Cosmology from projected clustering: two- and three-point statistics

Projected LSS tracers

Part 1

Large-Scale Structure

$$\Delta_m(\mathbf{x}) = \frac{\rho_M(x) - \bar{\rho}_M}{\bar{\rho}_M}$$

Projected LSS tracers: photometric surveys

- Use all galaxies you can detect
- Good image quality
- No spectra

Projected LSS tracers: photometric surveys

Outstanding numbers:

- World largest imager 8.4m, 9.6 deg² FOV
- Wide: 20k deg²
- Deep: r~27
- Fast: ~100 visits/year
- Big data: ~15TB/day

Dark Energy Science Coll.

- Supernovae
- Cluster science
- Strong lensing
- Weak lensing
- Galaxy clustering

First look
June 23rd!

Projected LSS tracers: galaxy clustering

Galaxy clustering:

- $\delta_{g} = f[\delta_{M}] \sim b_{g} \delta_{M}$
- Local

Projected LSS tracers: cosmic shear

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

Projected LSS tracers: cosmic shear

$$\gamma_{E}(\hat{\mathbf{n}}) = \int d\chi \, q_{\gamma}(\chi) \, \Delta_{m}(\chi \hat{\mathbf{n}}), z) \qquad q_{\gamma}(\chi) = \frac{3}{2} H_{0}^{2} \Omega_{m} \frac{\chi}{a} \int_{z(\chi)}^{\infty} dz' \, \frac{dp}{dz} \frac{\chi(z') - \chi}{\chi(z')}$$

Projected statistics

$$C_{\ell}^{ab} = \int \frac{d\chi}{\chi^2} \underline{q_a(\chi)q_b(\chi)} P_{ab}(k \simeq \ell/\chi)$$

Radial kernels:

$$\delta_{2D}^{a}(\hat{\mathbf{n}}) = \int d\chi \, q_a(\chi) \, \delta_{3D}^{a}(\chi \hat{\mathbf{n}})$$

3D power spectrum at projected scale $k \sim \ell / \chi$

Projected statistics

$$C_{\ell}^{ab} = \int \frac{d\chi}{\chi^2} \underline{q_a(\chi) q_b(\chi)} P_{ab}(k \simeq \ell/\chi)$$

Radial kernels:

$$\delta_{2D}^{a}(\hat{\mathbf{n}}) = \int d\chi \, q_a(\chi) \, \delta_{3D}^{a}(\chi \hat{\mathbf{n}})$$

3D power spectrum at projected scale $k\sim \ell/\chi$

3x2-point = shear-shear + shear-galaxy + galaxy-galaxy

Projected statistics

$$C_{\ell}^{ab} = \int \frac{d\chi}{\chi^2} \underline{q_a(\chi) q_b(\chi)} P_{ab}(k \simeq \ell/\chi)$$
Padial kernels: 3D power spectrum at

projected scale k~ℓ/χ

Radial kernels:

$$\delta_{2D}^{a}(\hat{\mathbf{n}}) = \int d\chi \, q_a(\chi) \, \delta_{3D}^{a}(\chi \hat{\mathbf{n}})$$

3x2-point = **shear-shear** + shear-galaxy + galaxy-galaxy

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

3x2-point = **shear-shear** + shear-galaxy + galaxy-galaxy

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

1. Less sensitive to evolution.

3x2-point = **shear-shear** + shear-galaxy + galaxy-galaxy

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

- 1. Less sensitive to evolution.
- 2. More sensitive to small scales

3x2-point = **shear-shear** + shear-galaxy + galaxy-galaxy

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

- 1. Less sensitive to evolution.
- 2. More sensitive to small scales
- Direct measurement of "clumpiness amplitude"

3x2-point = shear-shear + **shear-galaxy + galaxy-galaxy**

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

Galaxy clustering:

- $\delta_{g} = f[\delta_{M}] \sim b_{g} \delta_{M}$
- Local

1. Sensitive to scale dependence

3x2-point = shear-shear + **shear-galaxy + galaxy-galaxy**

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

Galaxy clustering:

-
$$\delta_{g} = f[\delta_{M}] \sim b_{g} \delta_{M}$$

- Local

- 1. Sensitive to scale dependence
- 2. Sensitive to evolution

$$C_\ell^{gg} \propto \sigma_8^2 b_g^2$$

Galaxy clustering:

