Interacting Dark Sectors in Cosmology

New Physics from Galaxy Clustering, GGI

Melissa Joseph, University of Utah

Motivations for Interacting DM-DR

- What new physics might we expect?
 - $N_{\rm eff}$ generic feature of new dofs at high energy
 - DM interactions for freeze-out models of DM production, we might expect DM-DR interactions as a result

- Tensions in data
- Hubble
- LSS S_8 , Ly α

Light Relics (N_{eff})

Minimal Extensions

△Neff ~ 0.027 Scalar

0.047 Fermion

0.057 Gauge Boson

Forecasts for future sensitivity:

Simons SO: 0.05

Already seeing constraints from ACT DR6

Hubble Tension

Hubble Tension

$$r_s = \int_{z_{rec}}^{\infty} dz \frac{c_s}{H(z)}$$
 $D_{\text{CMB}} \propto 1/H_0$
 θ_s fixed \Rightarrow $c_s \downarrow \& H_0 \uparrow$

Credit: H. Bagherian

Hubble Tension

$$r_s = \int_{z_{rec}}^{\infty} dz \frac{c_s}{H(z)}$$
 $D_{CMB} \propto 1/H_0$
 $D_{CMB} \propto 1/H_0$

Credit: H. Bagherian

Outline

- Interacting DM-DR models
 - Interacting DM-DR with mass threshold
 - New Atomic Dark Matter (nuADaM)
- Cosmological Signatures
- Constraints from ACT DR6 on $N_{\rm eff}$
- Updated Constraints from ACT (Preliminary)

Interacting Radiation w/a massive mediator

$$\mathcal{L}_{DS} \propto \lambda \phi \psi^2 + \lambda^2 (\phi^* \phi)^2 + m_\phi^2 \phi^* \phi + \lambda_{DM} \phi \chi^2$$

$$m_\phi \sim \text{eV}$$

Interacting Radiation w/a massive mediator

$$\mathcal{L}_{DS} \propto \lambda \phi \psi^2 + \lambda^2 (\phi^* \phi)^2 + m_{\phi}^2 \phi^* \phi + \lambda_{DM} \phi \chi^2$$

$$+ m_{\phi}^2 \phi^* \phi + \lambda_{DM} \phi \chi^2$$

$$m_{\phi} \sim \text{eV}$$

DM-DR Interactions w/ a massive mediator

Smooth suppression in log k due to weak coupling

$$\frac{P_{\text{interacting}}}{P_{\text{not-interacting}}} \simeq \begin{cases} 1 & k \ll k_{s.o.} \\ 1 - \sqrt{2} \frac{\Gamma}{H} \times \log k/k_{s.o.} k \gg k_{s.o.} \end{cases}$$

Shut-off when T ~ m

CMB+BAO+ H_0 CMB+BAO+ H_0 +Lya- α

Compressed likelihood on amplitude $\left(k^3 \frac{P(k)}{2\pi^2}\right)$ and slope $\left(\frac{d\ln P(k)}{d\ln k}\right)$ of MPS at z = 3 k=0.009 s/km

condition (strongly interacting)

dark photon

dark electron

dark proton

contribution to

fraction of DM

- Suppression of matter power spectrum at the scale of dark recombination
- Dark acoustic oscillations near decoupling redshift
- Fraction of interacting dark matter determines the amount of suppression

- Constant suppression of high-l tail given by fraction of interacting dark matter
- Different l-dependence to the damping of the tail

Cosmological Signatures

- CMB
 - Silk damping
 - Phase shift
- LSS
 - DM interactions suppression of structure formation at small scales
 - DAO

ACT DR6 Constraints

Free-streaming

$$N_{\rm eff} = 2.73 \pm 0.14$$
 (68%, P-ACT),
= 2.86 ± 0.13 (68%, P-ACT-LB),

- L CMB lensing
- B DESI DR1 BAO

ACT DR6 Constraints

Free-streaming

Self-interacting

New Fits to ACT DR6 (Premlinary)

- ACT DR6 seems to disfavor most extra radiation models
- Likely due to Silk damping
 - DR6 shows enhanced power at small scales relative to ΛCDM in TT and EE
- CMB lensing takes over at smaller scales modifications may be neccessary for modified DM models

New Fits to ACT DR6 (Premlinary)

New Fits to ACT DR6 (Premlinary)

1 ns to compensate

Bayesian vs Frequentist Analysis

Poulin, Smith, Calderon, Simon: 2505.08051

- Models that are extensions of LCDM have issues with Bayesian analysis due to volume effects of priors
- 1D profile likelihoods can characterize results of Frequentist analysis
- Can be significant differences especially for non-Gaussian posteriors

Summary

- Extra radiation models disfavored by ACT DR6 data
 - Preliminary results show that this is also consistent for radiation models with dynamics

- DM-DR interactions with minimal energy density in radiation still have observable effects
 - Small fraction of DM interacting strongly DAO
 - Weakly interacting DM-DR gives power-law suppression of MPS