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• Given a cosmological model with 
parameters θ, we can hope to predict 

1. Statistics of initial conditions

2. How a given          evolves into the final 
density field

Inference in Cosmology



• Let’s put galaxies on a grid:

• The full joint posterior of initial conditions and 
cosmological parameters given the data is then 
given by
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�g(x) = ng(x)/hngi � 1

No effective loss of information 
provided kNy >= kmax of our analysis.
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P (ω, ωin|εg) → P
(
ωg
∣∣∣ωfwd[ωin, ω]

)
Pprior (ωin, ω)

Field-level inference (FLI)

conditional probability of galaxy density given forward-modeled 
density field - contains all physics of galaxy formation



• Let’s put galaxies on a grid:

• The posterior of cosmological parameters is 
obtained by marginalizing over δin:
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�g(x) = ng(x)/hngi � 1

No effective loss of information 
provided kNy >= kmax of our analysis.

Extremely high dimensional integral

Field-level inference (FLI)



Field-level inference

• So let’s try to tackle this challenge: Infer cosmology 
without data compression

• In other words, we want to solve the extremely 
high dimensional integral via Monte Carlo sampling
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Field-level inference

• Scheme:

• Discretize field on grid/lattice

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Results in samples from the joint posterior of initial conditions and 
cosmological parameters
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Field-level inference

• Scheme:

• Discretize field on grid/lattice

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Results in samples from the joint posterior of initial conditions and 
cosmological parameters
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Field-level inference

• Scheme:

• Discretize field on grid/lattice (Nyquist frequency = cutoff Λ)

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Challenge: even with fairly coarse resolution, have to sample 
million(s) of parameters

• Key: Hamiltonian Monte Carlo
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Visualization: results from field-
level inference on mock data

https://www.mpa-garching.mpg.de/1095991/hl202405

• Slices through linear density, evolved biased (mean) field, and mock data



• We need an expression for the field-level galaxy 
likelihood:

• conditional probability of galaxy density given 
matter density

• Will see later that field-level inference puts very 
stringent requirements on forward model! The 
price of extracting full information.

Field-level requires a 
galaxy likelihood

<latexit sha1_base64="Sg+Sh0iozeJV/cbZaX1pkPno+0s="></latexit>

P (✓) /
Z

D�in P
⇣
�g
����fwd[�in, ✓]

⌘
Pprior (�in, ✓)



• We need an expression for the field-level galaxy 
likelihood:

• conditional probability of galaxy density given 
matter density

• Our approach: integrate out modes above a scale 
Λ analytically (-> EFT), and sample modes below Λ 
explicitly.

Field-level requires a 
galaxy likelihood
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Recall that we evolve density on a grid, hence Λ has to be finite.
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EFT approach
• Idea: trust our theory for k < Λ, 

where fractional density 
perturbations are << 1

• Split initial perturbations into 
large scale (< Λ) and small scale 
(>= Λ):

• Then, we integrate out 
(marginalize over) perturbations 
with k > Λ

�(x, ⌧) ⌘ ⇢m(x, ⌧)

⇢̄,(⌧)
� 1 = �⇤ + �s
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• Incorporate effect of large-scale 
perturbations explicitly using 
bias expansion, with free 
coefficients

• Fields O are constructed 
from 

• Small-scale perturbations add 
noise ε

(A) Bias

bO

modes that are 
integrated out

�⇤
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• Incorporate effect of large-scale 
perturbations explicitly using 
bias expansion, with free 
coefficients

• Fields O are constructed 
from 

• Small-scale perturbations add 
noise ε

(B) Stochasticity

�g(x) =
X

O

bOO(x) + "(x)
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(B) Stochasticity
• ε arises from local (in real space) 

superposition of many small-scale 
perturbations

• Central limit theorem: ε(k) is 
approximately Gaussian distributed 
(the lower k, the more Gaussian it 
is)

• Local in real space: power spectrum is white 
noise at low k, with corrections* ~k2: 

Desjacques, Jeong, FS; Phys. Rept. (2018)

* Also, density dependence:
coupling of ε and δ



Cosmology results I: Inferring 
σ8 from rest-frame tracers



• Can we recover unbiased As (σ8) from a tracer 
(halo, HOD, …) catalog, treating bias 
parameters as unknown ?

• Perfect degeneracy between b1 and σ8 at linear 
order; nonlinear information essential

Cosmology results I: Inferring 
σ8 from rest-frame tracers



• Results on field-level σ8 inference from 
dark matter halos in real space

• Marginalizing over bias and 
stochastic terms

• Idea: compare field-level result with 
power spectrum + bispectrum using 
the same forward model and modes of 
the data

• Via simulation-based inference (SBI) 
using the same forward model as in 
the field-level analysis

Nguyen, FS, Tucci, Reinecke, Kostić             PRL 2024, arXiv:2403.03220

Idealized test: Inferring σ8 
from rest-frame tracers



• First results on field-level σ8 inference 
from dark matter halos in real space

• Marginalizing over bias and 
stochastic terms

• Idea: compare field-level result with 
power spectrum + bispectrum using 
the same forward model and modes 
of the data

• Via simulation-based inference (SBI) 
using the same forward model as in 
the field-level analysis
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SBINsim

posterior estimation

�(� |P[�obs.
g ], B[�obs.

g ])P + B�g

Nsample

posterior sampling

FBI �(� |�obs.
g )

Eq. (7)

Eq. (8)Eq. (6)Eq. (2)

Eq. (2)

�g

FIG. 1. Diagram of the two inference methods, FBI and SBI P+B. Both pipelines share the same forward model LEFTfield.

evolves all cosmological (plus auxiliary) fields up to a fi-
nite EFT cuto↵ ⇤. We choose ⇤ to be a sharp-k fil-
ter that strictly filters out all Fourier modes above the
cuto↵ [3, 36, 37]. Specifically, we implement a cubic
sharp-k filter via a Fourier grid reduction [23]. Crucially,
LEFTfield computes both O = O(ŝ) and @O/@ŝ, the
latter of which proves useful for gradient-based sampling
and field-level inference. We refer to Supplementary Ma-
terial and [22, 26, 37, 38] for LEFTfield implementa-
tion and validation. Here, the new developments with
respect to [22, 26, 37, 38] are: (1) a third-order model for
galaxy bias, improving accuracy relative to the previous
(second-order) treatment; (2) a non-uniform Fast Fourier
Transform (NUFFT [39]) for grid assignment, enhancing
numerical convergence and e�ciency relative to previous
assignment schemes; and (3) a change to kmax = ⇤/1.2,
e↵ectively reducing the analysis cuto↵ scale kmax rela-
tive to the initial conditions cuto↵ ⇤, hence mitigating
higher-derivative contributions.

Inference method I: FBI with explicit likelihood.—In
the field-level Bayesian inference (FBI) pipeline, we eval-
uate and sample from an explicit field-level likelihood
Lexpl.

FBI
, depicted in the top row of Fig. 1.

Following [40], our fiducial analyses assumes Gaussian-
ity of galaxy stochasticity and analytically marginalizes
over ✏. This leads to a Gaussian likelihood of the follow-
ing form for an observed and filtered galaxy field �obs.

g

[36, 41]:

Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
= �1

2

|k|<kmaxX

k>0

h
ln 2⇡�2

✏
(k) +

1

�2
✏
(k)

����obs.g
(k)�

X

O

bOO[↵, ŝ](k)
���
2i

.

(5)

The
P|k|<kmax

k>0
amounts to a spherical sharp-k filter

which only includes Fourier modes k up to kmax, the cut-
o↵ scale of our analyses. We expand

P
O
bOO to third

order in the galaxy bias operators O and further analyti-
cally marginalize over the bias coe�cients {bO} assuming
weakly informative Gaussian priors (see Supplementary
Material).

The final explicit FBI parameter space consists of
[ŝ,↵, {�✏}]. The element ŝ is a three-dimensional grid
of size [Ngrid ⇥ Ngrid ⇥ Ngrid] containing Nmode = N3

grid

modes of initial density fluctuations. To explore this
high-dimensional posterior, following [26, 42], we em-
ploy two MCMC sampling methods: Hamiltonian Monte
Carlo (HMC) [43] for ŝ—leveraging the di↵erentiability
of LEFTfield forward models—and slice sampling [44]
for [↵, {�✏}].
Inference method II: SBI P+B with implicit likeli-

hood.—Implicit-likelihood or simulation-based inference
(SBI) directly learns the posterior from simulated train-
ing data without assuming any analytical form for the
likelihood of the data vector [45]. Our SBI P+B pipeline
is depicted in the bottom row of Fig. 1, where we closely
follow the procedure detailed in [38]. We first draw
the parameters ✓ ⌘ [↵, {bO}, {�✏}] from their priors and
simulate the galaxy fields �g via Eq. (2) Eq. (5) with
LEFTfield. We then measure the power spectrum P
and bispectrum B on each simulated data realization,

h�g(k)�g(k0)i = P (k)(2⇡)3�D(k+ k0), (6a)

h�g(k1)�g(k2)�g(k3)i =
B(k1, k2, k3)(2⇡)

3�D(k1 + k2 + k3),
(6b)

following [46] (see also Eqs. (2.15–2.17) of [38]). The SBI
P+B data vector contains Nbin + Ntriangle elements up
to the same kmax used in the FBI analysis, with Nbin

linear k-bins for the power spectrum and Ntriangle trian-
gle k-configurations for the bispectrum. We choose a k
bin width of �k = 2kf , where kf ⌘ 2⇡L�1 is the fun-
damental frequency. The Nsim samples, drawn from the
joint distribution {✓, P [�g(✓)], B[�g(✓)]} this way, form
the SBI training set. We use neural posterior estimation
(NPE) [47] with masked autoregressive flows [48] from
the sbi package [49] (see Supplementary Material).
After training, we sample the estimated pos-

terior PP+B, conditioned on the power spectrum
plus bispectrum measured on the “observed” data⇥
P [�obs.

g
], B[�obs.

g
]
⇤
, [Eq. (8)]. We employ simulation-

based calibration (SBC) [50] and convergence tests to
validate the SBI posteriors (see Supplementary Mate-
rial). We note that the forward model employed here

Idealized test: Inferring σ8 
from rest-frame tracers

Nguyen, FS, Tucci, Reinecke, Kostić             PRL 2024, arXiv:2403.03220



• First results on field-level σ8 
inference from dark matter halos 
in real space

• Marginalizing over bias and 
stochastic terms

• Field-level inference vs power 
spectrum + bispectrum using the 
same forward model and modes 
of the data
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assumes Gaussian noise [Eq. (5)]. Thus our bispectrum
model does not contain a contribution from non-Gaussian
(skewed) noise, or from a density-dependent noise vari-
ance. In the Supplementary Material, we compare our
fiducial SBI P+B analysis with a variant that includes
both additional stochastic contributions, but employs a

restricted bias parameter set (see Supplementary Mate-
rial). This variant matches current standard P+B anal-
yses [51, 52]. We find broad consistency between both
SBI P+B analyses.
Inference summary:—Explicitly, our target posteriors

are

PFBI

⇣
↵, {bO}, {�✏}

����obs.g

⌘
/

Z
DŝP (ŝ) Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
P (↵, {bO}, {�✏}) , (7)

PP+B

⇣
↵, {bO}, {�✏}

���P [�obs.
g

], B[�obs.
g

]
⌘
/ Limpl.

P+B

⇣
P [�obs.

g
], B[�obs.

g
]
���↵, {bO}, {�✏}

⌘
P (↵, {bO}, {�✏}) , (8)

for FBI [Eq. (7)] and SBI P+B [Eq. (8)], where {bO}
consists of all bias parameters up to third order. We
explicitly list the bias parameters {bO} and the priors
P (↵, {bO}, {�✏}) in the Supplementary Material.

Results.—Our main results are shown in Fig. 2, where
we compare ↵ posteriors between FBI and SBI P+B. All
analyses recover the ground-truth ↵ = 1 within 68%CL.
Specifically, at kmax = 0.1 (0.12)hMpc�1, FBI analy-
ses constrain ↵ = 0.976 ± 0.056 (↵ = 1.013 ± 0.033),
a 5.9% (3.6%) constraint on ↵. This corresponds to a
factor of 3.5 (5.2) improvement over the SBI P+B con-
straints, which are ↵ = 1.014±0.200 (↵ = 0.872±0.170).
An increase in the improvement of field-level constraints
over low-order summary statistics with the analysis cut-
o↵ scale kmax is expected, since the information gain is
due to the nonlinearities in the forward model, whose
significance increases with wavenumber.

Both FBI and SBI P+B results show consistent pos-
teriors between the two kmax values for each inference
method. Their results are further consistent with each
other within 0.2-� (0.8-�). The consistency between the
two analyses (at both kmax) stems from their common
forward model, LEFTfield. The level of consistency
further underlines the precision of LEFTfield on these
scales.

To verify whether the above conclusions generalize,
we analyze an external sample from the publicly avail-
able Uchuu simulation. Fig. 3 shows that the answer
is a�rmative: the FBI analysis yields a factor of 1.9
(2.5) improvement over that obtained with SBI P+B.
Specifically, the FBI constraints are ↵ = 0.941 ± 0.090
(↵ = 0.993 ± 0.053) versus the ↵ = 1.018 ± 0.168
(↵ = 0.900± 0.136) constraints by SBI P+B, at kmax =
0.1 (0.12)hMpc�1, in excellent agreement within 0.4-�
(0.6-�).

In the variant SBI case, which resembles current
standard P+B analyses, the improvement factors be-
tween FBI and SBI P+B constraints on ↵ at kmax =
0.1 (0.12)hMpc�1 are 3.5 (5.2) for the SNG halo sample
and 2.3 (3.5) for the Uchuu halo sample.