- $\delta_{g} = f[\delta_{M}] \sim b_{g} \delta_{M}$
- Local

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated

Projected LSS tracers: CMB lensing

Projected LSS tracers: CMB lensing

Projected LSS tracers: Sunyaev-Zel'dovich

Thermal and kinematic Sunyaev-Zel'dovich effects:

- Scattering of CMB photons by hot gas
- Clean probes of gas thermodynamics (and LSS)

Projected LSS tracers: Sunyaev-Zel'dovich

Thermal and kinematic Sunyaev-Zel'dovich effects:

- Scattering of CMB photons by hot gas
- Clean probes of gas thermodynamics (and LSS)

Projected LSS tracers: CMB secondary anisotropies

Simons Observatory (SO):

- 1 Large Aperture Telescope (LAT)
 High-res. science. CMB lensing.
- 6 Small-Aperture Telescopes (SATs) Large-scale B-modes (gravity waves)

Taking data now!

Learning about baryons

Part 2

Why learn about baryons?

Why?

- Is S_8 tension real?
- Stage-IV lensing cannot avoid baryonic effects

With baryons
No baryons
Calibrated baryons

Wayland et al. 2025

Amy Wayland

Why learn about baryons?

Why?

- Is S_s tension real?
- Stage-IV lensing cannot avoid baryonic effects

With baryons No baryons **Calibrated baryons**

Wayland et al. 2025

Amy Wayland

- Understanding feedback key for galaxy formation/evolution
- Unlock new cosmological probes:
 - kSZ: measure $Hf\sigma_8$
 - tSZ: high-sensitivity to σ_g /growth/dark energy

Why learn about baryons?

Why?

- Is S_g tension real?
- Stage-IV lensing cannot avoid baryonic effects
- Understanding feedback key for galaxy formation/evolution
- Unlock new cosmological probes:
 - o kSZ: measure $Hf_{\mathcal{O}_8}$
 - \circ tSZ: high-sensitivity to σ_g /growth/dark energy

How?

- Target multiple probes of the same astrophysics
 E.g. tSZ+Xray, kSZ+ FRB
- Avoid regimes requiring complex modelling
 E.g.: avoid small-scale correlations with galaxies

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Nick Koukoufilippas - Oxford

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Robust to galaxy bias

Sara Maleubre

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Robust to galaxy bias

Good agreement with hydro sims

Sara Maleubre

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Robust to galaxy bias

Adrien La Posta

Good agreement with hydro sims

Information on gas thermodynamics and baryonic effects

Idea: estimate $\langle bP_e \rangle$ from large-scale x-corr between galaxies and tSZ maps

Same principle as:

- Lensing tomography
- Clustering redshifts

Robust to galaxy bias

Adrien La Posta

Good agreement with hydro sims

Information on gas thermodynamics and baryonic effects

... and cosmology? Chen et al. 2024

Example 2: tSZ x shear

Idea: small-scale correlation between tSZ and lensing

Sensitive (mostly) to purely hydro quantities:

 $P_{mm}(k)$, $P_{mp}(k)$ <- no galaxies, simpler model

Constrain baryonic feedback (?)

Example 2: tSZ x shear

Idea: small-scale correlation between tSZ and lensing

Sensitive (mostly) to purely hydro quantities:

 $P_{mm}(k)$, $P_{mp}(k)$ <- no galaxies, simpler model

Constrain baryonic feedback (?)

Exploit sensitivity of tSZ to growth (?)

Idea: correlate CMB map with reconstructed galaxy momentum field $~\theta_d=3.5'$

"kSZ stacking" approach:

- 1. Project CMB map centred on galaxies
- 2. Apply CAP filter to minimise CMB noise
- 3. Stack signal weighted by reconstructed galaxy velocity

Signal: ~ cumulative electron density profile

$$\frac{\Delta T}{T}\Big|_{\text{kSZ}} = f_{\text{CMB}}(\nu) \, \sigma_T \int \frac{d\chi}{1+z} \, n_e(\chi \hat{\mathbf{n}}, z) \, \mathbf{v} \cdot \hat{\mathbf{n}}$$

