On prior volumes in posterior marginals

12 September 2025 | Pierre Zhang (U. di Milano)

Based on 2507.20991 w/Alexander Reeves & Henry Zheng

New Physics from Galaxy Clustering at GGI | Galileo Galilei Institute – Firenze

Prior Volume Effects (PVE)

or the inevitable dependence on the prior

Physicists Bayes

Model	$m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$	Assume
D	(, , = ,	truth=0
Prior	$-2\log\pi(heta_0)\propto heta_0^2$	data=0
Posterior	$-2\log\mathcal{P}(heta_0, heta_1)=m(heta_0, heta_1)^2+ heta_0^2$	covariance=1

Model
$$m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$$

Prior
$$-2\log \pi(\theta_0) \propto \theta_0^2$$

Posterior
$$-2 \log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$$

$$\alpha \ll 1$$

$$\mathcal{P}(\theta_0) = \int d\theta_1 \, \mathcal{P}(\theta_0, \theta_1) \propto \frac{1}{1 + \alpha \theta_0} \, \exp\left(-\frac{1}{2}\theta_0^2\right) \simeq \exp\left(-\frac{1}{2}\theta_0^2\right) \, (1 - \alpha \theta_0)$$
Parameter Nuisance of interest parameter

Model
$$m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$$

Prior
$$-2\log \pi(\theta_0) \propto \theta_0^2$$

$$-2\log \mathcal{R}(heta_0) \ll heta_0$$
sterior $-2\log \mathcal{P}(heta_0, heta_1) = m(heta_0)$

Posterior
$$-2 \log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$$

Posterior
$$-2 \log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0$$

erginalisation
$$\mathcal{D}(\theta_0) = \int d\theta_1 \, \mathcal{D}(\theta_0, \theta_1) \propto -$$

$$\mathcal{P}(\theta_0) = \int d\theta_1 \, \mathcal{P}(\theta_0, \theta_1) \propto \frac{1}{1 + \alpha \theta_0} \, \exp\left(-\frac{1}{2}\theta_0^2\right) \simeq \exp\left(-\frac{1}{2}\theta_0^2\right) \, (1 - \alpha \theta_0)$$

Generating function
$$G_0[j] \equiv \int d\theta_0 \, \exp\left(-\frac{1}{2}\theta_0^2 + j\theta_0\right) \propto \exp\left(\frac{j^2}{2}\right)$$

Marginalisation
$$\mathcal{P}(\theta_0) = \int d\theta_0$$

$$egin{align} &= \int d heta_1 \, \mathcal{P}(heta_0, heta_1) \propto \overline{1+1} \ &\equiv \int d heta_0 \, \exp\left(-rac{1}{2} heta_0^2 + j heta_0^2
ight) \end{split}$$

$$\mathcal{Z} = \int d heta_0 \, \mathcal{P}(heta_0) = G_0|_{j=0} - lpha \, rac{\partial G_0}{\partial j}igg|_{j=0} = G_0|_{j=0}$$

 $\mathbb{E}_{\mathcal{P}}[\theta_0] = \frac{1}{\mathcal{Z}} \int d\theta_0 \, \theta_0 \, \mathcal{P}(\theta_0) = \left. \frac{1}{G_0} \frac{\partial G_0}{\partial j} \right|_{j=0} - \alpha \left. \frac{1}{G_0} \frac{\partial^2 G_0}{\partial^2 j} \right|_{j=0} \stackrel{prior \, volume \, effect}{= -\alpha}$

Biased Mean

erior
$$-2\log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 +$$

Model
$$m(heta_0, heta_1)= heta_0+$$

$$m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$$

odel
$$m(\theta_0, \theta_1) - \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$$

Model

Large-data limit $(\alpha \rightarrow 0)$ $m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$ *Near equilibrium* \rightarrow *Linear model* ($\alpha = 0$)

Prior
$$-2\log \pi(\theta_0) \propto \theta_0^2$$

Posterior
$$2 \log \mathcal{D}(\theta_0, \theta_0) = 0$$

Prior
$$-2\log \pi(\theta_0) \propto \theta_0^2$$

Posterior $-2\log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$

Marginalisation
$$\mathcal{P}(\theta_0) = \int d\theta_1 \, \mathcal{P}(\theta_0, \theta_1) \propto \frac{1}{1 + \alpha \theta_0} \, \exp\left(-\frac{1}{2}\theta_0^2\right) \simeq \exp\left(-\frac{1}{2}\theta_0^2\right) \, (1 - \alpha \theta_0)$$

