From Summary Statistics to Parameters
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What is Probability?

Classical: Probability as frequency.

Probability of an event := the number of times the event
occurs over the total number of trials, in the limit of an
infinite series of equiprobable repetitions.

model is fixed, data are repeatable

Bayesian: Probability as degree of belief.

Probability is a measure of the degree of belief about a
proposition.

data are fixed, model is repeatable

Trotta: Bayes in the sky, 0803.4089



Bayesian and Frequentist statistics

Frequentist: model is fixed, data are repeatable
Bayesian: data are fixed, model is repeatable

Say HO = (72 = 2) km/s/Mpc. Then:

Frequentist: Performing the same procedure with independent data will cover
the real value of HO within the limits 68% of the time.
(Limited practicability in cosmology...)

Bayesian: the posterior distribution for HO has 68% if its integral between
70 and 74 km/s/Mpc. The posterior can be used as a prior for future analyses of
independent data.



Bayesian Parameter Inference

Bayes Law:

Posteror\
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Observed data Parameters

What you know after the experiment (posterior)
= what you knew before (prior)+ what you learn (likelihood)



Priors

* Priors quantify what you knew about the parameters
before the experiment

Theoretical limits, preferences, things that must be
true (e.g., from previous experiments)

* In regions where the likelihood is zero your prior doesn't
matter for parameter estimation, but can for more
advanced model selection

* |t is common practice in cosmology to use uniform priors
for most parameters

easy to write down, hard to justify

—Sensitivity analysis: change priors, check how your
conclusions change!



Transformed Priors

In particular note that a uniform prior in one parametrisation
may not be uniform in another - probability mass is conserved,
not density:

/P(x)da; = /P(u)du

So when we transform to new variables:

du
P(u) = P(z) | |—
or in higher dimensions:
8’&7;
P(u) = P(x)/|J| Jij =

8$j



ransformed Priors

Jointly uniform priors on Qn - h Implied priors on Qnwh2 - h



Likelihoods

Most existing cosmological analyses assume Gaussian

likelihood
1

In £(D|p) o —5 [(D — M(p))” C™* (D — M(p))]

Assumes data points are Gaussian-distributed around the truth —
reasonableness depends on type of measurement and sources of
noise.

Alternatives:

* non-Gaussian likelihood (explored in e.g. Lin et al. 2019, Hall &
Taylor 2022) — low on the priority list for 2pt statistics.

¢ Likelihood-free Inference (LFIl), Simulation-base Inference (SBI)



Sampling the Likelihood

For most data sets, likelihoods cannot be written in a simple closed
form equation.

We cannot just evaluate/plot posteriors directly, but instead musts
indirect methods.

Most obvious solution is to evaluate at every point in the space, on
a grid. Impossible for high-dimensional parameter spaces!

— sampling methods like Monte-Carlo Markov Chains.
each element of Markov Chain depends only on the previous one
basic algorithm: Metropolis—Hastings
improved in widely used packages Emcee, Zeus
limitations: lack of definitiveness that the chain has converged



The Metropolis-Hastings algorithm

» at step t, at some parameters p+
» propose move to p:'=pi+Apt (randomly draw Ap:)
» evaluate r = L(pt’)/L(pt)
» MH step:
» 1f r > 1 accept move
» 1f r < 1 generate a random number a« € [0, 1]
» 1f « < r, accept move y 1D illustration of MH step
» 1f « > r, reject move
» t=t+1

One can prove that this
algorithm asymptotically
recovers the true posterior

o ! 2 3 a
Parameter p




The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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MCMC: Proposal Distribution

Underlying

» Efficiency of MH depends Distribution

dramatically on how good the

proposal is
e A bad proposal will not converge

In any practical length of time
 The ideal proposal matches the

shape of the underlying Bad

distribution proposal

Good
proposal

 We don’t know this, but can
look for best approximation



MCMC: Proposal Distribution

 One way to get a good proposal is by tuning

e Run a short initial chain to estimate
covariance

e Use this covariance to initialise the next
iteration

e You have to throw away the first chain, and only
use samples from when your tuning was finished

e Detailed balance broken
* There are specific algorithms that do let

you do a variant of this, but not standard
MH



Intricacies of High-Dimensional Sampling

Nested sampling: starts with a large number of points, and
repeatedly eliminates and find new replacement points

® c.g. Multinest, PolyChord

e calculate Bayesian evidence simultaneously

Choosing the right sampler to accurate sample your
parameter space is an art - and hard validation work.