Summary and discussion.—In this Letter, we have pre-
sented the first �8 constraints from field-level inference

FIG. 2. Constraints on ↵ = �8/�8,true, from the SNG sample
(see text), at kmax = [0.10, 0.12]hMpc�1. Vertical bands
indicate the 68% limits of the posteriors. The ratios of the
1-� constraints between FBI (blue) and SBI P+B (yellow)
are shown in the upper right corners.

on fully nonlinear biased tracers, specifically N-body ha-
los. Our constraints are based on the validity of the
EFTofLSS on quasilinear scales, and rigorously marginal-
ize over fully nonlinear scales.
We compare these with a simulation-based inference

based on summary statistics, namely the power spec-
trum and bispectrum. Using the same field-level for-
ward model in both analyses, we demonstrate that the
field-level approach significantly outperforms the sum-
mary statistics [Figs. 2 and 3]. Our results show that,
even on quasilinear scales, there is significant cosmologi-
cal information beyond the power spectrum and bispec-
trum. The next question is: where does this information
reside [36, 53]? In future work, we will explore whether
there are other low-dimensional summaries that could ex-

Idealized test: Inferring σ8 
from rest-frame tracers
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FIG. 3. Similar to Fig. 2, but obtained from the Uchuu sample
(see text), also at kmax = [0.10, 0.12]hMpc�1.

tract this information, such as the trispectrum (4-point
function).

While we have focused on dark-matter halos here, we
will demonstrate in [33] that this conclusion holds for
simulated galaxies as well, as expected from EFT princi-
ples. Looking forward to FBI on observed data, Ref. [54]
demonstrated a successful implementation of RSD into
the LEFTfield forward model. We expect a field-level
analysis of redshift-space galaxy clustering will be able
to break the degeneracy between the growth rate f and
�8, leading to improved constraints on both parameters.
Simultaneous constraints on [f,�8] will further shed light
on dark energy and modified gravity scenarios.

We stress that we have not attempted to push our
analysis to even smaller scales, instead aiming for con-
verged posteriors at conservative scale cuts of kmax 
0.12hMpc�1 [55]. Already in this case, our results indi-
cate that field-level inference enables robust constraints

on the growth of structure, independent of the growth
rate f , at the few-percent level even within a modest vol-
ume of 8 (h�1Gpc)3. This should allow for correspond-
ingly improved constraints on cosmological parameters,
in the standard ⇤CDM as well as extended models, using
the upcoming DESI [56, 57], Euclid [58, 59] and PFS [60]
data.
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Posterior for 10 independent mock 
catalog realizations:

No sign of underestimated 
posterior variance.
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Figure 9. Consistency between posteriors obtained in ten EFT FBI free-IC analyses on ten data realizations during stage 2. To
avoid unmasking the values of bias parameters, we subtract and divide their values in each chain by the corresponding posterior
means obtained from the analysis of box 1.

Sampling—We employ Hamiltonian Monte Carlo sampling to explore the initial conditions ŝ while adopting slice
sampling to sample other parameters. We refer readers to Sec 3.2 of Kosti! et al. (2023) and references therein for the
motivation behind this choice.

MCMC convergence and autocorrelation—Unconverged and correlated MCMC chains lead to biases and uncertainties
in the estimation of moments of the parameter posteriors. Below, we focus on MCMC convergence diagnostics and
autocorrelation estimates for stage-2 analyses (see Unmasking criteria below), as their results can be directly compared
to those obtained by other teams, namely EFT P+B and BACCO P.

• MCMC convergence—We run two MCMC chains with distinct initial parameter values for each analysis. We first
identify the warmup and equilibrium phases in each chain through the parameter drifts within individual chains
and the Gelman-Rubin (G-R) statistics estimated from each and both chains.14 After removing the warmup
phases, we find posteriors estimated from the two chains to be completely consistent.

• MCMC autocorrelation—The univariate autocorrelation function (ACF) provides an estimate for the number of
e"ective, i.e. independent, samples ne!ective in the MCMC chain for the parameter of interest. In the upper right
corner of Fig. 9, we show the ACFs of the cosmological and bias parameters as a function of the lag between two
samples in the MCMC chain.15 A null ACF indicates that two MCMC samples are independent draws from the
posteriors.

• MCMC E"ective Sample Size (ESS)—We target a G-R value of R̂ → 0.01 and an average number of → 255
independent samples of ω.16 The MCMC sampling error on the means of ω and ε8 can be estimated from
εω/ne!ective

ω
where ne!ective

ω
is the ESS of ω. The ESS of ten stage-2 analyses range from 193 to 311, with a mean

14 We observe neither divergence nor slow mixing in MCMC chains across all pre-unmasking and post-unmasking analyses.
15 We estimate the ACFs using the FFT method, as implemented in GetDist. See, e.g. Press et al. (1986).
16 We use GetDist (Lewis 2019) for these diagnostics and estimates. The package estimates the G-R statistics following the classical estimator

in Brooks & Gelman (1998) and the e!ective sample number following their Eq. (22).
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Where does the field-level 
information come from?

• Let’s consider the zero-noise limit of the field-level 
posterior, such that likelihood becomes Dirac delta 

• We can then formally perform integration over initial 
conditions δin analytically to obtain marginalized 
posterior:

Cabass, Simonović, Zaldarriaga (2023); FS (2025)
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information come from?

Cabass, Simonović, Zaldarriaga (2023); FS (2025)
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• Involves inverse of forward model, evaluated on 
the data

• In case of linear forward model, δfwd = b1δin, 
marginalized field-level posterior is function of the 
power spectrum of the data - Pg(k) is sufficient 
statistic



Where does the field-level 
information come from?

• If forward model is nonlinear, δfwd-1 is a nonlinear functional of the 
data δg: effectively, we add higher n-point functions to the posterior

• Each term in the forward model adds a new, specific statistic to the 
posterior

• Complete forward model at 2nd order: power spectrum + 
bispectrum

• Complete forward model at 3d order: power spectrum + 
bispectrum + trispectrum   …
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• Specifically, have shown this at the level of the 
maximum-a-posteriori value of bias coefficents and 
σ8:

• N-point functions of the data enter the MAP 
expressions in quite nontrivial way beyond leading 
order

Where does the field-level 
information come from?

FS (2025), arXiv:2504.15351

We can now precisely connect our results to those of [33]. They only considered the operator
ω
(2) at second order, and defined AC+ = bωε in our notation. Since only one parameter is
varied, A

ω(2)ω(2) corresponds to the expected inverse variance on b
ω(2) , which is equivalent to

1/ϑ2

AC+
derived in Eq. (52) of [33]. We indeed find perfect agreement in that case (apart

from the cuto!s which are kept explicitly here), while Eq. (3.18) generalizes this result to the
case where all second-order bias coe”cients are varied at once.

The expression Eq. (3.20) for the Fisher information applies to any bias parameters for
which the posterior dependence can be written as a quadratic form, as in Eq. (3.15). This
will prove useful at higher order as well.

3.2.2 Third-order operators

At order PL in the posterior, third-order operators only appear in the form
〈
ωg(→k)Õ(3)[ωg, ωg, ωg](k)

〉
.

We derive these contributions in Appendix F.3, and show that all contributions are linear in
b
O(3) at this order. This means that we cannot obtain a nontrivial MAP relation for third-
order bias coe”cients from the posterior at O(PL); that is, there is strictly no information on
these coe!cients at this order. Instead, we need to include the next-higher order, at O(P 2

L
),

which is the topic of the following section.

Still, the third-order bias contributions to the posterior depend nontrivially on bω, so
one might wonder about their contribution to the NLO MAP relation for bω. We return to
this in Sec. 4.1.

3.3 Posterior at order (PL)2: third-order bias, and more of ϑ8

The ensemble-mean of the posterior at O(P 2

L
) is derived in Appendix G. Here, we focus on

the MAP relation for third-order bias coe”cients, which can be derived from this posterior.
Together with the results from the previous section, this will allow us to establish a pattern
for MAP relations for higher-order bO. Notice that the set of third-order bias coe”cients
contains the third-order bias coe”cients proper, i.e. for operators O

[3] starting at third
order, as well as the coe”cients of lower-order operators evaluated at third order, specifically

bωω
(3)

, bω2(ω
2)(3), bG2(G2)

(3)
. (3.21)

Here, we will again leave these coe”cients free in order to avoid mixing of MAP relations at
di!erent orders. Moreover, if one replaces bω, bO[2] with their scaled versions via Eq. (3.13),
each of the terms listed above will yield additional constraints on the power spectrum am-
plitude ε

2, noting that

b
ω(3) = ε

2
b̂ω; b

(ω2)(3) = εb̂ω2 ; b
(G2)

(3) = εb̂G2 . (3.22)

In the following, we further set bω = b̄ω, and denote both as bω.

As shown in Appendix G, the ensemble-mean MAP relation for third-order bias coe”-
cients agan yields a linear equation,

∑

O→(3)

〈
b
MAP

O→
〉
AO→O = YO (3.23)

– 17 –

where AOO, YO are functionals of the data:
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• Ensemble-mean of MAP expression for third-
order bias

Where does the field-level 
information come from?

FS (2025), arXiv:2504.15351
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The solution to Eq. (3.23) is clearly analogous to Eq. (3.19). As in the case n = 2, AOO→

is symmetric. In fact, the structure of the terms in YO, AOO→ is quite similar to those of
the n = 2 result. As expected following the discussion in Sec. 3.2.2, all contributions to the
ensemble mean of the MAP point start at order (PL)2, and the lower-order contributions
have canceled.

Going through the individual lines in Eq. (3.24), we have

1. An integral over the galaxy trispectrum (connected 4-point function), which starts at
(PL)3 and is analogous to the integral over the bispectrum in Eq. (3.16).

2. A convolution of the tree-level and 1-loop galaxy power spectrum whose product like-
wise is of order (PL)3.

3. The galaxy 5-point function, which starts with the disconnected contribution, ↗ 4PgBg,
given by the product of galaxy power spectrum and bispectrum.

4. The galaxy bispectrum in a di!erent kinematic configuration to the previous line, and
not enhanced by a 1/PL(k) factor (using that the factors of ω(1) cancel the factors of
PL in the denominator).

5. A convolution of two galaxy power spectra (see previous item).
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Where does the field-level 
information come from?

• Each term in the forward model adds a new, specific statistic 
to the posterior

• Lagrangian, LPT-based forward model as in LEFTfield: correctly 
describes displacement terms at all orders, precisely those terms 
responsible for the degeneracy breaking

• Impact of missing operators in forward model is proportional 
to scalar product of missing Omissing[δ] with O[δ] of interest
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A toy scenario
• We can look at a much simpler 

case:

• Compare FLI with P+B as a 
function of the ground-truth value 
of bδ2

• As expected, for bδ2,true=0, FLI 
recovers same constraint as P+B

• For nonzero bδ2,true, FLI yields more 
information effectively extracted 
from higher n-point functions

Nikolac, FS, Tucci, in prep.
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SBI and Fisher calculation
using sample covariance
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A toy scenario
• For nonzero bδ2,true, FLI yields 

more information effectively 
extracted from higher n-point 
functions

• For this simple forward model, 
can access the information via 
compressed statistics: 
correlations of local powers of 
the data:

• Indeed, higher-order statistics 
recover the information gain in 
FLI 

Nikolac, FS, Tucci, in prep.

SBI (solid) & Fisher (dashed) results

<latexit sha1_base64="MXKeezL3pjaGry40GnkxFXZMdzk="></latexit>

! = kmax = 0.14hMpc→1
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Cosmology results II: Field-
level inference of BAO scale



Cosmology results II: Field-
level inference of BAO scale

• Constraints on expansion history (dark 
energy) from galaxy clustering are based on 
the BAO standard ruler (cf. DESI results)

• These are commonly inferred by 
performing reconstruction procedure on 
galaxies, and then using the post-
reconstruction galaxy power spectrum



Cosmology results II: Field-
level inference of BAO scale

• Reconstruction idea: estimate 
large-scale displacements from 
galaxy density field, then move 
galaxies back to inferred initial 
positions

• Improves error bar on BAO scale 
by up to 50%

• Can we also do this in a forward 
approach by performing joint 
field-level inference of initial 
density field and BAO scale?
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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1
FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible

Babić, FS, Tucci (2025), arXiv:2505.13588
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• Field-level inference of BAO scale 
using a trick: moving BAO feature 
in linear (initial) density field:

• Compare with reconstruction 
analysis applied to the same 
scales of the data

• Note: reconstruction uses fixed 
linear bias, field-level inference 
infers all bias coefficients jointly 
with BAO scale

2

validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt

Babić, FS, Tucci (2025), arXiv:2505.13588
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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• Field-level inference of BAO scale 
using a trick: moving BAO feature 
in linear (initial) density field:

• Compare with reconstruction 
analysis applied to the same 
scales of the data

• Note: reconstruction uses fixed 
linear bias, field-level inference 
infers all bias coefficients jointly 
with BAO scale
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validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible

20-40% improvement in BAO 
scale precision over standard 

analysis!
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Where does the field-level 
BAO information come from?

• In case of perfect forward model, δfwd-1 is a sample from prior (Gaussian 
linear density field) - in fact, information obtained is precisely that contained 
in linear density field: optimal inference

• Field-level inference “undoes” nonlinear evolution as well as nonlinear 
bias

• On the other hand, standard BAO reconstruction leaves substantial broad-
band contribution to δgpost-rec; this explains information gain found at field 
level

• Cannot easily be recuperated using higher-order n-pt functions
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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Appendix E: Where does the BAO information come from?

In order to better understand the source of BAO information in the field-level and standard reconstruction-based
BAO inference procedures, we consider a simplified setup which allows us to make analytical progress. We ignore the
stochasticity (shot noise) in the data, and so assume that the data is infinitely informative up to the maximum scale
kmax = ! included in the analysis. As shown in [42, 43], the posterior for FLI can then be written as

→2 ln PFLI[{bO}, rs|ωg] =
!∑

k

|ω→1

g,det
[ωg, {bO}](k)|2

PL(k|rs)
+ 2 ln

∣∣∣∣∣
Dωg,det

Dω(1)
!

∣∣∣∣∣
ω
→1
g,det[ωg,{bO}]

+ ln

[
!∏

k

2εPL(k|rs)
]

→ 2 ln Pprior({bO}, rs) + const , (E1)

where {bO} denotes the set of bias parameters, and we have specialized the set of cosmological parameters to rs.
Further, ω→1

g,det
denotes the formal inverse of the forward model. In the following, we assume uninformative priors on

rs, while we keep {bO} fixed, so that we can drop Pprior.
Now we take the derivative of Eq. (E1) with respect to rs:

ϑ

ϑrs
(→ ln PFLI[{bO}, rs|ωg]) =

1

2

!∑
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Setting this relation to zero, we see that, at fixed values of the bias parameters {bO}, the maximum-a-posteriori
(MAP) point for the power spectrum parameters corresponds to the point where the mismatch between the maximum-
likelihood estimator of the linear density field, ω→1
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[ωg, {bO}], and the expection PL(k|rs) vanishes, or more precisely,

has no overlap with the gradient of PL with respect to rs. Note that ϑPL/ϑrs is an oscillatory function (i.e. it has no
broad-band part). In the following, we will assume that the bO are set to their MAP values, which in the absence of
model mismatch are the ground-truth values. In the actual FLI analysis, we of course vary both {bO} and rs at the
same time.

