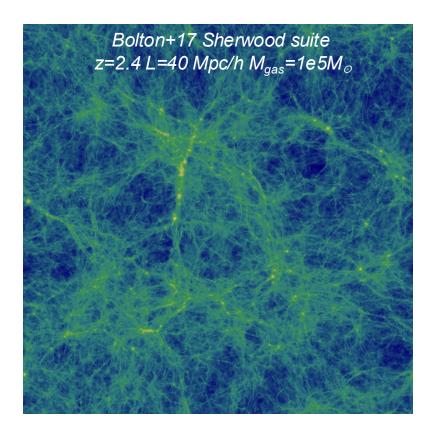


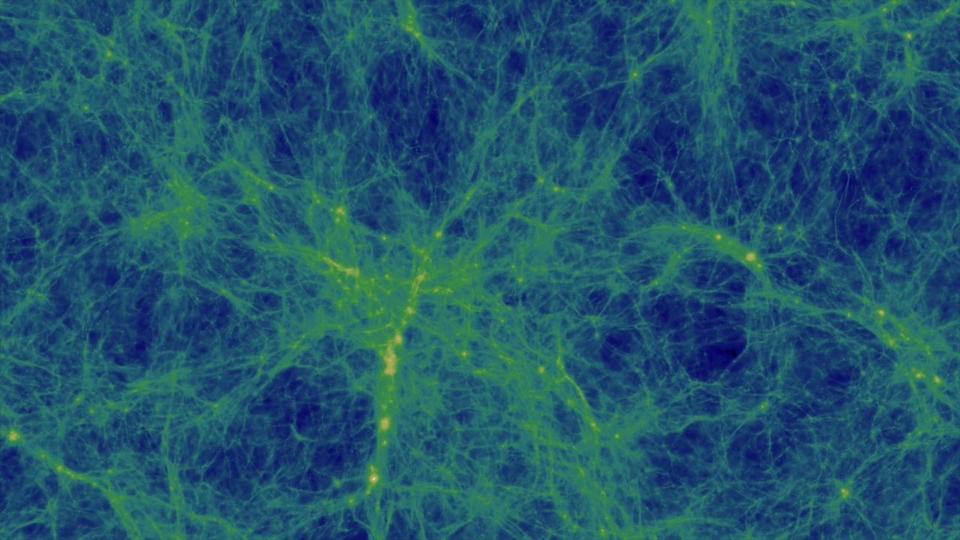
Intro: the simple physics of the cosmic web



Intergalactic Cosmic Web

- ✓ Filamentary gaseous cosmic web as predicted in ΛCDM hydro sims
- Key physics relatively simple: gas cooling and heating by a (uniform) UV background in an expanding Universe
- ✓ Physical properties can be derived by assuming two physical fluids (DM and gas) evolving, with the latter having its pressure (Jeans scale)

Bi & Davidsen 1997, Schaye 2001, Gnedin & Hui 98



Physics of the gas: filtering scale

$$\frac{d^2\delta_X}{dt^2} + 2H\frac{d\delta_X}{dt} = 4\pi G\bar{\rho}(f_X\delta_X + f_b\delta_b), \qquad k_J = \frac{a}{c_S}\sqrt{4\pi G\bar{\rho}}.$$

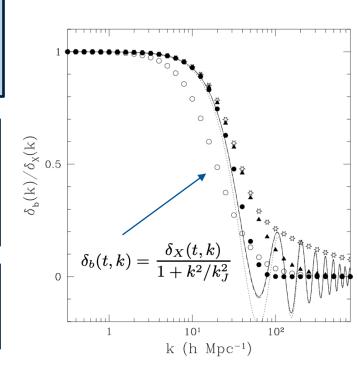
$$\frac{d^2\delta_b}{dt^2} + 2H\frac{d\delta_b}{dt} = 4\pi G\bar{\rho}(f_X\delta_X + f_b\delta_b) - \frac{c_S^2}{a^2}k^2\delta_b \qquad \text{Thermal history}$$