Idea: correlate CMB map with reconstructed galaxy momentum field

"kSZ stacking" approach:

- 1. Project CMB map centred on galaxies
- Apply CAP filter to minimise CMB noise
- 3. Stack signal weighted by reconstructed velocity

Signal: ~ cumulative electron density profile

Drawbacks:

- Computationally slow (~5min on ~10 NERSC nodes)
- Highly correlated measurements.
 Unreliable covariance

Idea: correlate CMB map with reconstructed galaxy momentum field

C_ℓ approach: stacking estimator can be expressed as C_ℓ weighted by CAP filter

$$\Delta \hat{T}_{kSZ}(\theta_d) = \sum_{\ell} \frac{2\ell + 1}{4\pi} \hat{C}_{\ell}^{\pi_g T} W_{\ell}^{CAP}(\theta_d)$$

-
$$\pi_{\rm g}$$
 = projected galaxy momentum
$$\pi_g \equiv \frac{1}{\bar{n}_\Omega} \sum_i \delta^D(\hat{\mathbf{n}}, \hat{\mathbf{n}}_i) v_{r,i} \equiv \int dz \, p(z) \, (1 + \delta_g) v_r$$

Lea Harscouet

Kevin Wolz

Idea: correlate CMB map with reconstructed galaxy momentum field

 C_{ℓ} approach: stacking estimator can be expressed as C_{ℓ} weighted by CAP filter

$$\Delta \hat{T}_{kSZ}(\theta_d) = \sum_{\ell} \frac{2\ell + 1}{4\pi} \hat{C}_{\ell}^{\pi_g T} W_{\ell}^{CAP}(\theta_d)$$

- π_{g} = projected galaxy momentum

$$\pi_g \equiv \frac{1}{\bar{n}_{\Omega}} \sum_{i} \delta^D(\hat{\mathbf{n}}, \hat{\mathbf{n}}_i) v_{r,i} \equiv \int dz \, p(z) \, (1 + \delta_g) v_r$$

Lea Harscouet

Kevin Wolz

- Equivalent at the estimator level!
- All information encoded in C_{ℓ}
- Catalog-based method to recover small-scale signal without pixels.
 (<u>Wolz et al. 2024</u>)

Idea: correlate CMB map with reconstructed galaxy momentum field

 C_{ℓ} approach: stacking estimator can be expressed as C_{ℓ} weighted by CAP filter

- **Fast:** 30s on single node
- Quick and accurate **covariance** using C_{ℓ} methods (<u>Garcia-Garcia et al. 2019</u>) Including cross-covariances for multi-probe analyses.

Learning about baryons

- Multi-probe approach vital for robust understanding of small-scale clustering and feedback.
- Develop fast and reliable estimators for baryonic probes. Enable e.g.: $3x2pt + \gamma y + \langle bP_e \rangle + kSZ C_{\ell}$

Learning about baryons

- Multi-probe approach vital for robust understanding of small-scale clustering and feedback.
- Develop fast and reliable estimators for baryonic probes.
 Enable e.g.: 3x2pt + γy + ⟨bP_e⟩ + kSZ C_θ
- Develop thorough models for kSZ, accounting for velocity-density correlations, satellites, 2-halo contributions (*Wayland et al. in prep.*)

Amy Wayland

Learning about baryons

- Multi-probe approach vital for robust understanding of small-scale clustering and feedback.
- Develop fast and reliable estimators for baryonic probes.
 Enable e.g.: 3x2pt + γy + ⟨bP_e⟩ + kSZ C_ℓ
- Develop thorough models for kSZ, accounting for velocity-density correlations, satellites, 2-halo contributions (*Wayland et al. in prep.*)
- Explore novel probes: e.g. FRBs (<u>Wang et al. 2025</u>)

Amy Wayland

Part 3 2- and 3-point information

Motivation

Why study the bispectrum as a HOS?

- Well-understood theoretical framework
- Can be connected with fundamental ingredients no need to emulate the whole survey
- Potential to break important degeneracies (e.g. $b_1 \sigma_8$)
- Test for self-consistency of bias model

Motivation

Why study the bispectrum as a HOS?

- Well-understood theoretical framework
- Can be connected with fundamental ingredients no need to emulate the whole survey
- Potential to break important degeneracies (e.g. $b_1 \sigma_8$)
- Test for self-consistency of bias model

Why not?

