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Prior Volume Effects (PVE)
or the inevitable dependence on the prior



Physicists          Bayes



Toy model
Assume 
truth=0
data=0
covariance=1



Toy model

Parameter 
of interest

Nuisance
parameter

α ≪ 1



Toy model

prior volume effect
Biased



Toy model

prior volume effect
Biased

Large-data limit  (α → 0)
Near equilibrium → Linear model (α = 0)



Part I   — A brief historical account
Part II — The measure that minimise PVE

Prior Volume Effects (PVE)



I. Prior volume, a brief historical account —
Act 1 – The Statistician “War”



1. Inverse probability problem

2. Principle of insufficient reason

3. Canonical estimator

4. Bets “ N against 1 ”

5. « Méthode la plus avantageuse »

6. Asymptotic expansion of integrals

Bayes theorem P(θ|y) = P(y|θ) P(θ) / P(y)

No information → P(θ) ~ Uniform

Posterior mean E[θ|y]

Posterior marginals, Bayes factor

Least-square fit

Laplace approximation

« … il y a onze mille à parier 
contre un, que l’erreur de ce 
dernier résultat n’est pas un 
centième de sa valeur. » *

* [1.1×10⁴:1 for Saturn mass to be within 1%]



“ The principle [...] of [...] assigning to different states of things 
of which we know nothing, 
and upon the very ground that we know nothing, 
equal degrees of probability [...] 
is an arbitrary method of procedure. ” 

- George Bool (1854) 

“ The doctrine, known as the “doctrine of insufficient reason,” 
that cases are equally probable (to us) 
unless we have reason to think the contrary, 
and so reduces all probability to a subjective judgment. ” 

- Ronald Fisher

“ Fallacious 
Rubbish! ”

Critiques on the principle of insufficient reason



See also Bertrand paradox (1887)

Critiques on the principle of insufficient reason



No information → P(θ) ~ Uniform
     Lebesgue measure  dθ  

No information → P(θ) ~ Uniform on the sphere 
(Lindley ‘70)           Curved measure  |F(θ)|½ dθ

Inverse probability problem

Principle of Insufficient reason

“ Posterior probabilities are proportional to 
products of  prior probabilities and likelihoods. ”

“ If we have no information relevant to the actual 
value of the parameter, the probability must be 
chosen so as to express the fact that we have none. ”

Bayes theorem P(θ|y) = P(y|θ) P(θ) / P(y)



I. Prior volume, a brief historical account —
Act 2 – Modern examples in cosmology



Krause+21

KIDS-1000
Joachimi+20

DES-Y3 3x2pt
DES collab. 21

Weak lensing



“ Two manifestly equivalent 
implementations 

of the manifestly correct theory 
on manifestly the same data 
produce manifestly different results ” 

Simon, PZ, Poulin 22 [BOSS Full-Shape] 

DESI 2024 V [Full-Shape]

DESI 2024 VI [Full-Shape+BAO]

Galaxy clustering



[BOSS FS] D’Amico, Gleyzes, Kokron, Markovic, Senatore, PZ+19 —  b1 , …
[BOSS FS] Ivanov, Simonovic, Zaldarriaga 19 —  As

½ b1 , … 
[DESI FS] —  (1+σ8) b1 , …  

Name of the Game – Find the parametrisation with the least PVEs

Some pro-activeness
EFTofLSS parameter sampling



More 
pro-activeness

Frequentist metric

[DESI FS] Morawetz+25

[BOSS FS] Holm+23



Especially in the context of New Physics… 

Chebat+25 

Herold, Ferreira, Komatsu 22

Planck 2013



In the large-data limit, we all agree

Distributions tend to Gaussians
Priors become irrelevant
Frequentist & Bayesian are consistent

Summary of part I

Away from the large-data limit, 

Distributions are non-Gaussian
Priors may become relevant
Frequentist & Bayesian are inconsistent

Moreover, 

Two Bayesians (prior volume)
may get two different results 

Two Frequentists (prescription choice)
may get two different results 



II.  The measure that minimise PVE — 
—A general proof

Name of the Game – Find the parametrisation minimising PVE
… but Jeffreys measure → Parametrisation invariance?!



