Neutrino masses and dark forces

Zach Weiner • Perimeter Institute

GGI, September 5, 2025

based on work with Marilena Loverde (2410.00090) and forthcoming

Neutrinos are main characters in cosmology!

Are neutrinos massive?

where are the cosmological signatures of neutrino masses?

do neutrinos have "negative mass?"

Critical to understand all physical effects of massive neutrinos

- Impact on expansion history not negligible, is as important as suppression of structure
- Distances and LSS jointly measure mass by constraining effects on structure and geometry

Every challenge is an opportunity

Something unknown in either fundamental physics or observational systematics

Massive neutrinos are "late-time" physics

Steps to neutrino masses

1. Calibrate the initial conditions and densities at recombination with CMB temperature and polarization

Density ratios from recombination

Second-best measured number in cosmology

$$heta_s \equiv rac{ ext{phofixed by shape of primary CMB in ΛCDM ion}}{ ext{must fix with remaining parameter freedom: Λ}} = rac{r_s(a_\star)}{D_M(a_\star)}$$

Fixing the distance to last scattering

Steps to neutrino masses

- 1. Calibrate the initial conditions and densities at recombination with CMB temperature and polarization
- 2. Extrapolate late-time dynamics
 - a) Relative distances as a function of redshift

Massive neutrinos distort distances

Late-time extrapolation and measurements

2410.00090 see also Eisenstein & White (astro-ph/0407539)

matter density relative to sound horizon

Decalibrated extrapolation

matter density relative to sound horizon

2410.00090 see also Eisenstein & White

(astro-ph/0407539)

Steps to neutrino masses

- 1. Calibrate the initial conditions and densities at recombination with CMB temperature and polarization
- 2. Extrapolate late-time dynamics
 - a) Relative distances as a function of redshift

a) Increase in abundance of nonrelativistic matter

Neutrino mass from the acoustic scale

Matter density deficit

(phrase coined by Lloyd Knox and Gabe Lynch, 2503.14470)

Supernovae measure distances, too!

Discordant neutrino mass measurements

Discordant neutrino mass measurements

Steps to neutrino masses

- 1. Calibrate the initial conditions and densities at recombination with CMB temperature and polarization
- 2. Extrapolate late-time dynamics
 - a) Relative distances as a function of redshift
 - b) Growth of structure

Neutrinos are fast

Massive neutrinos suppress structure

Steps to neutrino masses

- 1. Calibrate the initial conditions and densities at recombination with CMB temperature and polarization
- 2. Extrapolate late-time dynamics
 - a) Relative distances as a function of redshift
 - b) Growth of structure
- 3. Infer neutrino mass that explains...
 - a) Increase in abundance of nonrelativistic matter
 - b) Decrease in accumulated structure growth

Reionization and large-scale polarization

Discordant neutrino mass measurements

What is the CMB lensing excess?

The lensing excess

SPT-3G (2411.06000)

Reionization and large-scale polarization

CMB lensing measures neutrino suppression via

inferred from largescale polarization data

Pretending neutrinos don't affect expansion

low-redshift distances needed *only* because of neutrinos' geometric effects!

Rescue neutrino masses by altering...

- 1. Calibration: modify prerecombination physics, relationship between sound horizon and matter densities
- 2. Extrapolation: modify postrecombination dynamics of matter components
- 3. Inference: modify low-redshift dynamics (e.g., of dark energy) that also affect distances, growth of structure

Modified extrapolation with dark forces

$$S = \int d^4x \sqrt{-g} \left[-M_{\rm pl}^2 \partial_{\mu} \varphi \partial^{\mu} \varphi - V_{\varphi}(\varphi) \right] - \sum_p \int d\tau_p \, m_{\chi} \left(\varphi [x_p^{\alpha}(\tau_p)] \right)$$
$$\bar{\rho}_{\chi}(a) = \frac{m_{\chi}(a)}{m_{\chi}(a_i)} \frac{\bar{\rho}_{\chi}(a_i)}{(a/a_i)^3}$$

solves the matter density deficit?

$$\delta'_{n_{\chi}} + \partial_{i}\partial_{i}\delta u_{\chi} + \psi = 0$$

$$\delta u'_{\chi} + \left(\mathcal{H} + \frac{\mathrm{d}\ln m_{\chi}}{\mathrm{d}\tau}\right)\delta u_{\chi} = -\delta\ln m_{\chi} = -\frac{\partial\ln m_{\chi}}{\partial\varphi}\delta\varphi$$

solves the lensing excess?

