameter had a
uniform prior, we can simply weight our MCMC results
by the inverse of the determinant of the Jacobian trans-
form from the primary parameters to the derived one(s).
In particular, we compare many of our results by report-
ing r0.01, i.e., r at k = 0.01Mpc�1, which is close to the
decorrelation scale of (r, nt).

However, any fundamental conclusions, such as a de-
tection or determining whether nt = �r/8 is consis-
tent with the data,should be drawn from the joint two-
dimensional posterior distribution of (r1, r2). It should
be kept in mind that even if r1 and r2 are drawn in-
dependently from a uniform distribution, i.e., r1 and r2

have flat priors in the MCMC runs, the individual pos-
terior probability densities for r1 alone, or for r2 alone,
or, in particular, for the derived parameter r0.01 alone do
not encode the full result. Instead, one should resort to
the (marginalized) two-dimensional posterior of (r1, r2)
— either its numerical or graphical representation. For
example, if the best-fit point and the 95% CL contour in
the (r1, r2) plane were clearly away from point (0, 0), but
the 99.7% CL contour just reached (0, 0), then we might
claim a weak 3� detection.

III. PLANCK AND BICEP/KECK ARRAY 2018
CONSTRAINTS

We now derive conservative constraints on primordial
gravitational waves with the current data by adopting
the two-scale parametrization described in the previous
section. We use the Planck 2018 data [32] and the latest
BICEP/Keck Array data release BK18 [7].

We employ the Planck 2018 baseline likelihood consist-
ing of: a Gibbs sampling likelihood based on the compo-
nent separated CMB map for temperature at `  30;
E-mode simulation likelihood at `  30 based on the
100 ⇥ 143GHz cross angular power spectrum; Plik TT-
TEEE binned likelihood at high multipoles, i.e., ` > 30.
We also include the lensing likelihood based on the four-
point correlation function of the lensing signal in the con-
servative multipole range 8–400. As the BICEP/Keck
likelihood for B-mode polarization, we use the recently
released likelihood which includes BICEP, Keck Array
and BICEP3 data up to the 2018 observing season [7].
We use cosmomc [33, 34] as the MCMC sampler and as
a Bolzmann solver a modified version of camb [35, 36],
which includes the two-scale treatment for the tensor
modes.

In this work, with the real data, we use k1 = 0.005
Mpc�1 and k2 = 0.02 Mpc�1 and we also project our
results on r at the scale k = 0.01 Mpc�1. In Planck X
2018 [9], the use of k1 = 0.002 Mpc�1 was motivated
by considering one of the two most-used scales for the
tensor-to-scalar ratio as a primary parameter, but here

we instead prefer to use a slightly smaller scale k1 =
0.005 Mpc�1, which has a broader overlap with the lowest
multipoles probed by the BICEP/Keck Array likelihood.
The 68% CL and 95% CL posterior constraints on our

primary tensor parameters are shown by the blue shaded
regions in the first panel of Fig. 3. For a comparison, we
also show by blue dotted lines the constraints we obtained
with an older BICEP/Keck Array likelihood from 2015
(BK15) together with the Planck 2018 data. BK18 data
are consistent with no primordial gravitational waves also
when relaxing nt = �r/8 or nt = 0 and improve the
constraints significantly over BK15 in combination with
Planck. As can be seen from the first panel of Fig. 3, the
line nt = �r/8 is within the 68% CL.
Using the same methodology as in Planck X 2018 [9],

we also repeat the analysis by adding the LIGO&Virgo
2016 95% CL upper bound on the energy density pa-
rameter from gravitational waves, ⌦GW < 1.7 ⇥ 10�7 at
k = (1.3–5.5)⇥1016 Mpc�1 [37], which is 18 orders larger
k than probed by the CMB B mode. If the tensor power
spectrum followed the strict power law that we assume,
then a large region of positive nt values would lead to
a direct detection of stochastic primordial gravitational
wave background that LIGO&Virgo has not seen. The
results, when making this huge extrapolation, are indi-
cated by light gray in Fig. 3.
Finally, we reweigh our Planck+BK18 MCMC chains

to demonstrate that using (r0.01, nt) as primary parame-
ters would artificially exaggerate the constraining power
of the data by giving a large weight to the models that
have r near to zero (where |nt| can be almost arbitrarily
large and hence give extra weight to r ⇠ 0 upon marginal-
ization). This case is indicated by the blue dashed lines
in Fig. 3.

The second panel of Fig. 3 is based on the same analysis
as the first panel, but now we show the derived parame-
ters r0.01 and nt as in [9, 10], while the third panel shows
the one-dimensional posterior probability densities (1d
pdf) with peak values normalized to a same constant.

Our main result with the real data is

r0.005 < 0.030

r0.02 < 0.098

�
(95% CL, Planck TT,TE,EE
+lowE+lensing+BK18).

(7)

These constraints improve on the corresponding ones ob-
tained with BK15, i.e. r0.005 < 0.041 and 0.009 < r0.02 <

0.23. The constraints on the derived tensor parameters
are r0.01 < 0.039 and �0.61 < nt < 2.73 at 95% CL,
when using flat priors on the primary parameters. From
the last two panels of Fig. 3, we notice that Planck+BK18
gives by a factor of two a tighter constraint on r0.01 com-
pared to Planck+BK15. Thus, BK18 represents a sig-
nificant improvement also beyond the case of a fixed nt

studied in [7]. Naturally, the 95% CL contours on nt

do not improve since BK18 brings the constraint on the
actual tensor contribution closer to zero.

The mean of the posterior at nt ⇠ 1 is due to the
transfer function of primordial gravitational waves (that

Tensor-to-scalar ratio :r
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