Un-detecting Dynamical Dark Energy in DESI's data

Mikhail (Misha) Ivanov CTP - Leinweber Institute/ MIT

J. Sullivan, C. Cuesta-Lazaro, S. Mishra-Sharma, A. Obuljen, M. Toomey, O. Philcox, Shi-Fan Chen, Shu-Fan Chen, A. Chudaykin, T. Bakx, Z. Vlah (sorry can't fit all the pics)

Plan:

- I. DESI results on DDE
- 2. w0wa hunter's guide
- 3. DE interactions? Tau? Ok?
- 4. Full-shape recap
- 5. New tools I: Simulation-Based Priors
- 6. New tools II: One-Loop Bispectrum
- 7. Independent reanalysis of DESI DR1 FS: results
- 8. ???
- 9. Lunch!

Into and Motivation

DESI reported evidence for w0wa in BAO data

Satya's talk

$$w(z) = rac{p_{DE}}{
ho_{DE}} = w_0 + rac{z}{1+z}w_a$$
 $extbf{CC:} = -1 + rac{z}{1+z} \cdot 0$

The New York Times

A Tantalizing 'Hint' That Astronomers Got Dark Energy All Wrong

Scientists may have discovered a major flaw in their understanding of that mysterious cosmic force. That could be good news for the fate of the universe.

w0wa Hunter Guide

Overall slope (Om tension w/ CMB), and the phantom crossing

$$F_{\rm AP} \sim H(z) D_A(z)$$

Phantom crossing is necessary to fit the data well

Models

Usual single scalar field models do not work b/c it can't be phantom

Interacting fields work —>
effective phantom
behavior without violating NEC

Toomey, Sullivan, Hughes, MI (to appear)

w0wa / Tau / Ok?

Tension in LCDM Om measurements between CMB and BAO

Tang et al (2025)

Can be caused by something other than w0wa:

(* no SNe)

Chen, Zaldarriaga (2025)

We need more information. Full Shape!

EFT-based full-shape analysis

Cosmic Microwave Background

Planck'18

$$C_{\ell} \sim \left\langle \left(\frac{\delta T}{T} \right)^2 \right\rangle, \quad \ell \sim \frac{1}{\theta}$$

 $\{\Omega_m, \Omega_b, H_0, \tau, A_s, n_s\}$

Large-Scale Structure

(c) DESI
$$\delta = \frac{\delta \rho}{\rho}$$

$$\langle \delta^2 \rangle \to P(k)$$
 $k = \frac{2\pi}{\lambda}$

The big problem

- CMB analysis relies on linear physics
- LSS is intrinsically non-linear

Ways to analyse LSS:

Tegmark++, SDSS analysis (2006)

"standard" approach until recently: focus on observables that are approximately stable w.r.t. non-linear effects:

Baryon Acoustic Oscillations + RSD

Discard shape information

For many models the progress can be made only with the shape information. I'll show today how this works with the Dynamical DE

Solutions

Simulations

time-consuming

Perturbation theory (EFT)

🚺 limited range

precision & accuracy

fast/ cheap - beyond LCDM

marg. over astrophysics

State-of-the-art equipment for a theoretical physicist

Galaxies in perturbation theory (EFT)

 $\delta = \frac{\delta \rho}{\rho}$

Dimensional analysis + Symmetries:

$$\delta_{g} = b_{1}\delta$$

$$+ b_{2}\delta^{2} + b_{\mathcal{G}_{2}}(\nabla_{\langle i}\nabla_{j\rangle}\Phi)^{2} + \dots$$

$$+ v^{i} + \Phi$$

Rotation invariance (+Galilean inv)

Equivalence Principle

Roy, McDonald (2006)

Desjacques, Jeong, Schmidt (2016)

Nuisance (bias) parameters:

$$b_1, b_2, b_{\mathcal{G}_2}, \dots$$

EFT program

MI, Simonovic, Zaldarriaga (2019), Philcox, MI (2021) ++ D'Amico, Kokron++(2019), Chen, White, Vlah (2021)

Baumann (2012), Nicolis, Carrasco, Senatore, Zaldarriaga, Simonovic, White, Vlah, Lewandowski, ++ many more

Check out CLASS-PT code

see also FAST-PT, Velocileptor, Spinosourus, PiBird, CLASS-I loop, etc.