Growth deviation with a massless mediator

subhorizon /quasistatic limit:

$$\delta_{\chi b}^{\prime\prime} + \left(\mathcal{H} + rac{f_\chi \mathrm{d} \ln m_\chi/\mathrm{d} au}{1 + \left(a m_{\mathrm{eff}}/k
ight)^2}
ight)\delta_{\chi b}^\prime \simeq rac{a^2 ar{
ho}_{\chi b}}{2 M_{\mathrm{pl}}^2} \left(1 + rac{f_\chi^2 \left(\partial \ln m_\chi/\partialarphi
ight)^2}{1 + \left(a m_{\mathrm{eff}}/k
ight)^2}
ight)\delta_{\chi b}$$

in matter domination, all coefficients slowly varying:

$$\frac{\mathrm{d} \ln \delta_{\chi b}}{\mathrm{d} \ln a} \approx 1 - \underbrace{\frac{2}{5} f_{\chi} \frac{\mathrm{d} \ln m_{\chi}}{\mathrm{d} \ln a}}_{\text{modified friction}} + \underbrace{\frac{3}{5} \left(f_{\chi} \frac{\partial \ln m_{\chi}}{\partial \varphi} \right)^{2}}_{\text{enhanced clustering}} + \underbrace{\frac{3}{5} w_{\varphi} f_{\varphi}}_{\text{modified expansion}} - \underbrace{\frac{3}{5} f_{\text{ncl}}}_{\text{nonclustering matter}}$$

Dynamics of a massless mediator

KG equation:
$$\bar{\varphi}''(\tau) + 2 \mathcal{H} \bar{\varphi}'(\tau) = \frac{a(\tau)^2}{2 M_{\rm pl}^2} \frac{\partial \ln m_{\chi}}{\partial \varphi} \bar{\rho}_{\chi}(\tau)$$

linear coupling:
$$\frac{\partial \ln m_{\chi}}{\partial \varphi} = d_{m_{\chi}}^{(1)} = \sqrt{\beta}$$

analytic solution:
$$\bar{\varphi}(a) = \bar{\varphi}_i - f_{\chi} d_{m_{\chi}}^{(1)} \ln \frac{a}{4a_{\rm eq}/e} + O(a_{\rm eq}/a)$$

"mediator friction":
$$\frac{\mathrm{d} \ln m_{\chi}}{\mathrm{d} \ln a} \approx -\left(d_{m_{\chi}}^{(1)}\right)^{2} f_{\chi} = -\beta f_{\chi}$$

mediator fraction:
$$f_{\varphi} = \frac{1}{3} (d\varphi/d \ln a)^2 = \frac{1}{3} \beta f_{\chi}^2$$

Growth deviation with a massless mediator

"mediator friction":
$$\frac{\mathrm{d} \ln m_{\chi}}{\mathrm{d} \ln a} \approx -\left(d_{m_{\chi}}^{(1)}\right)^{2} f_{\chi} = -\beta f_{\chi}$$

mediator fraction:
$$f_{\varphi} = \frac{1}{3} (d\varphi/d \ln a)^2 = \frac{1}{3} \beta f_{\chi}^2$$

$$\frac{\mathrm{d} \ln \delta_{\chi b}}{\mathrm{d} \ln a} \approx 1 - \underbrace{\frac{2}{5} \times (-\beta f_{\chi}^{2})}_{\text{modified friction}} + \underbrace{\frac{3}{5} \times \beta f_{\chi}^{2}}_{\text{enhanced clustering}} + \underbrace{\frac{3}{5} \times \frac{1}{3} \beta f_{\chi}^{2}}_{\text{expansion}} - \underbrace{\frac{3}{5} \times \frac{1}{3} \beta f_{\chi}^{2}}_{\text{modified expansion}} = \underbrace{\beta f_{\chi}^{2}}_{\text{modified matter}}$$

Growth deviation with a massless mediator

The density contrast is not the observable

$$\frac{\mathrm{dln}\,\Phi_{\mathrm{B}}}{\mathrm{dln}\,a} = \frac{\mathrm{dln}\,a^{3}\bar{\rho}_{\chi b}}{\mathrm{dln}\,a} + \frac{\mathrm{dln}\,\delta_{\chi b}/a}{\mathrm{dln}\,a}$$

$$\approx \underbrace{\frac{3}{5}f_{\chi}\frac{\mathrm{dln}\,m_{\chi}}{\mathrm{dln}\,a}}_{\text{background}} + \underbrace{\frac{3}{5}\left(f_{\chi}\frac{\partial \ln m_{\chi}}{\partial \varphi}\right)^{2}}_{\text{enhanced clustering}} + \underbrace{\frac{3}{5}w_{\varphi}f_{\varphi}}_{\text{modified}} - \underbrace{\frac{3}{5}f_{\mathrm{ncl}}}_{\text{nonclustering}}$$

Growth deviation with a massless mediator

"mediator friction":
$$\frac{\mathrm{d} \ln m_{\chi}}{\mathrm{d} \ln a} \approx -\left(d_{m_{\chi}}^{(1)}\right)^{2} f_{\chi} = -\beta f_{\chi}$$

mediator fraction:
$$f_{\varphi} = \frac{1}{3} (d\varphi/d \ln a)^2 = \frac{1}{3} \beta f_{\chi}^2$$

$$\frac{\mathrm{dln}\,\Phi_{\mathrm{B}}}{\mathrm{dln}\,a} \approx \underbrace{\frac{3}{5}f_{\chi}\times(-f_{\chi}\beta)}_{\text{background}} + \underbrace{\frac{3}{5}\beta f_{\chi}^{2}}_{\text{enhanced clustering}} = \boxed{0}$$

Growth deviation with a massless mediator

Suppression of distances

Suppression of structure

Suppression of structure

An amusing corollary: solving the " S_8 " tension?