- Estimators can be very slow
- Lots of triangle configurations!
- Complicated covariance matrix

The FSB estimator:

1. Filter your field $\delta_L \equiv W_L \, \otimes \, \delta$

Lea Harscouet

Anze Slosar

The FSB estimator:

- 1. Filter your field $\delta_L \equiv W_L \, \otimes \, \delta$
- 2. Square it: $s_L(\hat{\mathbf{n}}) \equiv \left[\delta_L(\hat{\mathbf{n}})\right]^2$
- 3. Correlate it with your original field

$$\Phi_{LL\ell}^{\delta\delta\delta} \equiv \langle \delta_{\ell m}(s_L)_{\ell m}^* \rangle \sim b_{LL\ell}$$

Lea Harscouet

Anze Slosar

The FSB estimator:

$$\Phi_{L_1 L_2 \ell}^{abc} \equiv \langle a_{\ell m} (b_{L_1} c_{L_2})_{\ell m}^* \rangle \sim b_{L_1 L_2 \ell}^{abc}$$

Lea Harscouet

The FSB estimator:

$$\Phi_{L_1 L_2 \ell}^{abc} \equiv \langle a_{\ell m} (b_{L_1} c_{L_2})_{\ell m}^* \rangle \sim b_{L_1 L_2 \ell}^{abc}$$

Fast and accurate. Treat each s_L as a new field in an Nx2pt scheme using fast pseudo-C_ℓ estimation.

Residual mask effects from filtering are negligible.

Lea Harscouet

The FSB estimator:

$$\Phi_{L_1 L_2 \ell}^{abc} \equiv \langle a_{\ell m} (b_{L_1} c_{L_2})_{\ell m}^* \rangle \sim b_{L_1 L_2 \ell}^{abc}$$

Fast and accurate. Treat each s_L as a new field in an Nx2pt scheme using fast pseudo-C_θ estimation.

Residual mask effects from filtering are negligible.

Fast, accurate and data-driven covariance matrix
 Again using pseudo-C_ℓ methods

Lea Harscouet

The bispectrum covariance:

The correlator expansion picture

$$Cov(b,b) \sim \langle \delta^2 \rangle^3 + \langle \delta^3 \rangle^2 + \langle \delta^2 \rangle \langle \delta^4 \rangle_c + \langle \delta^6 \rangle_c$$

Lea Harscouet

The bispectrum covariance:

The correlator expansion picture

$$Cov(b,b) \sim \langle \delta^2 \rangle^3 + \langle \delta^3 \rangle^2 + \langle \delta^2 \rangle \langle \delta^4 \rangle_c + \langle \delta^6 \rangle_c$$

The power spectrum picture:

"disconnected trispectrum" of the fields involved, AKA "Gaussian covariance"

$$\operatorname{Cov}(\langle \delta s_L \rangle_{\ell}, \langle \delta s_L \rangle_{\ell'}) \sim \delta_{\ell\ell'} \left[\langle \delta^2 \rangle \langle s_L^2 \rangle + \langle \delta s_L \rangle^2 \right]$$

Lea Harscouet

The bispectrum covariance:

• The correlator expansion picture

$$Cov(b,b) \sim (\langle \delta^2 \rangle^3) + (\langle \delta^3 \rangle^2) + (\langle \delta^2 \rangle \langle \delta^4 \rangle_c) + \langle \delta^6 \rangle_c$$

The power spectrum picture:

"disconnected trispectrum" of the fields involved, AKA "Gaussian covariance"

$$\operatorname{Cov}(\langle \delta s_L \rangle_{\ell}, \langle \delta s_L \rangle_{\ell'}) \sim \delta_{\ell\ell'} \left[\langle \underline{\delta^2} \rangle \langle s_L^2 \rangle + \langle \delta s_L \rangle^2 \right]$$

These are exactly the purely "diagonal" elements of the correlator expansion!

And they can be estimated purely from the data. Similar result for $Cov(b, C_{\rho})$

Dominant off-diagonal elements are relatively simple.