Generating function $G_0[j] \equiv \int d\theta_0 \, \exp\left(-\frac{1}{2}\theta_0^2 + j\theta_0\right) \propto \exp\left(\frac{j^2}{2}\right)$

Evidence
$$\mathcal{Z} = \int d\theta_0 \, \mathcal{P}(\theta_0) = G_0|_{j=0} - \alpha \left. \frac{\partial G_0}{\partial j} \right|_{j=0} = G_0|_{j=0}$$

Biased Mean $\mathbb{E}_{\mathcal{P}}[\theta_0] = \frac{1}{\mathcal{Z}} \int d\theta_0 \, \theta_0 \, \mathcal{P}(\theta_0) = \left. \frac{1}{G_0} \frac{\partial G_0}{\partial j} \right|_{j=0} - \alpha \left. \frac{1}{G_0} \frac{\partial^2 G_0}{\partial^2 j} \right|_{j=0} = -\alpha$

Prior Volume Effects (PVE)

Part I — A brief historical account

Part II — The measure that minimise PVE

I. Prior volume, a brief historical account —Act 1 – The Statistician "War"

THÉORIE

ANALYTIQUE

DES PROBABILITÉS;

PAR M. LE COMTE LAPLACE,

Pair de France; Grand-Officier de la Légion-d'Honneur; Grand'Croix de l'Ordre de la Réunion; Membre de l'Institut royal et du Bureau des Longitudes de France; des Sociétés royales de Londres et de Gottingue; des Académies des Sciences de Russie, de Danemarck, de Suède, de Prusse, d'Italie, etc.

- 1. Inverse probability problem
- 2. Principle of insufficient reason
- 3. Canonical estimator
- 4. Bets "Nagainst 1"
- 5. « Méthode la plus avantageuse »
- 6. Asymptotic expansion of integrals

« ... il y a onze mille à parier contre un, que l'erreur de ce dernier résultat n'est pas un centième de sa valeur. » *

* [1.1×10⁴:1 for Saturn mass to be within 1%]

Bayes theorem $P(\theta|y) = P(y|\theta) P(\theta) / P(y)$

No information $\rightarrow P(\theta) \sim Uniform$

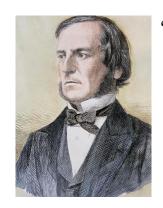
Posterior mean $E[\theta|y]$

Posterior marginals, Bayes factor

Least-square fit

Laplace approximation

Critiques on the principle of insufficient reason



"The principle [...] of [...] assigning to different states of things of which we know nothing, and upon the very ground that we know nothing, equal degrees of probability [...] is an arbitrary method of procedure."

- George Bool (1854)

"The doctrine, known as the "doctrine of insufficient reason," that cases are equally probable (to us) unless we have reason to think the contrary, and so reduces all probability to a subjective judgment."

- Ronald Fisher

" Fallacious Rubbish! "

Critiques on the principle of insufficient reason

Posterior 1

Assume flat prior $\pi(\theta) \propto 1 \rightarrow \mathcal{P}(\theta|y) \propto \mathcal{L}(y|\theta) \pi(\theta) = \mathcal{L}(y|\theta)$

Posterior 2

Reparametrise as $\phi = \frac{1}{2}\theta^2$ and assume flat prior $\pi(\phi) \propto 1$

Induced prior on
$$\theta$$
 is $\pi(\theta) \propto \pi(\phi) \cdot \left| \frac{d\phi}{d\theta} \right| = |\theta| \rightarrow \mathcal{P}(\theta|y) \propto \mathcal{L}(y|\theta) |\theta|$

THÉORIE

ANALYTIQUE

DES PROBABILITÉS;

PAR M. LE COMTE LAPLACE,

Inverse probability problem

THEORY OF PROBABILITY

HAROLD JEFFREYS M.A., D.Sc., F.R.S.

products of prior probabilities and likelihoods."