EFT: from BOSS to DESI

The most complete BOSS analysis: Chen, Ivanov, Philcox, Wenzl (2024)

D'Amico, Kokron++(2019), Chen, White, Vlah (2021)

Applications

Hubble tension

Dark Sectors

Inflation

Ghost inflation!

O.Philcox, C. Hill, E. McDonough, M. Toomey, A. He, R. An, V. Gluscevic, K. Rogers, A. Lague, K. Akitsu, G. Cabass, C. Dvorkin, F.-Y. Cyr-Racine, D. Camarena, +++

New tools

Limits of EFT: breakdown on small scales

- Perturbation theory does not work beyond its radius of convergence
- No matter how many loops you compute, EFT is a disaster beyond the non-linear scale:

$$\delta_{lin} \sim 1$$
 $k_{\rm NL} \sim 1 \ h \rm Mpc^{-1}$

e.g. spherical collapse

$$\delta_{NL} = \frac{1}{\left(1 - \frac{\delta_{lin}}{\nu}\right)^{\nu}} - 1, \quad \nu = \frac{21}{13}$$

$$\approx \delta_{lin} + \frac{17}{21}\delta_{lin}^2 + \dots$$

Simulations: from hydro to HOD

Galaxies live in DM halos

Take halos from N-body & paint galaxies based on the distribution motivated by data or hydro sims, e.g.

$$\langle N_{\text{cen}}(M) \rangle = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\log M - \log M_{\min}}{\sigma_{\log M}} \right) \right],$$

$$\langle N_{\rm sat}(M) \rangle = \left(\frac{M - M_{\rm cut}}{M_1}\right)^{\alpha}$$
,

Simulation-based inference program

Uros' talk

Computational cost is a significant burden even for HOD

Small grid of high-res high-volume simulations: e.g. AbacusSummit

Grid too coarse (80 sims) for precision statements

© Cuesta-Lazaro ++'23

Can analyze only small volumes ~ I (Gpc/h)^3

© Hanh ++'23

Beyond - 2pt Challenge

Benchmarking EFT vs Simulation-based inference (SBI)

Figure 2. 1D marginalized constraints on $\Omega_{\rm m}$ and σ_8 for parameter-masked analyses of redshift-space mocks (mean of 10 realizations, errors of 1 box), marginalized over the remaining cosmological parameters of flat Λ CDM and nuisance parameters specific to each method.

E. Krause, MI ++'24

EFT (PT) vs Simulations

- Both approaches have weaknesses and merits
- Why not combine them?
- The best way: combine EFT and Sims at the field level

COLA, FastPM methods, etc., Obuljen, Simonovic ++ (2022), Modi, Philcox (2023)

EFT-based analysis with Simulation-Based priors

The simplest way: extract priors on EFT parameters

$$b_1, b_2, b_{\mathcal{G}_2}, \dots$$

From the simulations!

Problem: need a lot of simulations for large "training sets"
 — small volume

but small volume = large errors (cosmic variance)

Sullivan, Seljak, Singh' 2 I

MI, Cuesta-Lazaro, Mishra-Sharma,
Obuljen, Toomey'24

Field-level comparison: MillenniumTNG

Don't pay the price of cosmic variance because the initial conditions are known!