Equation of motion of

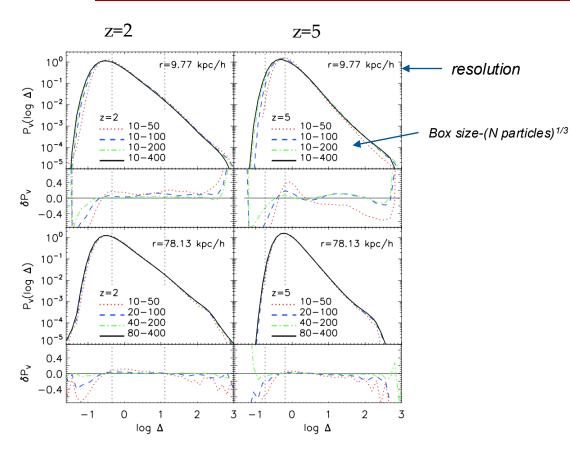
$$egin{aligned} rac{doldsymbol{v}}{dt} + Holdsymbol{v} &= -
abla \phi - rac{1}{
ho}
abla P, & \psi &= \phi + \mathcal{H} \ & rac{doldsymbol{v}}{dt} + Holdsymbol{v} &= -
abla \psi \end{aligned} \qquad \mathcal{H}(
ho) &= rac{P(
ho)}{
ho} + \int_{1}^{
ho} rac{P(
ho')}{
ho'} rac{d
ho'}{
ho'} \ & ext{Specific enthalpy} \end{aligned}$$

$$\frac{1}{k_F^2(t)} = \frac{1}{D_+(t)} \int_0^t dt' a^2(t') \frac{\ddot{D}_+(t') + 2H(t')\dot{D}_+(t')}{k_J^2(t')} \int_{t'}^t \frac{dt''}{a^2(t'')}$$

Filtering scale k_F rather than k_I is used And $k_{\rm F}$ depends on the whole thermal history (unlike $k_{\rm I}$)

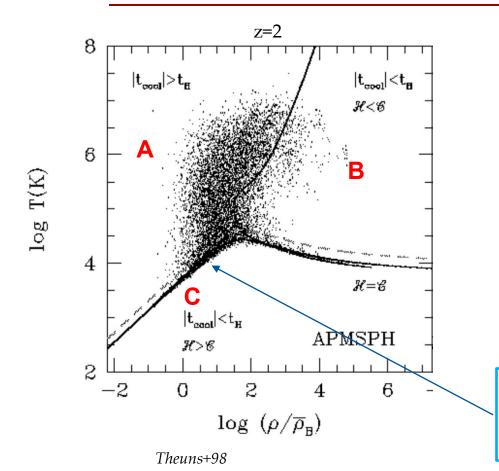


Gnedin & Hui 1998, Gnedin 2000, He & Gnedin 2020



- ✓ Volume-weighted gas pdf is a skewed Gaussian – **Lognormal** fit works reasonably well
- ✓ 8th order polynomali fit provided in Becker&Bolton 2009, but earlier models are also in agreement (Bi, Miralda-Escude' et al. 97)
- ✓ Unfortunately, this is not observable....

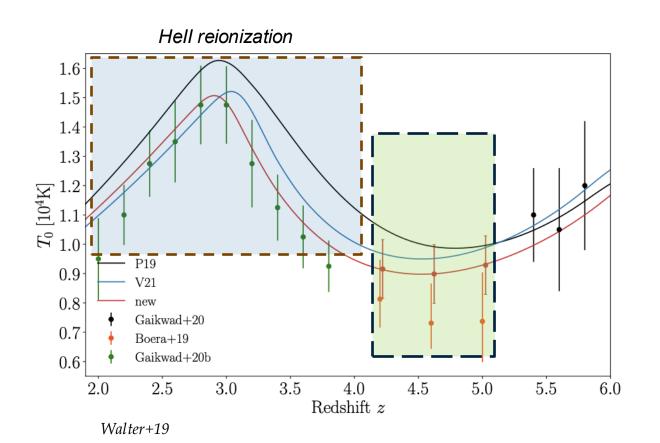
Bolton & Becker 2009, Bi & Davidsen 97

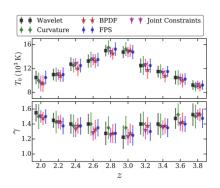


$$t_{\rm cool} = rac{u}{|\dot{u}|} = rac{3k_BT}{2\mu} rac{m_H}{
ho(1-Y)^2(\mathcal{C}-\mathcal{H})}$$

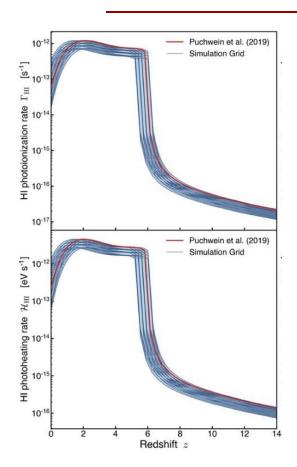
 t_{cool} : cooling time with C an H are normalized cooling and heating rates