Bayes theorem $P(\theta|y) = P(y|\theta) P(\theta) / P(y)$

Principle of Insufficient reason

No information $\rightarrow P(\theta) \sim Uniform$ Lebesgue measure $d\theta$

chosen so as to express the fact that we have none."

" Posterior probabilities are proportional to

" If we have no information relevant to the actual

value of the parameter, the probability must be

(Lindley '70)

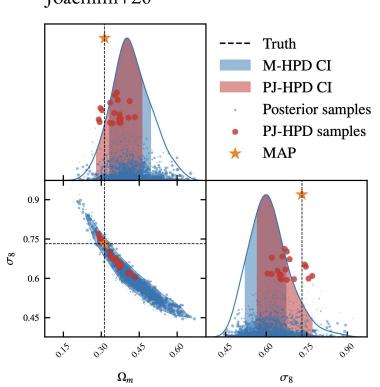
No information $\rightarrow P(\theta) \sim Uniform \ on \ the \ sphere$ Curved measure $|F(\theta)|^{\frac{1}{2}} d\theta$

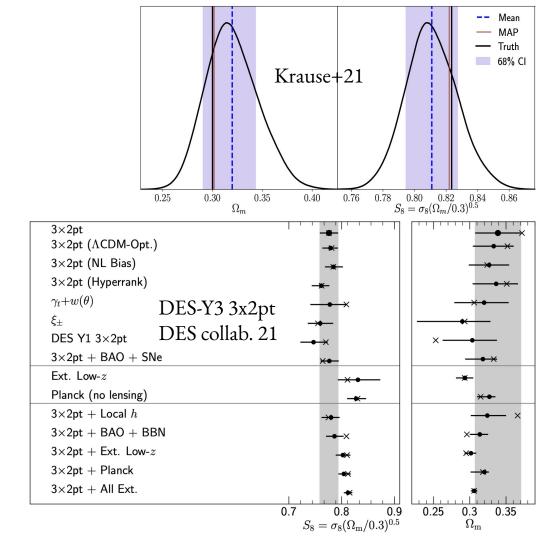
I. Prior volume, a brief historical account —

Act 2 – Modern examples in cosmology

Weak lensing

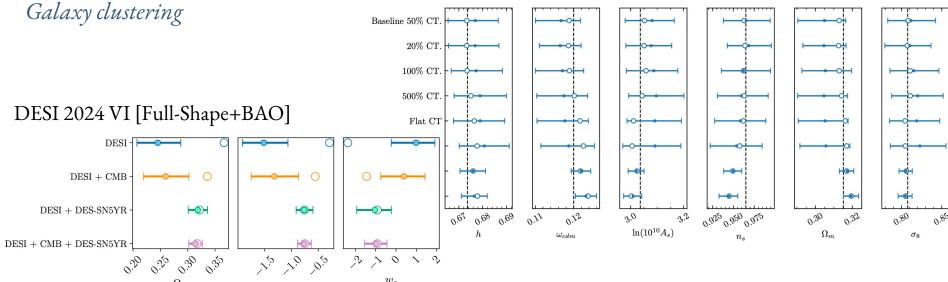
KIDS-1000 Joachimi+20





"Two manifestly equivalent 0.131 + 0.013 2.72 ± 0.19 0.869 ± 0.070 0.322 ± 0.020 0.692 ± 0.015 0.703 ± 0.051 WC prior implementations of the manifestly correct theory 0.705 ± 0.017 0.150 ± 0.017 2.46 ± 0.19 0.798 ± 0.091 0.348 ± 0.024 0.652 ± 0.048 EC prior on manifestly the same data 2.5 3.0 0.7 0.35 0.6 0.71 0.12 0.15 0.9 0.30 0.8 produce manifestly different results" $ln(10^{10}A_s)$ Ω_m ω_{cdm} n_s σ_8 DESI 2024 V [Full-Shape] → MAP Galaxy clustering Baseline 50% CT 20% CT.