HOD-based priors

>20,000 cheap sims — Fit the distribution — Priors for EFTxFS

EFT with Simulation-based priors

MI, Obuljen, Cuesta-Lazaro, Toomey (2409.10609)

Reanalysis of BOSS: circa 2024

Un-detecting Dynamical Dark Energy: with BOSS

the old FS data from BOSS disfavors w0wa even in combination with SNe, and especially so with the simulation-based priors

Comparison with MTNG and Astrid

One might be worried that these priors are specific to HOD models

We validate them on full hydro simulations

Selections matching the observed color

Hadzhiyska++ (2021)

MI, Cuesta-Lazaro, Obuljen, Toomey ++ (2024)

Comparison with MTNG and Astrid

Subgrid physics uncertainties: can't predict EFT params

exactly

Universality: correlations between EFT parameter trends and corr's seem very robust

probably we can trust them

Hydro results for ELGs

Analytic understanding of EFT params from halo model

~10% accuracy w.r.t. simulations

can be easily computed without simulations

can be used in analyses Beyond SM Physics

Seljak (2000)

Akitsu (2024), Ivanov (2025)

One-loop bispectrum

$$\langle \delta_g^3 \rangle \sim \sum_{\mathbf{k}_1}^{\mathbf{k}_2} + \sum_{ar{\Gamma}_3}^{ar{\Gamma}_3} + \sum_{ar{\Gamma}_3}^{ar{\Gamma}_3} + \sum_{ar{\Gamma}_3}^{ar{\Gamma}_3} + \sum_{ar{\Gamma}_3}^{ar{\Gamma}_3}$$

Scoccimarro, Eggeimeier, Senatore, D'Amico, Lewandowski, Zhang, Philcox, MI

$$P_{\rm lin} = c_i v^i(k)$$

$$B_{1-\text{loop}} \sim P_{\text{lin}} P_{\text{lin}} P_{\text{lin}} \rightarrow C_{ijk} c^i c^j c^k$$

To capture BAO need around 100 elements

$$C_{ijk} \sim (10^2)^3 \sim 10^6$$

Cobra: use SV decomposition of a template bank and get the minimal number of templates: 4-8
Cosmology-dependence to 0.1% precision in <1 sec!

Fast & accurate one-loop bispectrum analysis made possible

Bin

Relative to total B_{ℓ}

Back to DESI

Now back to DESI

Custom likelihood based on public FS data (DRI)
Streamlined treatment of systematics
Fiber collision corrections for B for the first time
Window-free estimators for P + B

Oliver's talk on week 6 (probably)

Chudaykin, MI, Philcox (2025)++

LCDM Power Spectrum + Bispectrum

Consistent w/ DESI's P(k) FS. The bispectrum adds a bit of information and moves Om to Planck

Chudaykin, MI, Philcox (2025)++

Galaxy bias

Halo bias relations are not particularly accurate

Chudaykin, MI, Philcox (2025)++

FIG. 10. Bias Relations: The linear, quadratic and tidal bias parameters extracted from an analysis of the $P_{\ell} + B_0$ data for the six DESI data chunks: BGS (green), three LRGs (red), ELG2 (blue) and QSO (purple). The black curves represent results for dark matter halos: the solid curve depicts the fit to the direct measurements from QUIJOTE halo catalogs [150], whilst the dashed curves show the peak-background split prediction for b_2 from [165] and the local Lagrangian bias model prediction for $b_{\mathcal{G}_2}$, respectively [164] The bias parameters measured from the LRG-HOD and ELG-HMQ mock catalogs [155] are shown as discrete data points.

Un-detecting Dynamical Dark Energy

Independent reanalysis based on public DESI FS data:

Chudaykin, MI, Philcox, to appear

- * no supernovae
- * tree-level bispectrum

Un-detecting Dynamical Dark Energy

With the Supernovae!

This suggests that w0wa is simply a statistical fluke. No new physics is required at this point

Chudaykin, MI, Philcox, to appear

* tree-level bispectrum

Un-detecting Dynamical Dark Energy

Kitchen sink (preliminary):

Chen, Chudaykin, MI, Philcox, to appear

Summary

EFT-based FS is a highly competitive probe

Makes a difference for BSM models

e.g. suggests DESI's w0wa is a statistical fluctuation

Huge improvements in the future

Non-perturbative information, interface with simulations is key to boost constraining power

Thank you!