2507.20991 – A. Reeves, H. Zheng, PZ

A systematic procedure to find* the optimal parametrisation 
that minimises PVEs in posterior marginals

Answer: the Jacobian is given by the Jeffreys measure**

We prove* that under Jeffreys measure**, 
the posterior mean is an efficient estimator (unbiased & minimal variance) 

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections



Name of the Game – Find the parametrisation minimising PVE
… but Jeffreys measure → Parametrisation invariance?!

A one-liner proof



Definitions

We work with π(θ) = 1 



Definitions

~ number of sky patches in cosmology

C ∝ V -1

y ~ N(y† , C)
F ∝ C -1

θ ~ N(θ† , F)

large-sample limit



Sketch of the proof

Under Jeffreys measure**, 

1. Start assuming the mode is unbiased 
The mean is an unbiased estimator of the mode 

2. The mode is a biased estimator (of the nominal truth)

3. Not assuming an unbiased mode
The mode bias cancels with extra contributions in the mean

The posterior mean is an unbiased estimator (of the nominal truth)*

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections



Sketch of the proof

(mean-truth)      =     (mean-mode)    +   (mode-truth)   =   mean-to-mode bias     +  mode bias

   mean-to-mode bias
assuming unbiased mode

     extra 
contribution



Sketch of the proof

Redefine
Jeffreys measure

**up to small corrections



Computing the mean bias



Toy model



around the mode θ* 

Fisher Source

Laplace expansion



Noise 

Posterior mean bias
under Lebesgue measure

Bias  (under Lebesgue)

Sample averaging



Posterior mean bias
under Jeffreys measure

Bias  (under Lebesgue) Jeffreys contribution



II.  The measure that minimise PVE — 
—A worked example in Galaxy Clustering



DESI-Y6 mock FS analysis

[2507.20991] Reeves, Zheng, PZ

σ-shift < ~1/3 with  Jeffreys  MF
σ-shift <   0.1 with measure MFH

7 × 12 ~ 84 EFT parameters

… Run on the laptop with 
PyBird-JAX in < 1 hour!

[2507.20990] Reeves, Zheng, PZ

1st order 
full



Conclusions
Under Jeffreys measure, the posterior mean is an unbiased estimator.

If you are not a fan of non-flat measure, 
think of Jeffreys as the Jacobian giving you the parametrisation that minimises PVEs. 

With nowadays technologies (AD, JAX, neural networks, GPU, etc.), 
getting Fisher on-the-fly at each MCMC samples is computationally tractable.

Is there any reason left to not use Jeffreys?



Discussions
Under Jeffreys measure**, the posterior mean is an unbiased estimator*.

Our results agree with the literature**, with perhaps the following differences —

— Inclusion of noise + sample averaging, tracking both biases in the mean and the mode

— Posterior moments vs. posterior quantiles 
See probability matching prior, e.g., Reid, Mukerjee, Fraser 03

Matching possible only at 1st order for posterior quantiles 

*at 1st order for asymptotic normal distribution under sample averaging
**up to small corrections



Open questions

It seems that the full measure is superior than the 1st order correction …

At higher orders —

— Are there akin mode bias cancellations?

— Is “matching” possible for (a truncated hierarchy of) posterior moments?



Conclusions
Under Jeffreys measure, the posterior mean is an unbiased estimator.

If you are not a fan of non-flat measure, 
think of Jeffreys as the Jacobian giving you the parametrisation that minimises PVEs. 

With nowadays technologies (AD, JAX, neural networks, GPU, etc.), 
getting Fisher on-the-fly at each MCMC samples is computationally tractable.

Is there any reason left to not use Jeffreys?

Thank you!