Simon, PZ, Poulin 22 [BOSS Full-Shape]

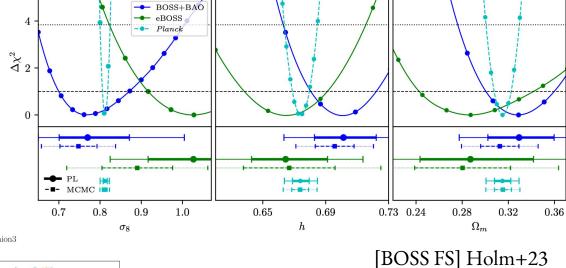


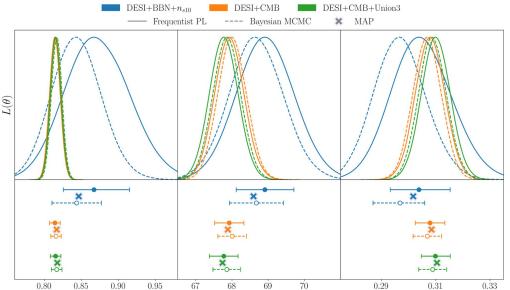
Some pro-activeness *EFTofLSS parameter sampling*

[BOSS FS] D'Amico, Gleyzes, Kokron, Markovic, Senatore, **PZ**+19 — b_1 , ... [BOSS FS] Ivanov, Simonovic, Zaldarriaga 19 — $A_s^{1/2}$ b_1 , ... [DESI FS] — $(1+\sigma_s)$ b_1 , ...

Name of the Game – Find the parametrisation with the least PVEs

More pro-activeness Frequentist metric

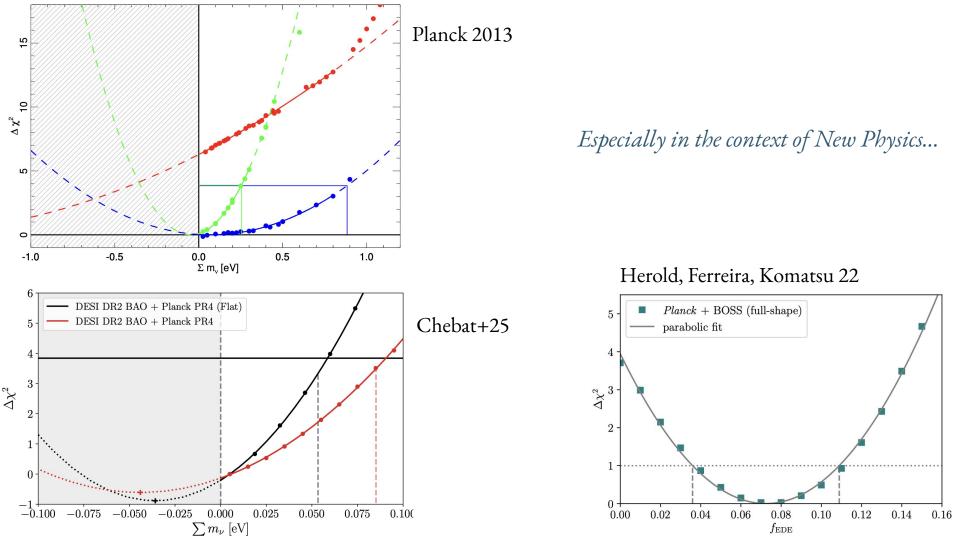




 $H_0 \, [{\rm km \ s^{-1} Mpc^{-1}}]$

 $\Omega_{\rm m}$

[DESI FS] Morawetz+25



Summary of part I

In the large-data limit, we all agree

Distributions tend to Gaussians
Priors become irrelevant
Frequentist & Bayesian are consistent

Away from the large-data limit,

Distributions are non-Gaussian Priors may become relevant Frequentist & Bayesian are inconsistent

Moreover,

Two Bayesians (*prior volume*)

may get two different results

Two Frequentists (*prescription choice*)

may get two different results

Name of the Game – Find the parametrisation minimising PVE ... but Jeffreys measure \rightarrow Parametrisation invariance?!

II. The measure that minimise PVE ——A general proof

2507.20991 – A. Reeves, H. Zheng, **PZ**

A systematic procedure to find* the optimal parametrisation that minimises PVEs in posterior marginals

Answer: the Jacobian is given by the *Jeffreys measure***

We prove* that under *Jeffreys measure***, the posterior mean is an efficient estimator (unbiased & minimal variance)

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections

A one-liner proof

Name of the Game – Find the parametrisation minimising PVE ... but Jeffreys measure \rightarrow Parametrisation invariance?!