- ✓ 3 regions in the T- ρ plane:
 - **A**) cooling time much longer than Hubble time: *C* and *H* are not effective
 - B) Bremsstrahlung and line cooling are effective $\rightarrow t_{cool} < t_H$
 - C) Region with efficient photoheating (HI and HeII)
- ✓ $T=T_0(1+\delta)^{\gamma-1}$ for the low-density region
- ✓ Most of the gas in a cool/cold phase





- Constraints obtained with a variety of data and methods
- Sensitive to lines rather than the lines' clustering
- HeII bump quite well detected





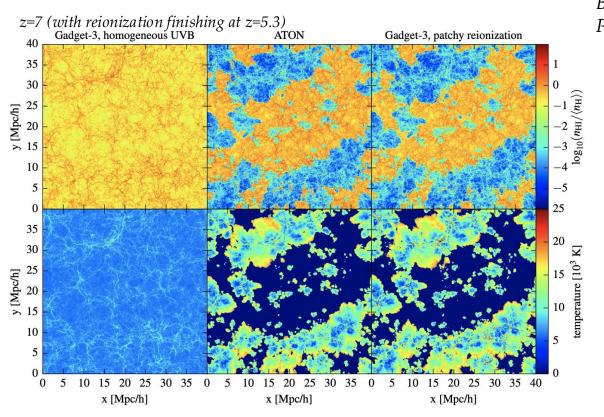
Most of this "global" uncertainty is captured by requiring the sims to reproduce a given mean flux value (which is very well measured by data)

"New" astrophysics in the cosmic web

Patchy reionization

Simulating the high-redshift cosmic web

https://www.nottingham.ac.uk/astronomy/sherwood/

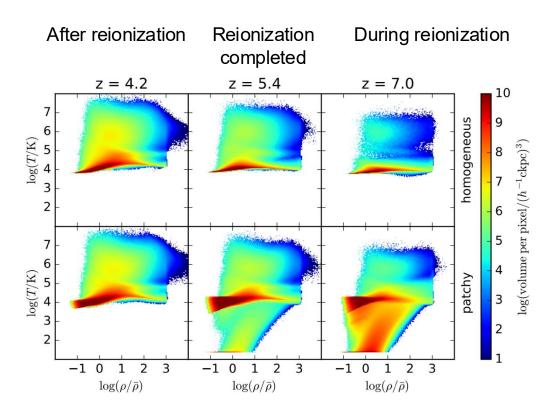


Bolton+17 Puchwein, Bolton+23

I. Bolton

E. Puchwein

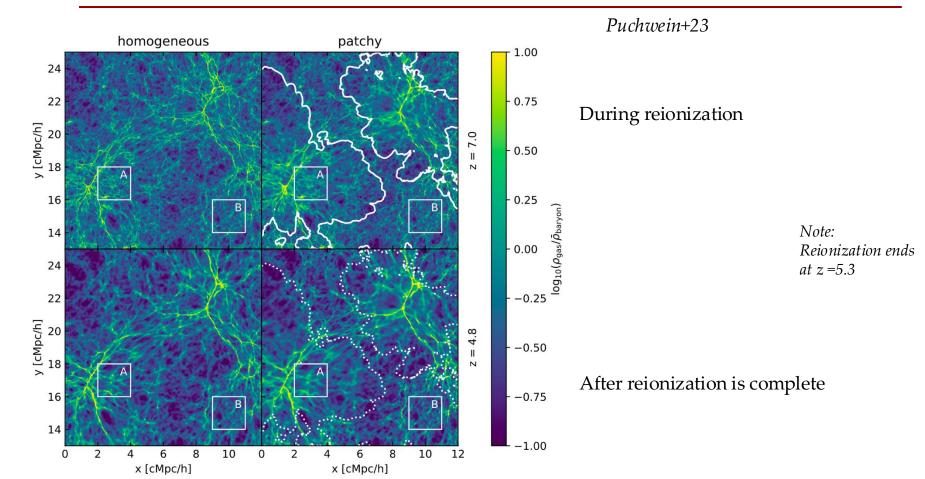
- ✓ Sherwood-Relics suite (>200 simulations: boxes 5-160 cMpc/h; M_{gas} =3.7e3-6.4e6 M_{\odot}) about 75 Million CPU hrs
- ✓ G3 code + ATON to perform radiative transfer for patchy reionization
- ✓ Focus (and model calibration) on the high-z (z>4) forest