We now derive the Fisher information on the BAO scale parameter rs. Using that
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This is in fact precisely the Fisher information on rs contained in the linear power spectrum up to the scale !. Thus,
the information in the field-level posterior on the linear power spectrum parameters matches exactly that in the linear
density field, if the bias parameters are perfectly known. This is just another statement that the Bayesian field-level
analysis is optimal in this case.

The post-reconstruction power spectrum likelihood, on the other hand, is Eq. (B5), or
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where we have not written the rs-independent normalization. Here, we have summed over individual modes of
|ωg,rec(k)|2 to emphasize the similarity with the FLI case, while in practice and in Eq. (B5) one sums over finite and
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Summary (New Inference)
• Field-level inference (FLI) uses all information up to given 

kmax

• guaranteed to be optimal (for correct model)

•               is a consistent EFT-based field-level forward model, 
ready for idealized data at this point

• >~ 100% gain in σ8 from rest-frame tracers (unbiased 
inference highly nontrivial as well)

• Self-consistent BAO reconstruction with gain in BAO 
scale precision ~20-40% over standard reconstruction

• Both of these probes could yield very interesting insights on 
dark energy going forward!



• Analytical results in zero-noise limit yield useful insights 
into where the information is coming from

• If perturbation theory valid up to kmax considered, FLI 
corresponds to combined inference from finite (but not 
necessarily small) set of n-point functions

• Growth / σ8 is likely to be the parameter with most gain, 
but that information should also be extractable from 
higher n-point functions

• Improvement BAO constraint depends essentially on 
“undoing” nonlinear bias and gravitational evolution (not 
just large-scale displacements)

FS (2025), arXiv:2504.15351

Summary (New Inference)

https://arxiv.org/abs/2504.15351


• FLI beyond perturbative regime: forward model needs to 
correctly describe n-point functions of arbitrary order 
— not easy when attempting to describe real galaxies.

• Typically, empirical models struggle to describe 
bispectrum up to same k as power spectrum… 

• Application to primordial non-Gaussianity:

• Potentially easier route to infer scenarios with 
enhanced higher-order vertices

• Cannot break fundamental degeneracies between 
PNG and bias shapes (cf. equilateral)

FS (2025), arXiv:2504.15351

cf. Thomas Flöss’ talk

Summary (New Inference)

https://arxiv.org/abs/2504.15351


New Physics
from Galaxy Clustering



1. Dark Energy can cross phantom divide

2. Galaxy shapes can probe parity violation

3. Fun with PBH: a UV-complete dark matter 
scenario

New Physics
from Galaxy Clustering and other things



1. Dark Energy can 
cross phantom divide

• If observations are consistent with w=-1, 
have we proven that DE=Λ?

• Canonical scalar field: yes

• Not true in general: could have equation of 
state that varies around w=-1

• Monodromic k-essence: 

FS (2017)
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II. MONODROMIC DARK ENERGY

In this section, we review the main aspects of the mon-
odromic dark energy model. We refer the reader to
Ref. [27] for more details. Our starting point is a spa-
tially flat universe with a scalar field ω that drives the
late-time accelerated expansion. To accommodate a rich
set of expansion histories, including phantom crossing, we
consider a field which drives accelerated expansion via its
kinetic energy, often referred to as k-essence [39, 40].2 To
this end, we consider the following action,

S =

∫
d
4
x
→

↑g

[
1

2
M

2
PlR + p(ω, X) + Lm

]
, (1)

where M
2
Pl ↓ 1/(8εGN) is the reduced Planck mass,

p(ω, X) is a function of the scalar field, ω, and its ki-
netic energy, X ↓ ↑ 1

2g
µω

ϑµωϑωω. For convenience, we
normalize the field such that ω has units of time, or in-
verse mass, and hence X is dimensionless. We focus on a
pure k-essence model up to quadratic order in the kinetic
energy, i.e.,3

p(ω, X) = V (ω)[↑X + X
2], (2)

where the “potential” is given by

V (ω) = C

(
ω

ω0

)→ε

[1 ↑ A sin(ϖH0ω + ϱ)] . (3)

Here, A, ϖ, and ϱ set the amplitude, frequency, and phase
of the oscillations, respectively. We have introduced the
Hubble rate today H0 in order to make ϖ dimensionless;
very roughly, ϖ sets the number of oscillations executed
over the age of the Universe. The power-law index ς

specifies the smooth component of the potential, and is
therefore related to the time-averaged equation of state
of the field. In the most general construction, ω0 and C

are free parameters; however, as shown in Ref. [27], the
monodromic k-essence scenario admits a tracking solution
during matter domination when A = 0. In this work, we
initialize the field on this tracking solution, in which case
C and ω0 are fully determined by the present-day dark
energy density. See Ref. [27] for the precise form of this
tracking solution.

To better understand how the parameters in Eq. (3)
influence the cosmological expansion history, Fig. 1 shows
how variations in each parameter individually a!ect the
dark energy density (top), equation of state (middle), and

2
This is in contrast to the more familiar quintessence scenario,

where the accelerated expansion is driven by the potential of

a canonical scalar field. It is straightforward to construct a

monodromic quintessence model [27]; however, this model cannot

cross the phantom divide, and is therefore of less observational

interest given the dark energy scenarios preferred by DESI.
3

Any p(ω, X) = K(ω)X + L(ω)X
2

with L(ω) →= 0 can be cast into

this form via a field redefinition [40].

Hubble parameter (bottom). From left to right, we vary
the amplitude A, power-law index ς, frequency ϖ, and
phase ϱ, holding all other parameters fixed at their fiducial
values of A = 0.5, ς = 0, ϖ = 25, and ϱ = 0. We fix H0,
”m, and ”b, thus anchoring the present-day dark energy
density and expansion rate. All parameters except the
frequency are varied across the prior ranges used in our
fiducial analysis. For the frequency, we show variations
across a broader range of values than our fiducial prior
(15 ↔ ϖ ↔ 30) to highlight values of ϖ that are either
too small to produce significant oscillations since dark
energy domination, or too high to be resolved given the
redshift binning of the DESI DR2 dataset (indicated by
the vertical gray dashed lines).

Each parameter introduces distinct features in the back-
ground history: increasing A enhances the amplitude of
oscillations in φDE(z) and wDE(z), while variations in
ς shift the time-averaged equation of state and tilt the
time-evolution of the dark energy density. Changes in
ϖ and ϱ modulate the frequency and phase of wDE(z),
respectively. By varying all of these parameters, the mon-
odromic k-essence model can accommodate a broad range
of oscillatory features in the dark energy evolution.

Thus far, our discussion has focused solely on the impact
of monodromic k-essence at the background level. How-
ever, dark energy models that cross the phantom divide
generally violate the null-energy condition (NEC). This is
problematic, since such violations are often accompanied
by gradient instabilities, which happen if the squared
sound speed of dark energy perturbations becomes nega-
tive, leading to exponential growth of perturbations on
all scales [41, 42]. Ref. [43] argued that these instabilities
can be kept under control by adding higher-derivative
terms to the action, which are generically expected in a
theory with a finite cuto!. Gradient instabilities arise
in the monodromic k-essence model for a vast range of
the parameter space considered here. Although including
higher-derivative terms could, in principle, stabilize the
theory, a complete treatment of perturbations in mon-
dromic dark energy is left to a future work. Here, we
conservatively constrain the monodromic k-essence model
using observations that are insensitive to dark energy
perturbations. In Appendix A, we present a modification
to the monodromic k-essence model that can mitigate gra-
dient instabilities while allowing for oscillations of similar
amplitude in the equation of state of dark energy.

III. DATASETS AND METHODOLOGY

In this section, we describe the datasets and analysis
choices used to constrain the monodromic k-essence model.
Given the theoretical uncertainties and model-dependence
of modeling dark energy perturbations for models that
cross the phantom divide, we constrain the monodromic
k-essence scenario including only information at the back-
ground level. In particular, we do not use a full CMB
likelihood, which encodes information about dark en-
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phase ϱ, holding all other parameters fixed at their fiducial
values of A = 0.5, ς = 0, ϖ = 25, and ϱ = 0. We fix H0,
”m, and ”b, thus anchoring the present-day dark energy
density and expansion rate. All parameters except the
frequency are varied across the prior ranges used in our
fiducial analysis. For the frequency, we show variations
across a broader range of values than our fiducial prior
(15 ↔ ϖ ↔ 30) to highlight values of ϖ that are either
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energy domination, or too high to be resolved given the
redshift binning of the DESI DR2 dataset (indicated by
the vertical gray dashed lines).

Each parameter introduces distinct features in the back-
ground history: increasing A enhances the amplitude of
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ϖ and ϱ modulate the frequency and phase of wDE(z),
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Thus far, our discussion has focused solely on the impact
of monodromic k-essence at the background level. How-
ever, dark energy models that cross the phantom divide
generally violate the null-energy condition (NEC). This is
problematic, since such violations are often accompanied
by gradient instabilities, which happen if the squared
sound speed of dark energy perturbations becomes nega-
tive, leading to exponential growth of perturbations on
all scales [41, 42]. Ref. [43] argued that these instabilities
can be kept under control by adding higher-derivative
terms to the action, which are generically expected in a
theory with a finite cuto!. Gradient instabilities arise
in the monodromic k-essence model for a vast range of
the parameter space considered here. Although including
higher-derivative terms could, in principle, stabilize the
theory, a complete treatment of perturbations in mon-
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conservatively constrain the monodromic k-essence model
using observations that are insensitive to dark energy
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theory with a finite cuto!. Gradient instabilities arise
in the monodromic k-essence model for a vast range of
the parameter space considered here. Although including
higher-derivative terms could, in principle, stabilize the
theory, a complete treatment of perturbations in mon-
dromic dark energy is left to a future work. Here, we
conservatively constrain the monodromic k-essence model
using observations that are insensitive to dark energy
perturbations. In Appendix A, we present a modification
to the monodromic k-essence model that can mitigate gra-
dient instabilities while allowing for oscillations of similar
amplitude in the equation of state of dark energy.

III. DATASETS AND METHODOLOGY

In this section, we describe the datasets and analysis
choices used to constrain the monodromic k-essence model.
Given the theoretical uncertainties and model-dependence
of modeling dark energy perturbations for models that
cross the phantom divide, we constrain the monodromic
k-essence scenario including only information at the back-
ground level. In particular, we do not use a full CMB
likelihood, which encodes information about dark en-
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p(ω, X) = Ṽ (ω)
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→X/M4 + (X/M4)2

]
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II. MONODROMIC DARK ENERGY

In this section, we review the main aspects of the mon-
odromic dark energy model. We refer the reader to
Ref. [27] for more details. Our starting point is a spa-
tially flat universe with a scalar field ω that drives the
late-time accelerated expansion. To accommodate a rich
set of expansion histories, including phantom crossing, we
consider a field which drives accelerated expansion via its
kinetic energy, often referred to as k-essence [39, 40].2 To
this end, we consider the following action,

S =

∫
d
4
x
→

↑g

[
1

2
M

2
PlR + p(ω, X) + Lm

]
, (1)

where M
2
Pl ↓ 1/(8εGN) is the reduced Planck mass,

p(ω, X) is a function of the scalar field, ω, and its ki-
netic energy, X ↓ ↑ 1

2g
µω

ϑµωϑωω. For convenience, we
normalize the field such that ω has units of time, or in-
verse mass, and hence X is dimensionless. We focus on a
pure k-essence model up to quadratic order in the kinetic
energy, i.e.,3

p(ω, X) = V (ω)[↑X + X
2], (2)

where the “potential” is given by

V (ω) = C

(
ω

ω0

)→ε

[1 ↑ A sin(ϖH0ω + ϱ)] . (3)

Here, A, ϖ, and ϱ set the amplitude, frequency, and phase
of the oscillations, respectively. We have introduced the
Hubble rate today H0 in order to make ϖ dimensionless;
very roughly, ϖ sets the number of oscillations executed
over the age of the Universe. The power-law index ς

specifies the smooth component of the potential, and is
therefore related to the time-averaged equation of state
of the field. In the most general construction, ω0 and C

are free parameters; however, as shown in Ref. [27], the
monodromic k-essence scenario admits a tracking solution
during matter domination when A = 0. In this work, we
initialize the field on this tracking solution, in which case
C and ω0 are fully determined by the present-day dark
energy density. See Ref. [27] for the precise form of this
tracking solution.

To better understand how the parameters in Eq. (3)
influence the cosmological expansion history, Fig. 1 shows
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dark energy density (top), equation of state (middle), and

2
This is in contrast to the more familiar quintessence scenario,

where the accelerated expansion is driven by the potential of

a canonical scalar field. It is straightforward to construct a

monodromic quintessence model [27]; however, this model cannot

cross the phantom divide, and is therefore of less observational

interest given the dark energy scenarios preferred by DESI.
3

Any p(ω, X) = K(ω)X + L(ω)X
2

with L(ω) →= 0 can be cast into

this form via a field redefinition [40].
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the amplitude A, power-law index ς, frequency ϖ, and
phase ϱ, holding all other parameters fixed at their fiducial
values of A = 0.5, ς = 0, ϖ = 25, and ϱ = 0. We fix H0,
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Thus far, our discussion has focused solely on the impact
of monodromic k-essence at the background level. How-
ever, dark energy models that cross the phantom divide
generally violate the null-energy condition (NEC). This is
problematic, since such violations are often accompanied
by gradient instabilities, which happen if the squared
sound speed of dark energy perturbations becomes nega-
tive, leading to exponential growth of perturbations on
all scales [41, 42]. Ref. [43] argued that these instabilities
can be kept under control by adding higher-derivative
terms to the action, which are generically expected in a
theory with a finite cuto!. Gradient instabilities arise
in the monodromic k-essence model for a vast range of
the parameter space considered here. Although including
higher-derivative terms could, in principle, stabilize the
theory, a complete treatment of perturbations in mon-
dromic dark energy is left to a future work. Here, we
conservatively constrain the monodromic k-essence model
using observations that are insensitive to dark energy
perturbations. In Appendix A, we present a modification
to the monodromic k-essence model that can mitigate gra-
dient instabilities while allowing for oscillations of similar
amplitude in the equation of state of dark energy.