Whiten the Fisher
$$\mathcal{F} = LL^T$$
 (e.g., via Cholesky)

Define orthogonal basis $\boldsymbol{\phi} = L^T(\boldsymbol{\theta} - \boldsymbol{\theta_*})$

Since $|J^{-1}| = |\mathcal{F}(\boldsymbol{\theta})|^{1/2}$, where $J_{\mu\nu}^{-1} = \partial \theta_{\mu}/\partial \phi_{\nu}$
 $|\mathcal{F}(\boldsymbol{\theta})|^{1/2} d^N \boldsymbol{\theta} \ \mathcal{P}(\boldsymbol{\theta}, y) \rightarrow d^N \boldsymbol{\phi} \ \mathcal{P}(\boldsymbol{\phi}, y)$

Definitions

Bayes theorem
$$\mathcal{P}(\boldsymbol{\theta}|y) \propto \mathcal{L}(y|\boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$
 We work with $\pi(\boldsymbol{\theta}) = 1$
Posterior mode $\hat{\boldsymbol{\theta}}_{*} = \max_{\boldsymbol{\theta}} \mathcal{P}(\boldsymbol{\theta}|y)$
Posterior mean $\mathbb{E}[\theta_{\alpha}] = \frac{\tilde{\mathbb{E}}[\theta_{\alpha}]}{\mathcal{Z}}$, $\tilde{\mathbb{E}}[\theta_{\alpha}] = \int d^{N}\boldsymbol{\theta} \,\theta_{\alpha} \,\mathcal{P}(\boldsymbol{\theta}|y)$, $\mathcal{Z} \equiv \tilde{\mathbb{E}}[1]$
Sample average $\langle X \rangle \equiv \int dy \,\mathcal{L}(y|\boldsymbol{\theta}_{\dagger}) \,X$
Average mean $\langle \mathbb{E}[\theta_{\alpha}] \rangle$

Asymptotic normal distribution $\mathcal{P}(\boldsymbol{\theta}|y)$ has a global maximum $\hat{\boldsymbol{\theta}}_{\star}$ Distant regions decay exponentially

Definitions

Number of trials $n \sim number of sky patches in cosmology$

Data volume $V \to nV$

Data covariance $C \to n^{-1}C$ $C \subset V^{-1}$

Data realisation $y \to n^{-1/2}y$ $y \sim N(y_{\dagger}, C)$

Fisher information $\mathcal{F} \to n\mathcal{F}$ $F \subset \mathbb{C}^{-1}$

Parameter estimate $\boldsymbol{\theta} \to n^{1/2} \boldsymbol{\theta}$ $\theta \sim N(\theta_{+}, F)$

If $\mathcal P$ is asymptotic normal, $\mathcal P \to \mathcal N(\pmb \theta_\dagger, \mathcal F^{-1})$ when $n \to \infty$ large-sample limit

Sketch of the proof

Under Jeffreys measure**,

- Start assuming the mode is unbiased
 The mean is an unbiased estimator of the mode
- 2. The mode is a biased estimator (of the nominal truth)
- 3. Not assuming an unbiased mode

 The mode bias cancels with extra contributions in the mean

The posterior mean is an unbiased estimator (of the nominal truth)*

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections

Sketch of the proof

```
(mean-truth) = (mean-mode) + (mode-truth) = mean-to-mode bias + mode bias 
 \langle \mathbb{E}[\theta_{\alpha} - \theta_{\alpha}^{\dagger}] \rangle = \langle \mathbb{E}[\theta_{\alpha} - \hat{\theta}_{\alpha}^{*}] \rangle + \langle \hat{\theta}_{\alpha}^{*} - \theta_{\alpha}^{\dagger} \rangle = \langle \mathbb{E}[\delta_{\alpha}] \rangle \Big|_{\text{biased } \hat{\theta}_{*}} + \langle \delta_{\alpha}^{\dagger} \rangle 
mean-to-mode bias \qquad extra
assuming unbiased mode \qquad contribution
\langle \mathbb{E}[\delta_{\alpha}] \rangle \Big|_{\text{biased } \hat{\theta}_{*}} = \langle \mathbb{E}[\delta_{\alpha}] \rangle \Big|_{\text{unbiased } \hat{\theta}_{*}} - \langle \delta_{\alpha}^{\dagger} \rangle
```

$$\langle \mathbb{E}[\theta_{\alpha} - \theta_{\alpha}^{\dagger}] \rangle = \langle \mathbb{E}[\delta_{\alpha}] \rangle \big|_{\text{unbiased } \hat{\boldsymbol{\theta}}_{\star}}$$