Can also be calculated from the data.

$$\underline{\text{Cov}^{N_{222}}(\Phi_{LL\ell}, \Phi_{L'L'\ell'})} = \delta_{LL'} \frac{C_{\ell}C_{\ell'}}{\pi} \sum_{\ell'' \in L} (2\ell'' + 1)C_{\ell''} \begin{pmatrix} \ell & \ell' & \ell'' \\ 0 & 0 & 0 \end{pmatrix}^{2} \underline{\text{Cov}^{N_{32}}(\Phi_{LL\ell}, C_{\ell'})} = \delta_{\ell' \in L} \frac{4C_{\ell'}\Phi_{L\ell\ell'}}{2\ell + 1}$$

Idea: apply FSB to CMB lensing tomography, targeting $\langle gg \rangle$, $\langle g\kappa \rangle$, $\langle gg \rangle$, $\langle gg\kappa \rangle$

- Improve cosmological constraints adding higher-order statistics.
- Useful consistency test (predict 3pt from 2pt and vice-versa).
- Test self-consistency of bias model.

Data:

- Planck PR4 lensing maps (Carron et al. 2022)
- DESI photometric LRG sample (<u>Zhou et al. 2023</u>, <u>Sailer et al. 2024</u>)

Lea Harscouet

 40σ

First cosmological (2+3)-point analysis

Idea: apply FSB to CMB lensing tomography, targeting $\langle gg \rangle$, $\langle g\kappa \rangle$, $\langle gg \kappa \rangle$

Lea Harscouet

Idea: apply FSB to CMB lensing tomography, targeting $\langle gg \rangle$, $\langle g\kappa \rangle$, $\langle ggg \rangle$, $\langle gg\kappa \rangle$

Tree-level (2+3)-point analysis

- Tree-level CI depends only on b_1 , but bispectrum depends on b_2 , b_3
- Assume coevolution relations $b_2(b_1)$, $b_s(b_1)$ (Lazeyras et al. 2016, 2018)

Lea Harscouet

Idea: apply FSB to CMB lensing tomography, targeting $\langle gg \rangle$, $\langle g\kappa \rangle$, $\langle ggg \rangle$, $\langle gg\kappa \rangle$

 Consistent results for different probe combinations

Lea Harscouet

Idea: apply FSB to CMB lensing tomography, targeting $\langle gg \rangle$, $\langle g\kappa \rangle$, $\langle ggg \rangle$, $\langle gg\kappa \rangle$

- Consistent results for different probe combinations
- 10-20% improvement over 2x2pt

Lea Harscouet

First (proper) cosmological (2+3)-point analysis

Verdiani et al. (in prep.)

Idea: self-consistent bias and cosmology from gg+g κ (1-loop) and ggg (tree)

Francesco Verdiani

First (proper) cosmological (2+3)-point analysis

Idea: self-consistent bias and cosmology from gg+g κ (1-loop) and ggg (tree)

- Model and scale cuts validated against N-body sims

Francesco Verdiani

First (proper) cosmological (2+3)-point analysis

Idea: self-consistent bias and cosmology from gg+g κ (1-loop) and ggg (tree)

- Model and scale cuts validated against N-body sims
- ~10-20% improvements on cosmology from 2x2pt

Francesco Verdiani

Idea: self-consistent bias and cosmology from gg+g κ (1-loop) and ggg (tree)

- Model and scale cuts validated against N-body sims
- ~10-20% improvements on cosmology from 2x2pt
- Significant improvement on bias parameters
- Talk to Francesco to know more!

Francesco Verdiani

(2+3)-point

- Current constraints limited by modeling uncertainties
 Go to 1-loop bispectrum? HEFT even better.
 Is HOS for projected galaxy clustering actually useful for cosmology?
- FSB-like approaches to other higher-order stats.
 - E.g. 1: trispectrum covariance
 - E.g. 2: parity-odd bi/tri-spectra
- FSB in the presence of very complex masks (e.g. cosmic shear)
- Is small-scale, multi-tracer bispectrum useful for baryons?

Summary

Summary

- Weak lensing, galaxy clustering and other LSS tracers are highly complementary for cosmology and astrophysics.
- Multi-tracer approach vital for robust, data-driven constraints in non-linear regime.
- Efficient approach to projected bispectrum (FSB)
 Improvements on cosmology and bias. Important consistency test.

Grazie mille!