III. DATASETS AND METHODOLOGY

In this section, we describe the datasets and analysis
choices used to constrain the monodromic k-essence model.
Given the theoretical uncertainties and model-dependence
of modeling dark energy perturbations for models that
cross the phantom divide, we constrain the monodromic
k-essence scenario including only information at the back-
ground level. In particular, we do not use a full CMB
likelihood, which encodes information about dark en-
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FIG. 2: Evolution of the energy density (⇢K , top), equation
of state (wK , middle), and sound speed squared (bottom) of
the monodromic k-essence model. The frequency ⌫ is given
in units of M�1

Pl .

Correspondingly, all of ⇢K ,X, wK and c
2
s oscillate around

the values given by the scaling solution, with approxi-
mately

⇤2
⌫

2⇡H
⇡ ⌫MPl

2⇡
(22)

oscillations per Hubble time. While the amplitude of os-
cillations in ⇢K , and hence the Hubble rate H, are con-
trolled by the field amplitude and are hence of order A/⌫,
the oscillations in wK and c

2
s are proportional to '̇, which

oscillates with amplitude A. This will become relevant in
the observable e↵ects considered in Sec. V. As shown in
[41], no pathologies arise in k-essence when crossing the
phantom divide wK = �1, as long as the sound speed
vanishes at the crossing, and as long as gradient instabil-
ities are countered by higher-derivative terms neglected
in the action Eq. (11). The former is precisely what hap-
pens in monodromic k-essence, as is clear from Eq. (17)
(see also Fig. 2). We will discuss in Sec. IV whether brief
episodes of tachyonic behavior can be allowed. Note that,
by appropriate choice of ↵ and A, one can ensure that
c
2
s > 0 always. This however restricts the allowed range
of oscillation amplitudes significantly.

Fig. 2 shows the evolution of the k-essence energy den-
sity and equation of state as well as sound speed squared
obtained from a numerical integration of Eq. (15) [which
is quite close to the result of the analytical approxima-
tion Eq. (21)]. The initial conditions are again taken
from the tracking solution at a ⇡ 10�4, and the con-
stant C in V (�) is adjusted to obtain the desired value
of ⌦DE,0 = 0.73. Qualitatively, the behavior is similar to
the monodromic quintessence case. However, there are
several important di↵erences. First, the oscillations are
not damped [compare Eq. (21) with Eq. (7)]. Second, the
k-essence field can cross the phantom divide, allowing for

significantly larger oscillations even for an average equa-
tion of state that is close to �1. Recall that V (�) is not
a potential in this model, and so the field does not get
stuck even if V is non-monotonic. Third, the k-essence
model exhibits an oscillatory sound speed with |c2s| ⌧ 1,
while c

2
s = 1 always holds for quintessence.

IV. THEORETICAL CONSTRAINTS

We now briefly review theoretical constraints on the
parameter space of the monodromic dark energy models
considered here. We focus on constraints which are in-
dependent of the microscopic physics that leads to the
potential Eq. (1), and discuss the latter at the end of
this section. In the quintessence case, we have already
found the requirement |A�0⌫| < 1 in order to ensure a
rolling field; otherwise, the field gets trapped in a local
minimum, leading to an e↵ective cosmological constant,
which is uninteresting phenomenologically. No such con-
straint exists for the k-essence case.
However, unlike the monodromic quintessence case

where cs = 1, in the k-essence case we have to confront
the issue of gradient instabilities [42]. Within the comov-
ing sound horizon of the k-essence field, defined as

Rs(a) ⌘
|cs(a)|
aH

⇡ 150h�1 Mpc

✓
|cs(a)|
0.05

◆
, (23)

an additional e↵ective pressure force becomes relevant
in the dynamics of the k-essence fluid. In particular, it
sources a relative velocity divergence ✓mK ⌘ @x,i(viK �
v
i
m) between k-essence and matter, where @x denotes a
derivative with respect to comoving coordinates, whose
evolution equation is given by

✓̇mK +H✓mK +
c
2
s

1 + wK
a
�1r2

x�K = 0 , (24)

where �K is the fractional energy density perturbation in
the k-essence component and we have assumed |c2s| ⌧ 1.
If c2s < 0, this leads to an exponential growth instability
in the dark energy component, known as gradient insta-
bility, as �K is itself sourced by �✓mK . We can formally
integrate Eq. (24) to yield a stability constraint given by

Z ln a

0
d ln a0H�1(a0)DK(a0)

c
2
s(a

0)

1 + wK(a0)
> 0 , (25)

whereDK(a) = �K(k, a)/�K(k, 1) is the k-essence growth
factor which is in general scale dependent and a compli-
cated function of time. Let us first consider large-scale
perturbations whose time scale 1/! = 1/k is longer than
one oscillation period of the field. From Eq. (22), this
implies

k

aH
. ⌫MPl

2⇡
. (26)

For these perturbations, the episodes of tachyonic be-
havior are too short to allow instabilities to grow. We
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phantom divide

• Fine at the background level, but DE perturbations suffer 
tachyonic instabilities if cs2 < 0

• k-essence case naturally has cs2 << 1; in fact, cs2 ~ (1+w) in 
1+w -> 0 limit, leading to tachyonic instabilities as 1+w < 0

• These can be dealt with consistently if

• Higher-derivative contributions are present:

• cs2 stays infinitesimally below 0

• Lowers cutoff of the theory, but not ruled out. 

Creminelli, D’Amico, Noreña, Vernizzi (2009)
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FIG. 7. Constraints on w0-wa models based on the dataset combinations considered in this work. The constraints in the left use
the full DESI DR2 BAO dataset, whereas the constraints on the right exclude the parallel and transverse LRG2 BAO distance
measurements.

on c
2
s

when wDE drops significantly below →1. However,
it is not di!cult to come up with k-essence-like models
that satisfy the constraint. An example is given by

p(ω, X) =
M̄

4

2
(2X → 1)2 → F (ω) + G(ω)(2X + 1) (A4)

F (ω) = V0

[
1 → Ã sin(ε̃H0ω)

]
(A5)

G(ω) = V0Ãε̃H0 cos(ε̃H0ω). (A6)

where M̄ ↑
(
H0M

2
Pl

)1/3
, thus avoiding Jeans instabilities,

and V0 ↑ 3H2
0M

2
Pl can be adjusted to match the present-

day dark energy density similarly to the model considered
in the main text.

This model exhibits a sound speed c
2
s

that remains
above →10→40, i.e. in the regime where gradient instabili-
ties are stabilized by the higher-derivative contribution,
even when considering parameter values for Ã, ε̃ that lead
to rapid oscillations in wDE with amplitude of order 0.1.
In the future, it would be worth performing a background-
and perturbation-level analysis of this model as well.

In Eq. (A4), we have not written the higher-derivative
contribution, as its precise form is not important on cos-
mological scales. Possible choices are [43]:

”LDE,h.deriv. = → M̄
2

2
[↭ω + 3H(ω)]2 or (A7)

→ M̄
3

2
[↭ω + 3H(ω)] (2X → 1) , (A8)

where the H(ω) correction removes the contribution to
the background for simplicity.

Appendix B: Impact of DESI LRG2 Data

In this appendix, we explore whether the oscillation scales
preferred by the DESI DR2 BAO data are influenced by
the LRG2 measurements. As detailed in Abdul Karim
et al. [11], the DESI LRG2 measurements are in mild
tension (1.5ϑ → 2.6ϑ depending on assumptions about
correlation) with previous measurements from the Sloan
Digital Sky Survey (SDSS) [76–78]. Additionally, the
best-fit monodromic dark energy scenarios explored in
the main text generally try to fit the dip in the LRG2
parallel BAO distance measurement (see the left panel
of Fig. 2). Consequently, we reanalyze the monodromic
dark energy scenario without the LRG2 data.

Fig. 5 shows the marginalized posteriors for the mon-
odromic dark energy parameters for the datasets consid-
ered in this work, excluding the DESI DR2 LRG2 mea-
surements. Compared to our fiducial analysis (Fig. 3),
the constraints on the frequency ε become significantly
weaker. [FS: I removed a couple statements on evidence
being driven by the LRG2 data point, which we also make
in the main text. I think this conclusion is clear to the
reader without explicitly stating it.] Additionally, notice
that the constraints without LRG2 prefer higher values
of ε. This is a prior volume e#ect as the higher frequency
oscillations require larger amplitudes to significantly mod-
ify the expansion history (see Fig. 1). [FS: I have a bit
di!culty following the logic here on prior volume, can
you expand/rephrase?]

Fig. 6 compares the marginalized posteriors for the
QCMB+ DESI BAO dataset combination, with and with-
out the LRG2 data, to those obtained using a mock

<latexit sha1_base64="xy3KWTvo19Uo6sYjH1HzL0Acxhc="></latexit>
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2ωε+
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M̄2
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e.g., from
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• An example viable model (due to Marco Celoria):

• Oscillations with amplitude Δw~0.1 around w=-1 
easily possible while satisfying constraints on 
instabilities and having cutoff > eV scale.

Goldstein, Celoria, FS (2025)
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the main text generally try to fit the dip in the LRG2
parallel BAO distance measurement (see the left panel
of Fig. 2). Consequently, we reanalyze the monodromic
dark energy scenario without the LRG2 data.

Fig. 5 shows the marginalized posteriors for the mon-
odromic dark energy parameters for the datasets consid-
ered in this work, excluding the DESI DR2 LRG2 mea-
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the constraints on the frequency ε become significantly
weaker. [FS: I removed a couple statements on evidence
being driven by the LRG2 data point, which we also make
in the main text. I think this conclusion is clear to the
reader without explicitly stating it.] Additionally, notice
that the constraints without LRG2 prefer higher values
of ε. This is a prior volume e#ect as the higher frequency
oscillations require larger amplitudes to significantly mod-
ify the expansion history (see Fig. 1). [FS: I have a bit
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Monodromic           
k-essence and DESI

• 3 free parameters (FS 2017 model) in 
addition to Ωde, potential tilt α <=> mean w: 

• amplitude, frequency, phase of 
oscillations

• Exclude all observables sensitive to 
perturbations here

• Similar fit quality to DESI BAO + SN as    
w0, wa

• Mean w consistent with -1 (motivated by 
theory as well); then, only 1 more free 
parameter than w0, wa !

Goldstein, Celoria, FS (2025)
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FIG. 2. Left panel: Comparison of the transverse (top) and parallel (bottom) BAO distance measurements for !CDM and
monodromic dark energy models. Squares indicate DESI DR2 measurements. Measurements and theoretical predictions are
plotted relative to the baseline (QCMB+DESI DR2 BAO) best-fit !CDM model. The black, blue, and red lines show best-fit
predictions for monodromic dark energy models using the baseline dataset alone, and in combination with Pantheon-Plus and
DESY5 supernovae data, respectively. Right panel: Comparison of supernovae distance moduli for !CDM and monodromic dark
energy models. For clarity, we show distance moduli relative to the best-fit !CDM cosmology from the baseline (QCMB+DESI
DR2 BAO) dataset combined with the particular supernovae sample shown in each panel: Pantheon-Plus (top) and DESY5
(bottom). Gray squares indicate supernovae measurements, which have been combined using inverse-variance weighting for
visualization. As detailed in the text, the absolute magnitude calibration is fixed to the best-fit value obtained by fitting the
unbinned supernovae data under the reference !CDM model in each panel.

prediction for the particular baseline+SN dataset shown
in each panel. That is, the top (bottom) panel shows
results relative to the best-fit baseline+Pantheon-Plus
(DESY5) !CDM cosmology. As the supernovae data are
uncalibrated, we need to adopt an absolute magnitude
calibration for visualization purposes. To this end, we
compute the best-fit (MAP) absolute magnitude for each
supernovae dataset by fitting the unbinned supernovae
distance moduli at fixed cosmology, assuming the best-fit
reference !CDM cosmology used in each panel.

Fig. 3 shows the marginalized posteriors for the key
monodromic dark energy and !CDM parameters ana-
lyzed in this work. For the baseline dataset (gray), the
constraints on the amplitude, frequency, and phase of
oscillations are largely prior dominated. However, the
degeneracy between the frequency (ω) and the phase (ε)
indicates that this dataset combination has a preferred
oscillation scale. As discussed in detail in Appendix B,
this preference is primarily driven by the “dip” in the
LRG2 BAO distance measurements compared to !CDM.

Our constraints that include supernovae data are sen-
sitive to the particular supernovae sample. While the
baseline+Pantheon-Plus dataset (blue) is consistent with
the !CDM limit (A = 0), the baseline+DESY5 dataset

(red) suggests a mild preference for a non-zero amplitude,
A = 0.44+0.15

→0.12 at the 68% C.L. These findings are consis-
tent with previous studies of dynamical dark energy with
supernovae data, which have found that DESY5 tends
to exhibit a stronger preference for evolving dark energy
than Pantheon-Plus.

We also find that including supernovae data leads to
a preference for a specific oscillation frequency, ω → 23,
although we emphasize that this is partially driven by
our informative prior on the frequency, 15 ↑ ω ↑ 30. As
shown in Appendix C, relaxing this prior to 5 ↑ ω ↑ 35
yields a multimodal posterior, indicating that current
data are compatible with a broad range of oscillation
frequencies. Finally, we note that the combination of the
CMB, BAO, and supernovae place strong constraints on
ϑ, favoring oscillations about wDE = ↓1 (ϑ = 0).

To quantitatively assess if there is a preference for
monodromic k-essence over !CDM, we compute the ”ϖ

2

between the best-fit k-essence and !CDM models for
each dataset combination considered in this work. These
values, along with the corresponding preference in ϱ, de-
rived from Wilks’ theorem [59], are reported in Table I.
For the baseline and baseline+Pantheon-Plus dataset we
find negligible (1.5ϱ and 1.0ϱ, respectively) preference
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DR2 BAO) dataset combined with the particular supernovae sample shown in each panel: Pantheon-Plus (top) and DESY5
(bottom). Gray squares indicate supernovae measurements, which have been combined using inverse-variance weighting for
visualization. As detailed in the text, the absolute magnitude calibration is fixed to the best-fit value obtained by fitting the
unbinned supernovae data under the reference !CDM model in each panel.

prediction for the particular baseline+SN dataset shown
in each panel. That is, the top (bottom) panel shows
results relative to the best-fit baseline+Pantheon-Plus
(DESY5) !CDM cosmology. As the supernovae data are
uncalibrated, we need to adopt an absolute magnitude
calibration for visualization purposes. To this end, we
compute the best-fit (MAP) absolute magnitude for each
supernovae dataset by fitting the unbinned supernovae
distance moduli at fixed cosmology, assuming the best-fit
reference !CDM cosmology used in each panel.