Sketch of the proof

Redefine
$$\tilde{\mathbb{E}}[\theta_{\alpha}] = \int \mathcal{M}(\boldsymbol{\theta}) \, \theta_{\alpha} \, \mathcal{P}(\boldsymbol{\theta}|y) \;, \quad \mathcal{M}(\boldsymbol{\theta}) \sim |\mathcal{F}(\boldsymbol{\theta})|^{1/2} \, d^{N} \boldsymbol{\theta}$$

$$\langle \mathbb{E}[\delta_{lpha}]
angle \left|_{ ext{unbiased } \hat{m{ heta}_{*}}} \sim 0 \right|$$
 **up to small corrections

$$\langle \mathbb{E}[\theta_{\alpha} - \theta_{\alpha}^{\dagger}] \rangle = \langle \mathbb{E}[\delta_{\alpha}] \rangle \Big|_{\text{unbiased } \hat{\boldsymbol{\theta}}_{\star}} \Big|$$

Computing the mean bias $\langle \mathbb{E}[\delta_{\alpha}] \rangle \big|_{\text{unbiased } \hat{\theta}_{*}}$

Marginalisation

Model
$$m(\theta_0, \theta_1) = \theta_0 + \theta_1 + \alpha \theta_0 \theta_1$$

Prior
$$-2\log \pi(\theta_0) \propto \theta_0^2$$

Posterior
$$-2\log \pi(\theta_0) \propto \theta_0$$
Posterior
$$-2\log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$$

Posterior
$$-2\log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta$$

Posterior
$$-2 \log \mathcal{P}(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$$

Posterior
$$-2\log P(\theta_0, \theta_1) = m(\theta_0, \theta_1)^2 + \theta_0^2$$

$$-2\log P(v_0, v_1) - m(v_0, v_1) + v_0$$

$$\mathcal{P}(\theta_0) = \int d\theta_1 \, \mathcal{P}(\theta_0, \theta_1) \propto \frac{1}{1 + \alpha \theta_0} \, \exp\left(-\frac{1}{2}\theta_0^2\right) \simeq \exp\left(-\frac{1}{2}\theta_0^2\right) \, (1 - \alpha \theta_0)$$

Generating function
$$G_0[j] \equiv \int d\theta_0 \, \exp\left(-\frac{1}{2}\theta_0^2 + j\theta_0\right) \propto \exp\left(\frac{j^2}{2}\right)$$

Evidence
$$\mathcal{Z} = \int d\theta_0 \, \mathcal{P}(\theta_0) = G_0|_{j=0} - \alpha \left. \frac{\partial G_0}{\partial j} \right|_{j=0} = G_0|_{j=0}$$

Mean
$$\mathbb{E}_{\mathcal{P}}[\theta_0] = \frac{1}{\mathcal{Z}} \int d\theta_0 \, \theta_0 \, \mathcal{P}(\theta_0) = \frac{1}{G_0} \frac{\partial G_0}{\partial j} \bigg|_{j=0} - \alpha \, \frac{1}{G_0} \frac{\partial^2 G_0}{\partial^2 j} \bigg|_{j=0} = -\alpha$$