Intricacies of High-Dimensional Sampling
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Interpreting chains

® Check to see if we actually found a good fit

e Quote the cosmological constraints, check to see if
we've broken ACDM yet

e Compare with other similar measurements

e Compare with other independent measurements



Interpreting chains

Can only plot 1D/2D results - report marginalized
constraints. .
P(01|d) = | d" 05, .,P(08]|d)

Planck TTTEEE+LowE (Planck 2018) 1 s
DES Y3 3x2pt (DES et al. 2021) A —_—
DES Y3 cosmic shear (Amon et al. 2021; Secco, Samuroff et al. 2021) 1 —_——
KiDS-1000 3x2pt (Heymans et al. 2020) 1 o
KiDS-1000 cosmic shear (Asgari et al. 2020) 1 =
HSC Y1 cosmic shear (Hamana et al. 2019) - =
HSC Y1 cosmic shear, harmonic space (Hikage et al. 2019) 1 =

0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86
Sg = 05(£2,,/0.3)%°



Marginalized Parameters

Bl dataset 1

/\"‘M ’\ .
[

Lemos et al. (2021)
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Beware of Projection/Prior Volume Effects!

Parameters of interest may be correlated with poorly constrained
“nuisance parameters”.

Marginalization may introduce projection effects, skew marginalized
posteriors away from best fit.
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This effect can be characterized on synthetic data!



Beware of Projection/Prior Volume
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Simon et al. 2023: EFTofLSS analyses of BOSS data with different nuisance parameter priors.



Profile Likelihoods

Frequentists’ way to treat nuisance parameters v L(0) = max L(0,v)
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Planck Profile Likelihood (37 parameters!) 1311.1657



L(og) resp. P(o3)

Profile Likelihoods

- = MCMC, EC ~ profile, EC
- = MCMC, WC -+++ profile, WC Holm+ 2023

—— profile, WC (¢4 = ¢ = 0) Comparison of MCMC, profile
likelihoods for EFTofLSS BOSS

analyses

~ profile Improved constraining power

ii -—= MCMC will reduce difference between
) profile/16 frequentist and Bayesian
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Model Comparison/Selection

e Given two models, how can we decide which fits the data
better, overall?

e Simplest approach: compare best fit points
e Does not include uncertainty or Occam’s Razor

e Recall that all our probabilities have been conditional on
the model, as in Bayes:

P(p| M) P(d|pM)P(p|M)

P(d|M)




Model Comparison/Selection

e Evidence is the bit we ignored before when doing
parameter estimation

e Given by an integral over prior space
P(M) = [ P(dpM)P(IM)dp

e Hard to evaluate - posterior usually small compared to
prior



Model Comparison/Selection

e Can use Bayes Theorem again, on model level:

P(d|M)P(M)

P(M|d) = P

e Only really meaningful when comparing models:
Bayesian
Evidence Ratio
o P(M|d) _ P(d|My) P(My)

Bayesian Evidence Values

Model Priors



Comparing Experiments

We like to quantify to what extend our results are consistent with other

experiments.

Complicated since we are comparing two chains in very high dimension, and the

effect of priors are non-trivial.

In the past few years, many have devised certain statistics (“tension metrics”) to
quantify how likely the two experiments are realizations drawn from the same

underlying universe.
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Model Incompleteness

a systematics free survey....
bias free parameter estimates with statistical uncertainty

©

So far, we haven’t discussed the model itself yet...

While details depend on the cosmological probe and
survey, we can say that no model will perfect.



Model Incompleteness

a systematics free survey....
bias free parameter estimates with statistical uncertainty

©




Model Incompleteness

N\

ignored systematic effect in analysis:

parameter bias

It’s research time!



Model Incompleteness

marginalize systematic effect, correct parameterization
remove parameter bias, increase uncertainty

It’s research time!



Model Incompleteness

marginalize systematic effect, correct parameterization
remove parameter bias, increase uncertainty

improve priors on
nuisance parameters




Model Incompleteness + Misspecification

A
marginalize systematic effect, imperfect parameterization
residual parameter bias, increased uncertainty

It’s research time!
We need more research...
And in the end, we may throw out some data points



Scale Cuts
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On Systematics-limited Constraints

e Statistics-limited: parameter constraint o(6|d) o 1/+/V;

for fixed galaxy sample, model, summary statistic (+Gaussian likelihood?)

e Systematics may slow improvement in constraints: |
P01, B inas) [ dB1yp(Q10, Ouys i P p(Ouys)

scale cuts prior-dominated
often determined to limit parameter bias 40 systematics
due to systematics/model misspecification -> improve calibration

at fixed tolerance on 46/c¢(8), improved with external data/sims

statistics partially compensated by more
restrictive scale cuts

-> improve model (with as few additional
parameters as possible)

good news: statistical power isn’t everything - some reduction in volume/number
density (e.g., easier-to-model galaxy sample, more regular mask) may be worth it!