Fig. 3 shows the marginalized posteriors for the key
monodromic dark energy and !CDM parameters ana-
lyzed in this work. For the baseline dataset (gray), the
constraints on the amplitude, frequency, and phase of
oscillations are largely prior dominated. However, the
degeneracy between the frequency (ω) and the phase (ε)
indicates that this dataset combination has a preferred
oscillation scale. As discussed in detail in Appendix B,
this preference is primarily driven by the “dip” in the
LRG2 BAO distance measurements compared to !CDM.

Our constraints that include supernovae data are sen-
sitive to the particular supernovae sample. While the
baseline+Pantheon-Plus dataset (blue) is consistent with
the !CDM limit (A = 0), the baseline+DESY5 dataset

(red) suggests a mild preference for a non-zero amplitude,
A = 0.44+0.15

→0.12 at the 68% C.L. These findings are consis-
tent with previous studies of dynamical dark energy with
supernovae data, which have found that DESY5 tends
to exhibit a stronger preference for evolving dark energy
than Pantheon-Plus.

We also find that including supernovae data leads to
a preference for a specific oscillation frequency, ω → 23,
although we emphasize that this is partially driven by
our informative prior on the frequency, 15 ↑ ω ↑ 30. As
shown in Appendix C, relaxing this prior to 5 ↑ ω ↑ 35
yields a multimodal posterior, indicating that current
data are compatible with a broad range of oscillation
frequencies. Finally, we note that the combination of the
CMB, BAO, and supernovae place strong constraints on
ϑ, favoring oscillations about wDE = ↓1 (ϑ = 0).

To quantitatively assess if there is a preference for
monodromic k-essence over !CDM, we compute the ”ϖ

2

between the best-fit k-essence and !CDM models for
each dataset combination considered in this work. These
values, along with the corresponding preference in ϱ, de-
rived from Wilks’ theorem [59], are reported in Table I.
For the baseline and baseline+Pantheon-Plus dataset we
find negligible (1.5ϱ and 1.0ϱ, respectively) preference

• 3 free parameters (FS 2017 model) in 
addition to Ωde, potential tilt α <=> mean w: 

• amplitude, frequency, phase of 
oscillations

• Exclude all observables sensitive to 
perturbations here

• Similar fit quality to DESI BAO + SN as    
w0, wa

• Mean w consistent with -1 (motivated by 
theory as well); then, only 1 more free 
parameter than w0, wa !
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FIG. 3. Marginalized posterior distributions for the key monodromic dark energy and other cosmological parameters analyzed in
this work. Constraints are shown for datasets combining Planck CMB and DESI BAO (gray), with the addition of Pantheon-Plus
supernovae (blue), and DESY5 supernovae (red).

A ω ε ϑ !m H0 [km/s/Mpc] ”ϖ
2

Base: QCMB+DESI — (0.58) →0.06+0.06
→0.09 (→0.08) — (15.2) — (→2.2) 0.297 ± 0.011 (0.281) 68.9 ± 1.3 (71.0) -7

Base+Pantheon-Plus < 0.44 (0.25) 0.03 ± 0.06 (0.01) — (22.1) — (0.2) 0.307 ± 0.006 (0.308) 67.7 ± 0.6 (67.5) -5

Base+DESY5 SN 0.44+0.15
→0.12 (0.47) 0.01 ± 0.06 (0.00) 22.6+1.6

→1.5 (22.8) 0.5 ± 1.2 (0.5) 0.313 ± 0.006 (0.314) 67.0 ± 0.6 (66.9) -16

TABLE I. Marginalized constraints on monodromic dark energy and other cosmological parameters for the datasets considered
in this work. For each dataset, we report the posterior mean and 68% two-tailed C.L. for all parameters that are detected at
> 2ω, otherwise we report the one-tailed 95% C.L.; “—” denotes parameters that are entirely constrained by the prior at 2ω.
Maximum a posteriori values are shown in parentheses. The final column reports the !ε2 values computed with respect to a
”CDM cosmology.

for monodromic k-essence over !CDM. Conversely, for
the baseline+DESY5 data, the monodromic k-essence
scenario is preferred at 3ω. This strong dependence on
the supernovae dataset underscores the need for consis-
tent supernovae data in order to draw robust conclusions
about dynamical dark energy [60]. Finally, as detailed
in Appendix B, if we exclude the DESI LRG2 data, this
preference drops to 0.3ω, 0.6ω, and 2.4ω, for the baseline,
baseline+Pantheon-Plus, and baseline+DESY5 datasets.

This indicates that the LRG2 measurements plays a sig-
nificant role in our monodromic k-essence constraints,
particularly in the absence of Type Ia supernovae data.

For comparison, assuming the w0-wa parametriza-
tion, we find ”ε

2 = →8, →7 and →18 for the baseline,
baseline+Pantheon-Plus, and baseline+DESY5 datasets,

Monodromic k-essence 
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FIG. 3. Marginalized posterior distributions for the key monodromic dark energy and other cosmological parameters analyzed in
this work. Constraints are shown for datasets combining Planck CMB and DESI BAO (gray), with the addition of Pantheon-Plus
supernovae (blue), and DESY5 supernovae (red).

A ω ε ϑ !m H0 [km/s/Mpc] ”ϖ
2

Base: QCMB+DESI — (0.58) →0.06+0.06
→0.09 (→0.08) — (15.2) — (→2.2) 0.297 ± 0.011 (0.281) 68.9 ± 1.3 (71.0) -7

Base+Pantheon-Plus < 0.44 (0.25) 0.03 ± 0.06 (0.01) — (22.1) — (0.2) 0.307 ± 0.006 (0.308) 67.7 ± 0.6 (67.5) -5

Base+DESY5 SN 0.44+0.15
→0.12 (0.47) 0.01 ± 0.06 (0.00) 22.6+1.6

→1.5 (22.8) 0.5 ± 1.2 (0.5) 0.313 ± 0.006 (0.314) 67.0 ± 0.6 (66.9) -16

TABLE I. Marginalized constraints on monodromic dark energy and other cosmological parameters for the datasets considered
in this work. For each dataset, we report the posterior mean and 68% two-tailed C.L. for all parameters that are detected at
> 2ω, otherwise we report the one-tailed 95% C.L.; “—” denotes parameters that are entirely constrained by the prior at 2ω.
Maximum a posteriori values are shown in parentheses. The final column reports the !ε2 values computed with respect to a
”CDM cosmology.

for monodromic k-essence over !CDM. Conversely, for
the baseline+DESY5 data, the monodromic k-essence
scenario is preferred at 3ω. This strong dependence on
the supernovae dataset underscores the need for consis-
tent supernovae data in order to draw robust conclusions
about dynamical dark energy [60]. Finally, as detailed
in Appendix B, if we exclude the DESI LRG2 data, this
preference drops to 0.3ω, 0.6ω, and 2.4ω, for the baseline,
baseline+Pantheon-Plus, and baseline+DESY5 datasets.

This indicates that the LRG2 measurements plays a sig-
nificant role in our monodromic k-essence constraints,
particularly in the absence of Type Ia supernovae data.

For comparison, assuming the w0-wa parametriza-
tion, we find ”ε

2 = →8, →7 and →18 for the baseline,
baseline+Pantheon-Plus, and baseline+DESY5 datasets,



• Reconstruction of w(z) and k-essence “potential” 7
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FIG. 4. Constraints on the redshift evolution of the monodromic k-essence equation of state (top) and potential (bottom) for the
datasets considered in this work. White lines show the posterior mean, while gray bands indicate the 68% and 95% confidence
levels. For reference, the solid black line indicates wDE = →1, and the red dot-dashed line denotes the best-fit w0–wa model for
each dataset combination. Note that the oscillatory features in this plot are partially driven by our informative prior on the
frequency.

respectively.6 Thus, the physically motivated monodromic
dark energy model can achieve !ω

2 improvements compa-
rable to those of the phenomenological w0-wa parametriza-
tion, albeit with a larger number of free parameters. Using
Wilks’ theorem, these values correspond to a preference of
2.4ε, 2.3ε, and 3.8ε, respectively. This preference drops
to 1.4ε, 1.8ε, and 3.3ε when the LRG2 data are excluded.

Finally, we turn the parameter constraints into con-
straints on the redshift evolution of the dark energy equa-
tion of state and (generalized) potential V (z), which are
shown in Fig. 4 (top and bottom panels, respectively),
marginalized over all other parameters. We show the
results for the baseline (left), baseline+Pantheon-Plus
(middle), and baseline+DESY5 (right) datasets. The
solid white line shows the posterior mean and the gray
lines denote the 68% and 95% two-tailed confidence limits.
For comparison, we also show the best-fit equation of state
in the w0-wa model for each dataset combination (red dot-
dashed). For all datasets, the equation of state roughly
oscillates around the cosmlogical constant wDE = →1. We

6
These !ω

2
values are smaller than those reported in Table VI

of the DESI analysis [11] because we use the late-time marginal-

ized CMB likelihood. Importantly, our !ω
2

value for the

DESI+QCMB dataset matches their result using the late-time

marginalized CMB likelihood (listed as DESI+(ε→ ϑb ϑbc)CMB.

note that the constraints here are qualitatively consistent
with oscillatory features in the non-parameteric recon-
struction from Gu et al. [15] (see also [12] for previous
eBOSS results). Therefore, the monodromic k-essence sce-
nario is capable of reproducing the oscillatory signatures
found in data-driven reconstructions of dark energy.

V. CONCLUSIONS

In this work, we have presented the first observational
constraints on monodromic k-essence — a physically mo-
tivated dynamical dark energy model capable of realizing
rapid oscillations in wDE(z) about the phantom divide.
Using CMB, BAO, and Type Ia supernovae observations,
we constrain the amplitude, frequency, phase, and power-
law index of the (generalized) k-essence potential. We
find that the combination of CMB and DESI DR2 BAO
data are consistent with the standard ”CDM model, and
adding Pantheon-Plus supernovae measurements strength-
ens the preference for ”CDM over monodromic k-essence.
In contrast, including DESY5 supernovae leads to a mild
preference (3ε) for monodromic k-essence. For all dataset
combinations considered, the preference for monodromic
dark energy (and w0-wa) is partially driven by the DESI
LRG2 BAO distance measurements. Finally, we showed
that the monodromic k-essence model can fit current BAO

Monodromic           
k-essence and DESI

Goldstein, Celoria, FS (2025)
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• Enhanced large-scale parity-odd correlation induced in 
case of enhanced collapsed limit of primordial trispectrum 

• A new probe of parity violation in primordial 
perturbations

18

FIG. 6. A validation test for our initial conditions, comparing the measurements of the parity-odd trispectrum in the initial
conditions with its expectation values calculated from the analytic expression (see Appendix E for details). The top panel
shows the parity-odd trispectrum measured from 1000 realizations of the initial conditions. Blue (red) data points correspond
to the positive (negative) amplitude Agauge. To suppress noise, we plot the di!erence relative to the corresponding Gaussian
realization. The box size is 1h→1Gpc, and the density field is constructed on a 643 grid based on the initial particle distribution.
For the trispectrum measurement, we use binning with kmin = 0.0, kmax = 0.2 h→1Mpc, and Nbin = 20, applied to each of the
five wavenumbers kb (b = 1, · · · , 4, 12). The bottom panel shows the corresponding configurations (k1, k2, k3, k4, k12). We plot
the configurations with the highest signal-to-noise ratios among the independent data points. As expected, the configurations
with the strongest trispectrum signals are those in the collapsed limit, where one of the diagonal momenta is significantly
smaller than the edge momenta. The black line in the top panel represents the theoretical expectation (computed by using a
sub-gridding procedure), which is in good agreement with the measurements.

four non-Gaussian collapsed-type cases with di!erent am-
plitudes of Agauge, specifically Agauge = ±6 → 104 and
±3→105 (corresponding to A

2 = 2→106 and 1→107, re-
spectively). For each realization, we use the same random
seed for the Gaussian part ω to reduce sample variance
when comparing di!erent models. Note that for each
nonzero amplitude, the nonlinear correction to the ini-
tial power spectrum increases monotonically with k and
peaks at the Nyquist frequency, where the relative cor-
rection is P!/Pω ↑ 1 ↭ 0.01 and 0.04, respectively (see
Appendix D 3 for the analytical expression). Since these
corrections are su”ciently small for the purposes of this
study, we do not apply any rescaling to the initial power
spectrum in our simulations.

At low-redshift snapshots, we identify dark matter ha-
los using the friends-of-friends (FoF) algorithm imple-
mented in Gadget-4. For each halo, we define its shape
by computing the inertia tensor from the relative posi-
tions of its member particles with respect to the halo
center. We adopt the “reduced” inertia tensor (with
w(r) = 1/r

2 in Eq. 13) for our main results, rather than
the standard inertia tensor (with w(r) = 1), in order to
better capture the shape of the inner halo region, which
is often associated with the formation of central galaxies

[see e.g., 77–80]. The results using the standard inertia
tensor are presented in Appendix F. They are in overall
qualitative agreement, with minor di!erences discussed
later. We then assign these halo shapes to a regular grid
using the Cloud-In-Cell (CIC) scheme to construct the
three-dimensional shape field Ŝij(x). In Fourier space,
we apply the interlacing technique [81] to suppress alias-
ing e!ects, in addition to deconvolving the CIC kernel.

We measure the parity-odd power spectra for helicities
ε = 1 and 2 using the standard binned power spectrum
estimator with a parity-odd projection:

P̂
(ε)

→
(kb) =

1

Nb

∑

k↑bin b

1

Nε

[
#(ε,→)

ij,kl (k̂)
]↓

Ŝij(k)Ŝkl(↑k),

(123)

where Nb is the number of Fourier modes within the b-th
spherical shell, and kb is the bin-averaged wavenumber
defined by kb =

∑
k↑bin b |k|/Nb. We use logarithmically

spaced bins with width $ log
10

k = 0.1.