Laplace expansion around the mode θ^*

Model
$$m(\boldsymbol{\theta}) = m(\boldsymbol{\theta_{\star}}) + \partial_{\mu} m \, \delta_{\mu} + \partial_{\mu\nu} m \, \delta_{\mu} \delta_{\nu} + \dots$$
Posterior $\mathcal{P}(\boldsymbol{\theta}|\mathcal{F}, \boldsymbol{j}) = \mathcal{P}(\boldsymbol{\theta_{\star}}) \exp\left(-\frac{1}{2}\delta_{\mu}\mathcal{F}_{\mu\nu}\delta_{\nu} + j_{\mu}\delta_{\mu}\right) \times \left\{1 + \frac{n^{-1/2}}{2}\left[j_{\mu;\nu}\delta_{\mu}\delta_{\nu} - \frac{1}{2}\mathcal{F}_{\mu\nu;\rho}\delta_{\mu}\delta_{\nu}\delta_{\rho}\right] + \dots\right\}$
where $n\mathcal{F}_{\mu\nu}(\boldsymbol{\theta}) := \partial_{\mu} m(\boldsymbol{\theta})^{T} C^{-1} \partial_{\nu} m(\boldsymbol{\theta}) \,, \qquad n^{1/2} j_{\mu}(\boldsymbol{\theta}) := \partial_{\mu} m(\boldsymbol{\theta})^{T} C^{-1} \Delta_{\star} \,, \qquad \Delta_{\star} \equiv y - m(\boldsymbol{\theta_{\star}})$
Fisher Source

Generating function
$$G[\mathbf{j}] := \int \frac{d^N \mathbf{\delta}}{n^{1/2}} \exp\left(-\frac{1}{2}\delta_{\mu}\mathcal{F}_{\mu\nu}\delta_{\nu} + j_{\mu}\delta_{\mu}\right) \propto \exp\left(\frac{1}{2}j_{\mu}\mathcal{F}_{\mu\nu}^{-1}j_{\nu}\right)$$
.
such that $\int \frac{d^N \mathbf{\delta}}{n^{1/2}} : \quad \delta_{\mu} \to g_{\mu} := G^{-1} \partial G/\partial j_{\mu} , \quad \delta_{\mu}\delta_{\nu} \to g_{\mu\nu} := G^{-1} \partial^2 G/(\partial j_{\mu}\partial j_{\nu}) , \quad \text{etc}$

Posterior mean bias under Lebesgue measure

$$\mathbb{E}[\delta_{\alpha}] = \frac{\tilde{\mathbb{E}}[\delta_{\alpha}]}{\mathcal{Z}} = n^{-1/2}g_{\alpha} + \frac{n^{-1}}{2} \left[j_{\mu;\nu} \left(g_{\alpha\mu\nu} - g_{\alpha}g_{\mu\nu} \right) - \frac{1}{2} \mathcal{F}_{\mu\nu;\rho} \left(g_{\alpha\mu\nu\rho} - g_{\alpha}g_{\mu\nu\rho} \right) \right] + \dots$$

$$\langle \Delta_* \rangle = 0 \;, \quad \langle j_{\mu} \rangle = 0 \;, \quad \langle g_{\alpha} \rangle = \langle \mathcal{F}_{\alpha \mu}^{-1} j_{\mu} \rangle = 0 \;, \quad \dots$$
 $\langle \Delta_* \Delta_* \rangle = C \;, \quad \langle j_{\mu} j_{\nu} \rangle = \mathcal{F}_{\mu \nu} \;, \quad \langle g_{\mu} g_{\nu} \rangle = \mathcal{F}_{\mu \nu}^{-1} \;, \quad \dots$
Sample averaging

Bias (under Lebesgue)

$$\langle \mathbb{E}[\delta_{\alpha}] \rangle = n^{-1} \mathcal{F}_{\alpha\mu}^{-1} \mathcal{F}_{\nu\rho}^{-1} \mathcal{F}_{\mu\nu;\rho} + \dots$$

Posterior mean bias

under Jeffreys measure

Redefine expectation as

$$\tilde{\mathbb{E}}[heta_{lpha}] = \int \mathcal{M}(oldsymbol{ heta}) \, heta_{lpha} \, \mathcal{P}(oldsymbol{ heta}|y) \;, \quad \mathcal{M}(oldsymbol{ heta}) \sim |\det \mathcal{F}(oldsymbol{ heta})|^{1/2} \, d^N oldsymbol{ heta}$$

$$\rightarrow \mathbb{E}[\delta_{\alpha}] \supset n^{-1}(g_{\alpha\mu} - g_{\alpha}g_{\mu}) \frac{1}{2} \partial_{\mu} \log \det \mathcal{F}(\boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{\star}}$$

$$\langle g_{\alpha\mu} - g_{\alpha}g_{\mu} \rangle = \mathcal{F}_{\alpha\mu}^{-1} , \qquad \frac{1}{2} \partial_{\mu} \log \det \mathcal{F} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{\star}} = \mathcal{F}_{\nu\rho}^{-1} \mathcal{F}_{\mu\nu;\rho}$$