Primordial parity violation
• The leading signature of parity violation in primordial 

curvature perturbations is in connected 4-point function 
(trispectrum)

• Parity-odd primordial trispectrum can always be written 
as:

• Interesting case is when τ- is enhanced in collapsed limit: 
k12->0 or k14->0

• Physical scenario: primordial chiral U(1) field that couples 
to inflaton,

4

its mirror image by a rotation. From the reality condi-
tion of ω, ω

→(k) = ω(→k), the parity-even and parity-odd
components are purely real and imaginary, respectively.
Due to statistical isotropy, the degrees of freedom in the
trispectrum are significantly reduced, meaning it can de-
pend only on the four side lengths and the two diago-
nals. Moreover, the parity-odd component must be pro-
portional to the scalar triple product constructed from
three out of the four momenta [54]:

T
(↑)

!
= i [k1 · (k2 ↑ k3)] ε↑(k1, k2, k3, k4, k12, k14), (3)

where k12 = |k1 +k2| and k14 = |k1 +k4| are the two di-
agonals. The function ε↑ is totally antisymmetric under
permutations of momenta and can generally be decom-
posed as follows using a model-dependent function f↑:

ε↑ =
∑

ω↓S4

sgn(ϑ)

↑ f↑(kω(1), kω(2), kω(3), kω(4), kω(1)ω(2), kω(1)ω(4)), (4)

where S4 is the symmetric group of degree four, and
sgn(ϑ) is the sign of a permutation ϑ ↓ S4. kω(1)ω(2) =∣∣kω(1) + kω(2)

∣∣ and kω(1)ω(4) =
∣∣kω(1) + kω(4)

∣∣ represent
the two independent diagonals of a tetrahedron after a
permutation ϑ. Thus, specifying a parity-violating model
corresponds to determining the explicit form of f↑ when
studying the parity-odd trispectrum.

The linear matter field is related to ! in the matter-
dominated era as

ϖ
(1)(k, z) = M(k, z)!(k), (5)

where

M(k, z) ↔ 2k
2T (k)D(z)

3”mH
2

0

, (6)

with T being the transfer function and D being the lin-
ear growth factor normalized to the scale factor in the
matter-dominated era. We will drop the redshift depen-
dence on ϖ and M hereafter. Therefore, the trispectrum
of the linear matter field is written as

Tε(k1,k2,k3,k4) ↔
〈
ϖ
(1)

k1
ϖ
(1)

k2
ϖ
(1)

k3
ϖ
(1)

k4

〉↔

c

(7)

=
4∏

i=1

[M(ki)] T!(k1,k2,k3,k4).

Throughout this paper, we consider two specific
trispectrum models as working examples: the “squeezed-
type trispectrum” and the “collapsed-type trispectrum,”
as introduced below. We will investigate in detail how
these models impact galaxy shape statistics within the
EFT framework in Section II E, and present the cor-
responding signals using numerical simulations in Sec-
tion III.

1. Squeezed-type trispectrum

First, we employ the model proposed by Ref. [54]:

f↑ = →g↑k
ϑ
1
k

ϖ
2
k

ϱ
3
Pς(k1)Pς(k2)Pς(k3), (8)

where g↑ is the amplitude parameter, and ϱ, ς, and φ

are distinct integers satisfying ϱ + ς + φ = →3 for scale-
invariant initial conditions. We adopt the specific choice
(ϱ, ς, φ) = (→2, →1, 0) as in Ref. [54]. Pς(k) = ↗↼k↼k→↘↔

denotes the primordial power spectrum. This model is
motivated by its simplicity and ease of implementation
in the initial conditions of numerical simulations (see
Section III), rather than being derived from a specific,
currently existing inflationary model. The shape of the
trispectrum resembles the well-known gNL-type trispec-
trum, as seen in the terms Pς(k1)Pς(k2)Pς(k3), and it
exhibits a large amplitude in the squeezed limit where
one of the wavevectors along an edge of the tetrahedron
is taken to be small [55, 56].

2. Collapsed-type trispectrum

A template that can describe a specific class of parity-
odd trispectra was introduced in Ref. [2]:

f↑ =
25

9

∑

n↗0

d
odd

n [Ln (µ13) + (→1)nLn (µ1) + Ln (µ3)]

↑ Pς(k1)

k1

Pς(k3)

k3

Pς(k12)

k12

, (9)

with µ13 ↔ k̂1 · k̂3, µ1 ↔ k̂12 · k̂1, and µ3 ↔ k̂12 · k̂3.
The sum of the three Legendre polynomials determines
the angular dependence, and d

odd

n is the amplitude pa-
rameter for each order n. The trispectrum depends on
the diagonal, and it shows the same scale dependence as
the well-known εNL-type trispectrum, as seen from the
form Pς(k1)Pς(k3)Pς(k12), which is enhanced in the col-
lapsed limit (or the double-hard limit), where one of the
diagonal momenta of the tetrahedron, e.g., k12, is taken
to be small compared to the two edge momenta, each of
which belongs to a di#erent triangle connected by k12,
e.g., k1 and k3.2 We will refer to this template as the
“d

odd

n template” hereafter.
This template was originally introduced as a general-

ization of the parity-odd component of the trispectrum
predicted by an inflationary model in which the inflaton
field ↽ couples to a U(1) gauge field through an interac-
tion term of the form L ≃ 1/4f(↽)(→F

2 + φFF̃ ) with

2
The collapsed limit of the parity-even trispectrum can be visu-

alized by considering a simple diamond shape on a paper. In

contrast, the parity-odd trispectrum requires taking the limit

for the magnitudes of the momenta while preserving the angular

information needed to distinguish the mirror image.
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information needed to distinguish the mirror image.
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FIG. 1. A diagram of the parity-odd power spectrum sourced
by the parity-odd trispectrum.

This represents a pure longitudinal scalar mode, i.e.
helicity-0 mode in terms of the helicity basis (Eqs. 23–
25) at full order. From Eq. (27), the two-point correla-
tions involving this operator contribute only to a helicity-
0 power spectrum under statistical isotropy, which is
parity-insensitive. Therefore, P

(11), P
(13) and P

(h.d) in
Eq. (51) are all parity-insensitive5. Thus, we only need
to focus on P

(22), which consists of the following operator
spectra with the loop integral:

P
(ω)

→
→ cq,pcq→,p→P

(ω,→)

O(q,p)O(q→,p→) , (53)

with

P
(ω,→)

OO→ ↑
∫

q1,··· ,q4

(2ω)3εD

k→q12
(2ω)3εD

k+q34

↓ K
(ω,→)

OO→ (q1,q2,q3,q4)T
(→)

ε (q1,q2,q3,q4), (54)

where T
(→)

ε is the underlying parity-odd matter trispec-
trum (Eq. 7), and we have defined the projected kernel:

K
(ω,s)
OO→ (q1,q2,q3,q4)

↑
[
!(ω,s)

ij,kl (k̂)
]↑ [

K
O

ij

](2)

(q1,q2)
[
K

O
→

kl

](2)

(q3,q4). (55)

We show a diagrammatic representation of the parity-odd
power spectrum sourced by the parity-odd trispectrum
through the (22)-type loop integral in Fig. 1. Note that
when deriving Eq. (54), we used the fact that the parity-
odd projection is orthogonal to the parity-even statistics
(such as the Gaussian part and parity-even non-Gaussian
components) contained in the 4th-order moment of ε

(1),
i.e., they vanish after the loop integration due to their
transformation properties under parity qi ↔ ↗qi.

We can further simplify P
(22) by using the degeneracies

among the second-order kernels (Eqs. 46–49) derived in
Ref. [17]. The detailed calculations are provided in Ap-
pendix A, but briefly, the helicity-1 component of the
parity-odd spectrum depends only on the combination
c2,1 + c2,2 + c2,3, while the helicity-2 component depends
only on c2,1 + c2,2 and c2,3 as independent bias coe”-
cients. Therefore, by appropriately redefining the linear
combinations of the second-generation operators, we ob-
tain the following simplified expressions for each helicity
component:

P
(1)

→
= c

2

AP
(1,→)

AA , (56)

P
(2)

→
= c

2

AP
(2,→)

AA + 2cAcBP
(2,→)

(AB)
+ c

2

BP
(2,→)

BB , (57)

where cA ↑ c2,1 + c2,2 + c2,3, cB ↑ c2,3, and we have
introduced the new operator labels:

Aij ↑ O(2,2)
ij , Bij ↑ O(2,3)

ij ↗ O(2,2)
ij . (58)

The explicit forms of the corresponding Fourier-space
kernels are given by: for helicity ϑ = 1,

K
(1,→)

AA (q1,q2,q3,q4) =
i

4

[
k̂ · (q̂1 ↓ q̂3)

] [
µk1 ↗ q1

q2

µk2

] [
µk3 ↗ q3

q4

µk4

]
, (59)

and for ϑ = 2,

K
(2,→)

AA (q1,q2,q3,q4) =
i

2

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

q1

q2

µ12

q3

q4

µ34, (60)

K
(2,→)

(AB)
(q1,q2,q3,q4) = ↗ i

8

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

k
2

q2q4

[
q1

q4

µ12 +
q3

q2

µ34

]
, (61)

K
(2,→)

BB (q1,q2,q3,q4) =
i

8

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

k
4

q
2

2
q
2

4

, (62)

5 P
(1n)
ij,kl (n → 1) is parity-insensitive in general.
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FIG. 7. Comparison between the measured parity-odd power spectra of halo intrinsic alignments for di!erent initial conditions
and the corresponding EFT best-fit models (solid lines) defined in Eq. (92): (b(1)→ )2 = 0.12 and (b(2)→ )2 = 0.33. The left (right)
panel shows the helicity-1 (helicity-2) component of the power spectrum. The power spectra are measured at z = 1 from halo
samples with 1→ 1013 < Mh < 4→ 1013 h→1M↑.

2. PNG bias: Di!erent helicities

Since, as shown in Eq. (92), the parity-odd power spec-
trum is proportional to the product of the underlying
parity-violating amplitude Agauge and the PNG-induced

bias (b(ω)

→
)2, prior knowledge of the PNG-induced bias is

required to directly constrain Agauge from measurements.
This situation is analogous to the well-known degener-
acy between the local-type PNG parameter fNL and the
PNG-induced bias bε in the scale-dependent bias of the
galaxy clustering power spectrum [41]. Therefore, we
here derive fitting formulae that relate the PNG-induced

biases b
(ω)

→
to the linear (Gaussian) shape bias bK .

First, the left panel of Fig. 8 shows the relation be-
tween the parity-violating PNG-induced biases for the
two helicities ω = 1, 2. They show a clear linear relation,
which is well described by

(
b
(2)

→

)2

= ε

(
b
(1)

→

)2

, (123)

with the best-fit value

ε = 2.70 ± 0.08. (124)

Note that b
(ω)

→
are only defined up to a sign, since they al-

ways enter quadratically in the statistics. We found that
adding a constant or quadratic term does not improve
the quality of the fit. The linear relation between the bi-
ases for di!erent helicities indicates that the response of
the halo shape to anisotropic modulations of local power
spectrum is essentially the same for both helicities, apart
from an overall multiplicative factor (i.e., the slope), re-
gardless of the specific halo sample.

On the other hand, the fact that the slope deviates
from unity is nontrivial and is generally expected to
be model-dependent. In particular, for the U(1)-gauge
model considered in this work, a renormalization calcula-
tion presented in Appendix C shows that the cuto!-scale
dependence di!ers between helicities exactly by a factor
two (see Eqs. C17 and C19):

S(2,→)

AA (”, ”↑) = 2S(1,→)

AA (”, ”↑). (125)

Based on this, while one might naively expect the bias
parameters to satisfy

(
b
(2)

→

)2

= 2
(
b
(1)

→

)2

, (126)

the measured slope ε deviates significantly from this the-
oretical expectation. Although the precise physical origin
of this discrepancy remains unclear, it suggests the pres-
ence of additional e!ects not captured at leading order.
[TK: Or does the relation Eq. (125) not tell us anything?]
[FS: Basically, this relation says that the divergent con-
tributions to both counterterms are related by a factor of
2, but the finite part can di!er. Indeed, it’s interesting
that the relation appears to be universal.]

We note that this result is based on halo shapes defined
using the reduced inertia tensor, which gives more weight
to particles in the inner regions of the halo. Interestingly,
even when we use the standard (unweighted) inertia ten-
sor instead, the slope parameter ε remains nearly un-
changed (consistent within the 1ϑ level; see Appendix F).
This suggests that both the inner and outer regions of the
halo respond similarly to modulations of the local power
spectrum.
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FIG. 7. Comparison between the measured parity-odd power spectra of halo IA for di!erent initial conditions and the corre-
sponding EFT best-fit models (solid lines) defined in Eq. (93): (b(1)→ )2 = 0.12 and (b(2)→ )2 = 0.33. The left (right) panel shows
the helicity-1 (helicity-2) component of the power spectrum. The power spectra are measured at z = 1 from halo samples with
1→ 1013 < Mh < 4→ 1013 h→1M↑.

FIG. 8. Relations among the measured bias parameters and results of polynomial fitting. The left panel shows the relation
between the two parity-violating biases for helicities ω = 1, 2: b(1)→ and b(2)→ . The black line indicates the best-fit linear model

with slope parameter in Eq. (125). The right panel shows the relation between b(2)→ and the standard Gaussian linear bias bK .

The black curve shows the best-fit polynomial with parameters in Eq. (129). We omit the plot of the relation between b(1)→ and
bK as it is redundant given the two panels above.

We found that including additional lower- or higher-order
polynomial terms (from zeroth to sixth order) does not
improve the quality of the fit, as all coe!cients other
than the quadratic and quartic terms are consistent with
zero.

When using the unweighted inertia tensor instead of
the reduced one, we find that the fitting parameters ω4

di”er significantly (see Appendix F), in contrast to the

relation between the helicities discussed above, which re-
mains nearly unchanged. This discrepancy reflects the
fact that the response to the large-scale tidal field, en-
coded in bK , di”ers between the inner and outer regions
of the halo. In the forecast analysis in the next section,
we employ the fitting results from the reduced inertia ten-
sor (Eq. 129), which better captures the inner halo shape
and is often considered more relevant for describing the

Kurita, Jamieson, Komatsu, FS (2025)
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• U(1) gauge field scenario: on 
large scales, galaxy shapes 
directly trace the “fossil” 
helical U(1) field

• Forecast for DESI 3D shape 
statistic contraints on this 
scenario

24

FIG. 10. Forecasted 1ω constraints on the amplitude parameter of the U(1)-gauge model, Agauge (left), and the n = 1
component of the doddn template, dodd1 (right), using the three-dimensional IA power spectrum from BGS and LRG samples in
DESI Y5, shown as functions of the minimum wavenumber kmin (red curves). For comparison, current constraints from the
galaxy 4PCF analysis of BOSS DR12 [22] and from the CMB trispectrum analysis using Planck T and E modes [19] are shown
as horizontal solid and dot-dashed lines, respectively. The vertical dotted line indicates our fiducial scale cut, kmin = 0.003,
which matches the conservative choice adopted in the fNL analysis of DESI DR1 [96]. The specific values are also summarized
in Table I.

vestigated imaging systematics mitigation in large-scale
galaxy power spectrum measurements from DESI DR1
data. We adopt kmin = 0.003 as the fiducial scale cut
and consider kmin = 0.001 as the optimistic limit, based
on the scales where their method is considered reliable
for correcting geometrical systematics in DESI DR1 data.
For comparison, we also plot the current constraints on
Agauge from galaxy clustering four-point correlation func-
tion (4PCF) analysis with the BOSS DR12 sample [22],
and from the CMB temperature T and E-mode polar-
ization trispectrum analysis with Planck PR4 data [19],
shown as horizontal lines. Overall, our results indicate
that the 3D EB power spectrum can place competitive
constraints on Agauge with DESI Y5. With the fiducial
scale cut, the expected constraint is of the same order
as the current CMB limit, though slightly weaker. In
contrast, the optimistic scale cut could yield a constraint
that is potentially tighter than the CMB bound and com-
parable to current limits from the LSS analysis. The
specific values are summarized in Table I.

Note that, naively, imaging systematics are expected
to a!ect angular modes most strongly, i.e., the µ = 0
modes, which are perpendicular to the line of sight [97].
On the other hand, as shown in Eq. (134), PEB is an odd
function of µ, which suggests that it may be less sensitive
to contaminants that strongly a!ect the µ = 0 modes.
While this needs to be tested with realistic mock data

since we need to take into account a nontrivial mode-
coupling due to the survey window function, if confirmed,
it could indicate that PEB is less a!ected by imaging
systematics than the galaxy clustering power spectrum,
potentially allowing access to larger scales (smaller kmin).

The right panel of Fig. 10 shows the constraint on
the amplitude parameter of the n = 1 component of the
d
odd

n template defined in Eq. (9), i.e., d
odd

1
. As discussed

in Section II E, the constraint on Agauge from IA mea-
surements can be directly translated into a constraint
on d

odd

1
/3 via Eq. (12), since the n = 0 component

(dodd

0
) does not contribute in the collapsed limit. A sim-

ilar situation arises in the CMB analysis of Ref. [19],
where the trispectrum configurations in the collapsed
limit (with internal momenta L → 10) have limited sen-
sitivity to d

odd

0
, and the constraint on Agauge is there-

fore dominated by d
odd

1
(see Table I). In contrast, the

galaxy 4PCF analysis behaves di!erently: the constraint
on Agauge is mainly determined by d

odd

0
. This is because

the analysis in Ref. [22] uses galaxy pair separations in
the range 20 < r < 160 h

→1Mpc, corresponding roughly
to wavenumbers 0.04 < k < 0.3 hMpc→1. These scales
are more sensitive to equilateral trispectrum configura-
tions than to the collapsed limit. Since d

odd

0
is suppressed

in the collapsed limit but contributes significantly in equi-
lateral configurations, it becomes the dominant contribu-
tor to the 4PCF signal on those scales. Given the relation
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3. Primordial black holes: an UV-
complete dark matter scenario

• Idea: simulate the full nonlinear evolution of an 
overdense region in a universe with PBH dark matter

• Key tool: BIFROST code for hierarchical N-body 
integration including multi-body dynamics and 
relativistic corrections

• Black hole mergers included using recipe 
calibrated on full GR simulations

• In other words: fully calculate the UV theory of 
structure formation with PBH dark matter

• Except for baryons…



• Direct-summation N-body code written by Antti Rantala


• 4th-order symplectic integrator 


• regularization for close encounters and hard bound 
systems (LogH)


• BH spin is followed


• including post-Newtonian corrections (in regularized 
regime) up to order 3.5 (v7), including GW radiation reaction


• Out-state of binary BH mergers described by fitting 
formulae derived from numerical-relativity simulations

Bifrost



• But:


• Bifrost uses physical coordinates


• Bifrost assumes vacuum boundary conditions


• Hence, choose isolated overdense region for our 
simulation

Bifrost
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[24] S. Clesse and J. Garćıa-Bellido, Seven Hints for Primordial Black Hole Dark Matter, Phys.
Dark Univ. 22 (2018) 137 [1711.10458].

[25] B. Carr, S. Clesse, J. Garcia-Bellido, M. Hawkins and F. Kuhnel, Observational evidence for
primordial black holes: A positivist perspective, Phys. Rept. 1054 (2024) 1 [2306.03903].
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• Consider slightly overdense spherical region within 
volume of ~100 kpc (comoving)


• This region contains ~106 PBH drawn from a 
lognormal mass function (<M> = 16 Msun)


• Initialize at a=3*10-12, actual formation time

Initial conditions
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Figure 1: Linear dark matter power spectrum for our PBH scenario. We show the dimen-
sionless form, P(k) ⌘ [k3

/(2⇡
2)]P (k), at z = 102. The Poissonian spatial distribution of

the PBHs manifests itself as an isocurvature white-noise P / k
3 contribution to the power

spectrum (dotted line), which dominates over the standard adiabatic power (dashed curve)
for k & 40 Mpc�1. Scales approximately to the right of the vertical line are represented in
the simulation.

The outline of the paper is as follows. In section 2, we describe the setup of the simu-
lation and the methods used. Section 3 explores how cosmic structure forms and evolves in
the presence of collisional PBH interactions. Section 4 discusses the formation and evolution
of binary PBHs and the gravitational radiation that results from their mergers. Our findings
are summarized in section 5.

2 Simulating primordial black hole dark matter

We adopt a cosmology in which all of the dark matter is in the form of PBHs of average
mass m̄ = 16.487 M�. More precisely, we assume a lognormal mass distribution such that
the PBHs have di↵erential number density

dnPBH

d ln m
=

⇢̄DM

m̄

e�[ln(m/m0)]
2/(2�2

ln)

p
2⇡ �ln

(2.1)

per logarithmic interval in the PBH mass m, and we set m0 = 10 M� and �ln = 1. Here ⇢̄DM '

33 M�kpc�3 is the cosmological mean dark matter density. Forming in causally disconnected
patches of the early Universe, the PBHs have an independent random (Poissonian) spatial
distribution that gives rise to an isocurvature contribution

Piso(k) =
[Diso(a)]2

⇢̄
2

DM

Z 1

0

dm

m

dnPBH

d ln m
m

2 (2.2)

to the matter power spectrum at the scale factor a, where Diso(a) ' 2094a
0.901 is the isocur-

vature growth function deep in matter domination (see Appendix A.1; we define a = 1 today).
Figure 1 shows the matter power spectrum associated with this PBH scenario. During the
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Figure 2: Early evolution (from top to bottom) of the simulation volumes. We show the
projected density with a logarithmic color scale; lighter is denser. Due to their initial Pois-
son clustering, the PBH volumes fragment into halos long before any structure is visible in
the particle dark matter volume (left). However, the collisionless PBH simulation (middle)
artificially forms too much structure compared to the collisional simulation (right).
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Figure 7: Representative sample of the dynamics that lead to ejection of PBHs from the
simulation volume (see figure 6). In each panel, the black PBH is selected arbitrarily from
those that were initially within the comoving radius 10.6 kpc but escaped beyond 21.1 kpc
by z = 99. We depict approximately the time and location of the event that resulted in
its ejection. In each case, we show the three-dimensional PBH trajectory (in comoving
coordinates) over the time range that is indicated, and we include other PBHs (di↵erent
colors) only if they were at any time the nearest or second-nearest to the subject (black)
PBH. Circular markers are evenly spaced in time at intervals of 1/20 the full time range, and
the direction of motion is indicated by the marker’s presence at the ending time and absence
at the starting time. We indicate on each panel the duration and approximate proper length
scale depicted (although the length scale does not have a precise definition). Line and marker
sizes scale appropriately with distance from the viewer. It is clear that ejection results from
many-body (as opposed to two-body) dynamics, except in one case (lower right), where it
results from an asymmetrical PBH merger. Often, other PBHs are also ejected.
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Figure 11: Comparison of halo evolution between the collisional PBH simulation (solid
curves) and the collisionless version (dashed curves). The left-hand panel shows the mass
accretion history of the largest halo in the simulation volume, while the right-hand panels
show the internal structure for a range of times (di↵erent colors, corresponding to the tick
marks in the left-hand panel). From bottom to top, we show the density profile (scaled
by r

2 to reduce the dynamic range), the velocity dispersion �, and the velocity anisotropy
parameter �. Each is averaged over snapshots covering a factor of about 1.2 in the scale factor
a and plotted up to the radius R200 enclosing average density 200 times the cosmological mean
dark matter density. For the collisional simulation, we plot down to a minimum radius that
encloses 100 PBHs across all (⇠ 100-1000) snapshots included in the time average, which
typically encloses an average of a few PBHs. For the collisionless simulation, we plot down
to 3 times the softening length, since this is about the distance below which forces become
artificially non-Newtonian.

relaxation as

trel(r) ⌘
N(r)

8 ln N(r)

s
r3

GM(r)
(3.4)

(e.g. [67]), which we take to be a function of radius r within the halo. Here M(r) and N(r)
are the mass and PBH count, respectively, enclosed within the radius r. The interpretation
is that over the time trel(r), two-body encounters are expected to e↵ect O(1) changes in the
velocities of PBHs below the radius r. In figure 12 (lower left panel), for a range of times,
we compare trel(r) to the age of the Universe.

The evolution of the halo density profile in the collisional simulation, shown in figure 12,
can be interpreted as follows. The vertical lines indicate for each time the radius r at
which the age of the Universe tage equals the relaxation time trel(r). Apparently, collisional
relaxation requires around an order of magnitude longer than the relaxation time, i.e. tage &
10trel(r), to significantly reduce the halo density at the radius r. We also mark the same
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Figure 4: Comparison of halo mass functions between the collisional PBH simulation (solid
curves) and the collisionless version (dashed curves) at a range of times (di↵erent colors). The
left-hand panel shows the cumulative mass function. As a function of M , we plot the fraction
of PBH mass that resides in halos of at least the mass M . The right-hand panel shows the
di↵erential mass function, i.e., the fraction of mass in halos of mass M per logarithmic mass
interval. Here we use a Gaussian kernel of width 0.3 e-folds. Collisional dynamics appear
to suppress the abundance of low-mass halos by a factor of a few. The growth of the most
massive halos is also delayed by collisional heating, which we explore in section 3.2.

of PBHs already by z ⇠ 1000. In contrast, the particle dark matter volume does not form
significant structure until z ⇠ 10. For the particle dark matter, some artifacts of the initial
grid are visible (i.e., the diagonal patterns).

3.1 Halo mass functions and substructure

Figure 4 shows the halo mass functions in the PBH simulations. We identify these halos
using the friends-of-friends algorithm [63] (as implemented in Gadget-4) with the linking
length 0.2n̄

�3, where n̄ is the cosmological mean number density of PBHs. Only halos of
32 or more PBHs are considered. We evaluate the M200 masses of these halos, i.e., the
masses of the spheres enclosing average mass density 200 times the cosmologically averaged
density in PBHs. For the collisionless PBH simulation, these spherical-overdensity masses are
evaluated by centering on the most gravitationally bound particle, as is natively implemented
in Gadget-4. For the collisional simulation, however, the minimum of the potential can be
entirely disconnected from the center of the halo, since it can indicate a binary system or
close encounter instead. Therefore, in this case we simply use the center of mass of the
friends-of-friends group.

The mass functions in figure 4 quantify the halo abundance trends that were visible in
the density fields. Halos of at least 32 PBHs begin to form around z ⇠ 1000 and comprise
more than 10 percent of the mass by z ⇠ 400. We show the mass function only down to
redshift z = 51 because at later times, the mass is dominated by a few large halos. Compared
to the (artificial) collisionless PBH simulation, collisional dynamics suppress the abundance
of halos below ⇠ 3 ⇥ 104 M�, i.e. halos of fewer than about 2000 PBHs, by a factor of 2
to 3. This suppression of the halo population is much more serious than what standard star
cluster evaporation arguments would predict (e.g. [64]). One possible explanation is that
unlike star clusters, PBH halos grow gradually over cosmological time scales. Collisional
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Figure 12: Collisional evolution of the largest halo in the simulation volume. The upper left
panel shows the density profile for a range of times, similarly to figure 11. Below it, for the
same range of times, we compare the collisional relaxation time to the age of the Universe.
Relaxation-induced formation of a finite-density core becomes significant when the age of
the Universe is around an order of magnitude longer than the relaxation time scale. The
upper right panel shows the number of PBHs within each radius in the halo, while the lower
right panel shows the average mass of PBHs below each radius. Collisional mass segregation
becomes significant already when the age of the Universe equals the relaxation time scale
(vertical lines).

tage = trel(r) radius with tick marks (only for z  55) in figure 11, which shows the velocity
distribution. This confirms that major di↵erences in the velocity structure of the collisional
halo, compared to the collisionless version, appear outside the regime where relaxation is
important, suggesting that they are indeed due to binaries.

Mass segregation is another important consequence of collisional dynamics. Two-body
collisions tend to transfer energy from heavier to lighter PBHs, making the heavier PBHs
sink to the center of the system while the lighter PBHs are elevated. On the right-hand
side of figure 12, we show how the PBH count N(r) and the average PBH mass m̄(r) vary
as a function of the enclosing radius r. Both quantities begin to evolve significantly, with
N decreasing and m̄ increasing, when tage & trel(r). That is, mass segregation becomes
important over a time scale of order trel, even though significant changes in the overall
density take an order of magnitude longer.