Bias (under Lebesgue) Jeffreys contribution

$$\langle \mathbb{E}[\delta_{\alpha}] \rangle = n^{-1} \mathcal{F}_{\alpha\mu}^{-1} \mathcal{F}_{\nu\rho}^{-1} \mathcal{F}_{\mu\nu;\rho} - n^{-1} \mathcal{F}_{\alpha\mu}^{-1} \mathcal{F}_{\nu\rho}^{-1} \mathcal{F}_{\mu\nu;\rho} + \dots \sim 0$$

II. The measure that minimise PVE —

—A worked example in Galaxy Clustering

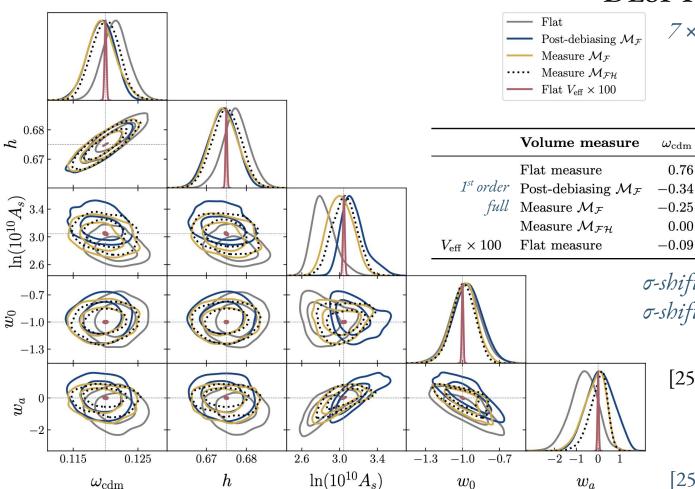
DESI-Y6 mock FS analysis

0.72

-0.27

-0.17

0.01



 $7 \times 12 \sim 84$ EFT parameters

 $\ln(10^{10}A_s)$

-1.73

-0.28

0.80

0.06

 w_0

0.21

0.37

0.12

0.07

 w_a

-1.07

-0.35

-0.03

0.15

 σ -shift < ~1/3 with Jeffreys M_F σ -shift < 0.1 with measure M_{FH}

[2507.20991] Reeves, Zheng, **PZ**

... Run on the laptop with PyBird-JAX in < 1 hour! [2507.20990] Reeves, Zheng, **PZ**

Conclusions

Under Jeffreys measure, the posterior mean is an unbiased estimator.

If you are not a fan of non-flat measure, think of *Jeffreys* as the *Jacobian* giving you the parametrisation that minimises PVEs.

With nowadays technologies (AD, JAX, neural networks, GPU, etc.), getting Fisher on-the-fly at each MCMC samples is computationally tractable.

Is there any reason left to not use Jeffreys?

Discussions

Under *Jeffreys measure***, the posterior mean is an unbiased estimator*.

Our results agree with the literature**, with *perhaps* the following differences —

- Inclusion of noise + sample averaging, tracking both biases in the mean and the mode
- Posterior moments vs. posterior quantiles

See probability matching prior, e.g., Reid, Mukerjee, Fraser 03 Matching possible only at 1st order for posterior quantiles

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections

Open questions

It seems that the full measure is superior than the 1st order correction ...

At higher orders —

- Are there akin mode bias cancellations?
- Is "matching" possible for (a truncated hierarchy of) posterior moments?

Conclusions

Under Jeffreys measure, the posterior mean is an unbiased estimator.

If you are not a fan of non-flat measure, think of *Jeffreys* as the *Jacobian* giving you the parametrisation that minimises PVEs.

With nowadays technologies (AD, JAX, neural networks, GPU, etc.), getting Fisher on-the-fly at each MCMC samples is computationally tractable.

Is there any reason left to not use Jeffreys?