Figure 13 shows a broader picture of the collisional evolution of the PBH halos in our
simulation. We consider all gravitationally self-bound clumps of at least 20 PBHs, identified
using the subfind algorithm (as implemented in Gadget-4), and we show their distribution
in total bound mass M and half-mass radius rh (which encloses mass M/2).4 For comparison,

4
For the collisional PBH simulation, we properly take the gravitational softening length to be 0 for this

analysis. Since self-potentials diverge without softening, we modified Gadget-4 to ensure that self-potentials

are never evaluated. To avoid inappropriately centering on a hard binary, the half-mass radius is evaluated

about the center of mass instead of the potential minimum.

– 19 –

 Suppression of substructure



Dynamical effects on halo formation

0.0

0.2

0.4

0.6

d
f
/
d

ln
v

z = 10163 z = 1028

instantaneous velocity

z = 96 z = 9collisional

collisionless

10
�1

10
0

10
1

peculiar v (km s�1)

0.0

0.2

0.4

0.6

d
f
/
d

ln
v

z = 10163

10
0

10
1

peculiar v (km s�1)

z = 1028

average velocity from a/1.07 to 1.07a

10
0

10
1

peculiar v (km s�1)

z = 96

10
0

10
1

10
2

peculiar v (km s�1)

z = 9collisional

collisionless

Figure 8: Distribution of peculiar velocities (weighted by PBH mass), comparing the colli-
sional PBH simulation (solid curves) to the collisionless version (dashed curves). The upper
panels show the instantaneous velocities, while the lower panels remove the contribution from
short-period orbits by considering the average velocity over about 15 percent of a Hubble
time. From left to right, each panel corresponds to a later time. Evidently, collisional dynam-
ics significantly alter the overall velocity distribution, creating a very-high-velocity tail. At
early times, this tail is mostly associated with orbital motion within hard binaries. However,
at late times, the lower right panels indicate that a significant portion of the tail is associated
with long-distance streaming.

3.3 Backreaction onto large-scale dynamics

The presence of such a hot population of PBHs can a↵ect structure formation at scales
much larger than what we are able to simulate. Hot dark matter suppresses structure in
the perturbative regime because it streams out of overdense (or underdense) regions. With
less gravitating mass remaining in the density perturbations, they grow in amplitude more
slowly. Particles of peculiar velocity v suppress perturbation growth on mass scales smaller

than about the Jeans mass, M ' 2.92v
3
G

�3/2
⇢̄

�1/2

m a
3/2 (e.g. [67]), corresponding to that

velocity. Here ⇢̄m ' 39.5 M� kpc�3 is the present-day cosmological mean matter density, so
⇢̄ma

�3 is the mean matter density at scale factor a. Consequently, the streaming of particles
with peculiar velocities v exceeding

v & 0.7G
1/2

M
1/3

⇢̄
1/6

m a
�1/2 (streaming) (3.2)

suppresses structure growth on the mass scale M . Additionally, hot PBHs would escape from
(or not accrete onto) virialized structures. The escape velocity from a system of mass M and
radius R is around v =

p
2GM/R, but for a virialized halo, M = 4⇡

3
R

3�vir⇢̄ma
�3, where

– 14 –

High-velocity tail from 3-body 
interactions & kicks

-> W/HDM component is 
generated dynamically!

Quite interesting, as it violates 
the standard EFTof LSS 
treatments.


Lower panel:

Attempt to remove 
binary velocities



• Distinguish between binaries formed during radiation 
domination (early) and during nonlinear structure 
formation (late)

Properties of binary PBH population
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Figure 16: Distributions of initial orbital elements of PBH binaries. We show the dimen-
sionless angular momentum j (upper left), eccentricity e (upper right), semi-major axis ra

(lower left), and scale factor af of binary formation (lower right), all evaluated when the
binary is first identified in the simulation. For the j and e distributions, the dashed blue
lines show the expected values for a thermal distribution. For the af distribution, the darker
red color indicates early binaries identified at af < 10�5. The spike in binary formation at
af = 10�5 is due to the di↵erent criteria used to identify binaries before and after this time
– and we note that the formation time of binaries should be treated as approximate, as it is
dependent on the (somewhat) arbitrary criteria used.

tion (4.3) closely resembles the mass ratio distribution for early binaries in the simulation.
In contrast, the members of late binaries tend to have more equal masses, likely due to the
expulsion of all low-mass PBHs from the cores of the PBH clusters.

4.2 Initial distribution of binary orbits

We now turn our attention to the distribution of binary orbits, shown in figure 16. We
evaluate the orbital elements at the time that each binary was first identified in the simulation,
although binary orbits evolve over time, as we will see later. We also show the distribution
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Figure 21: Energy density ⇢GW in gravitational radiation compared to the mass density ⇢̄DM

of the PBHs. At late times, the ratio is steady at about ⇢GW/⇢̄DM ' 2⇥10�4. Extrapolating
this behavior up to z = 0 (dotted line) leads to an energy density parameter of ⌦GW ' 5⇥10�5

today. More conservative extrapolations (dashed lines) lead to ⌦GW ⇠ 10�6 or 10�5 by
neglecting radiation produced after z = 30 or z = 5.5, respectively.

figure 1). Thus, we e↵ectively study a rare region in which the adiabatic modes are small. A
larger simulation volume is needed to assess the impact of the large-scale adiabatic structure
on the PBH dynamics that lead to gravitational radiation. For example, halos of much larger
mass than those in our simulation would begin to form around z ⇠ 30, when the adiabatic
modes start to become nonlinear.

However, we can consider a very conservative assumption that the production of gravi-
tational waves stops at z = 30. As we show in figure 21, this assumption leads to ⌦GW ⇠ 10�6

today. This energy density parameter still vastly exceeds the LVK limit – but only if enough
of the radiation produced at these redshifts lies within the appropriate frequency range. In a
followup paper, we will characterize more precisely the gravitational radiation produced by
the PBH mergers.

5 Summary

We have presented the first simulation of cosmological structure formation out of PBH dark
matter that consistently incorporates few-body dynamics as well as relativistic e↵ects. The
simulation volume is of comoving size ⇠ 40 kpc and contains of order 100,000 PBHs of mean
mass 16.5 M�. We have carefully constructed the initial conditions, including initializing the
simulations with a population of early-formed binaries. Our main findings can be summarized
as follows.

The random initial spatial distribution of the PBHs gives rise to a white-noise (Poisson)
isocurvature contribution to the power spectrum, leading to significant halo formation by
z ⇠ 400. However, we find that collisional dynamics suppress the abundance of these halos.
Collisional dynamics also decrease the internal density of PBH halos over time, in contrast to
a collisionless case where the high initial density of early-forming halos is roughly preserved.
Inside a PBH halo, collisional relaxation causes mass segregation on a time scale of order the
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• Current LIGO/Virgo/Kagra limit:


• Expect to provide very tight constraint on PBH mass 
fraction, but keep in mind that our simulations assume 
100% PBH fraction

But the prediction is wrong, and figure 19 shows that numerous late binaries did merge dur-
ing the simulation. This may be evidence that mergers of late binaries are dominantly driven
by interactions with other PBHs, not primarily through gradual collisional hardening of the
semi-major axis, but instead because each collisional interaction results in a new random
eccentricity e (drawn from the thermal distribution with f(e) / e). Due to the extremely
strong sensitivity of the coalescence time in equation (4.9) to the binary eccentricity, coa-
lescence can occur rapidly when a su�ciently high e is drawn. This stochastic mechanism
was noted by ref. [89] to be an important channel for mergers of binary black holes in star
clusters, and it was also considered by ref. [90] as a possible driver of black-hole mergers
in systems of lower density. It would naturally predict a very poor correlation between a
binary’s orbit and the timing of its future coalescence.

We conclude therefore that, for large PBH fractions (in this case, fPBH = 1), while we
can make a good prediction for the initial abundance of binaries and their orbital parameters,
these provide an extremely poor estimate for the times at which the binaries coalesce, and
therefore also the merger rate. This outcome agrees with the results of RSVV, who found
that their analytical framework is not accurate when fPBH & 0.1. The reason for the large
disagreement between the initial predicted and observed coalescence times in the simulation
is the interaction of binaries with other nearby PBHs, which strongly perturb the orbit of
the binary. Further study in order to calculate accurate constraints on the PBH abundance
arising from the observed LVK merger rate is therefore recommended. A more detailed
study of the formation and evolution of binary systems, and the merger rate (and resulting
gravitational wave signals) in the simulation, will follow in a second paper.

4.5 Stochastic gravitational-wave background

Although we postpone a detailed study of binary mergers to a second paper, we can estimate
the abundance of gravitational radiation based on the results of section 3.3. Recall that
approximately 0.1 percent of the PBH mass was converted into gravitational radiation by
the end of the simulation at z ' 5.5. We can consider the fraction fconv(a) ⌧ 1 of the initial
total PBH mass that has been converted into radiation by the scale factor a (black curve in
figure 10). The energy density of the radiation is then

⇢GW(a) = ⇢̄DM(a)

Z a

0

da1

dfconv(a1)

da1

a1

a
, (4.10)

where ⇢̄DM(a) is the mean mass density in PBHs at a. Figure 21 shows the evolution of ⇢GW.
By the end of the simulation, the relative energy density in gravitational radiation is fairly
steady at a value of ⇢GW ' 2 ⇥ 10�4

⇢̄DM.
If continued PBH mergers were to maintain the same relative level of gravitational

radiation up to z = 0, the energy density parameter of the gravitational radiation would
be ⌦GW ' 5 ⇥ 10�5 today. Alternatively, neglecting all gravitational-wave production after
the end of the simulation leads to ⌦GW ' 10�5 today. LVK limits on a gravitational-wave
background [91] are frequency-dependent but generally lie around ⌦GW . 10�8 per e-fold in
frequency. Thus, even if only a small fraction of the gravitational radiation were to lie in the
LVK frequency range, the PBH scenario that we consider would be ruled out.

This conclusion assumes that the simulated region is typical. As we noted in section 2,
our simulation region is somewhat special because it is centered on a 3� density excess in
104 PBHs (about 105 M�). More importantly, the simulation volume is small enough that
it excludes most of the standard adiabatic contributions to the matter power spectrum (see
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• Current LIGO/Virgo/Kagra limit:


• Expect to provide very tight constraint on PBH mass 
fraction, but keep in mind that our simulations assume 
100% PBH fraction


• Roughly constant value of 10-4 suggests universality: 
scale-free problem


• Not quite true however: formation time dictates length of 
evolutionary period during radiation domination, which 
influences properties of primordial binaries

But the prediction is wrong, and figure 19 shows that numerous late binaries did merge dur-
ing the simulation. This may be evidence that mergers of late binaries are dominantly driven
by interactions with other PBHs, not primarily through gradual collisional hardening of the
semi-major axis, but instead because each collisional interaction results in a new random
eccentricity e (drawn from the thermal distribution with f(e) / e). Due to the extremely
strong sensitivity of the coalescence time in equation (4.9) to the binary eccentricity, coa-
lescence can occur rapidly when a su�ciently high e is drawn. This stochastic mechanism
was noted by ref. [89] to be an important channel for mergers of binary black holes in star
clusters, and it was also considered by ref. [90] as a possible driver of black-hole mergers
in systems of lower density. It would naturally predict a very poor correlation between a
binary’s orbit and the timing of its future coalescence.

We conclude therefore that, for large PBH fractions (in this case, fPBH = 1), while we
can make a good prediction for the initial abundance of binaries and their orbital parameters,
these provide an extremely poor estimate for the times at which the binaries coalesce, and
therefore also the merger rate. This outcome agrees with the results of RSVV, who found
that their analytical framework is not accurate when fPBH & 0.1. The reason for the large
disagreement between the initial predicted and observed coalescence times in the simulation
is the interaction of binaries with other nearby PBHs, which strongly perturb the orbit of
the binary. Further study in order to calculate accurate constraints on the PBH abundance
arising from the observed LVK merger rate is therefore recommended. A more detailed
study of the formation and evolution of binary systems, and the merger rate (and resulting
gravitational wave signals) in the simulation, will follow in a second paper.

4.5 Stochastic gravitational-wave background

Although we postpone a detailed study of binary mergers to a second paper, we can estimate
the abundance of gravitational radiation based on the results of section 3.3. Recall that
approximately 0.1 percent of the PBH mass was converted into gravitational radiation by
the end of the simulation at z ' 5.5. We can consider the fraction fconv(a) ⌧ 1 of the initial
total PBH mass that has been converted into radiation by the scale factor a (black curve in
figure 10). The energy density of the radiation is then

⇢GW(a) = ⇢̄DM(a)

Z a

0

da1

dfconv(a1)

da1

a1

a
, (4.10)

where ⇢̄DM(a) is the mean mass density in PBHs at a. Figure 21 shows the evolution of ⇢GW.
By the end of the simulation, the relative energy density in gravitational radiation is fairly
steady at a value of ⇢GW ' 2 ⇥ 10�4

⇢̄DM.
If continued PBH mergers were to maintain the same relative level of gravitational

radiation up to z = 0, the energy density parameter of the gravitational radiation would
be ⌦GW ' 5 ⇥ 10�5 today. Alternatively, neglecting all gravitational-wave production after
the end of the simulation leads to ⌦GW ' 10�5 today. LVK limits on a gravitational-wave
background [91] are frequency-dependent but generally lie around ⌦GW . 10�8 per e-fold in
frequency. Thus, even if only a small fraction of the gravitational radiation were to lie in the
LVK frequency range, the PBH scenario that we consider would be ruled out.

This conclusion assumes that the simulated region is typical. As we noted in section 2,
our simulation region is somewhat special because it is centered on a 3� density excess in
104 PBHs (about 105 M�). More importantly, the simulation volume is small enough that
it excludes most of the standard adiabatic contributions to the matter power spectrum (see

– 31 –



Summary (New Physics)
• LSS offers still quite a bit of discovery space - many corners we haven’t 

looked at yet

• Dark energy: w(a) is not necessarily slowly-varying, and not monotonic - 
worth looking beyond w0-wa

• Both as theorists/phenomenologists and observers

• Inflation: Galaxy shapes are parity- and spin-sensitive probes of primordial 
perturbations

• Dark matter: PBH is a phenomenologically rich scenario - motivates 
investigations of multi-component dark matter

• GW as clean and powerful probe - but over limited frequency range

• Guaranteed relative perturbations: new modes that need to be included in 
LSS modeling

• Additionally, poorly constrained (primordial) isocurvature modes 

Verdiani+; Çelik & FS