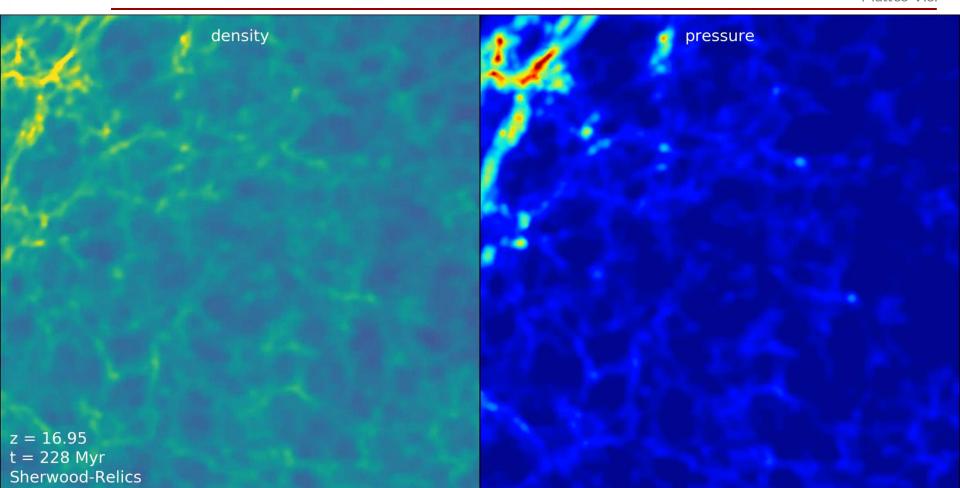


- ✓ T-ρ relation somewhat flatter at high-z moving closer to reionization
- ✓ ... and prone to the effects of a patchy reionization

Puchwein+23

Patchy Reionization





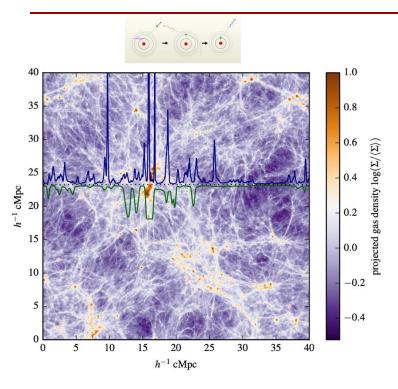
Summary

- ✓ There is a physical model of the low-density cosmic web based on gravitational instability, hydrostatic equilibrium (Jeans scale) + UV background, at z=2-5.
- ✓ Cosmic filaments do trace underlying gravitational (DM) potential above the filtering scale
- ✓ Thermal and ionization history are reasonably constrained and support: **patchy reionization**, HeII "heating" bump
- ✓ Feedback effects are small, impact more the low z regime, no evidence for turbulence
- ✓ Any astrophysical or fundamental physical process able either to:
 - dump heat in the low density IGM
 - or modify the matter power spectrum could have an impact
- ✓ How can we observe this?

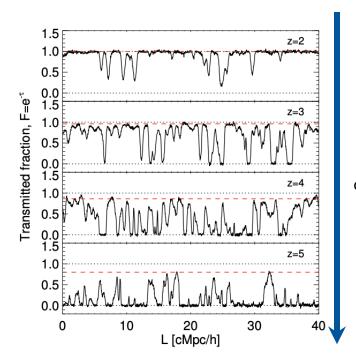
Lyman- α forest as a manifestation of the cosmic web

Modelling Cosmology

The Lyman- α forest

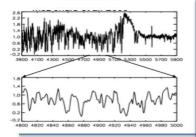


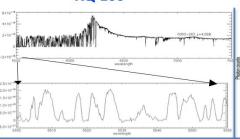
Most of the flux statistics are in agreement with Λ CDM – 216,000 flux models fed into MCMC analysis



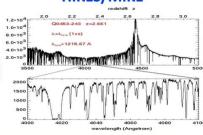
Increasing $z \rightarrow$ increasing HI \rightarrow more Absorption – at high z even underdense gas can produce absorption

DESI BOSS/SDSS-III





HIRES/MIKE



Low resolution BOSS and SDSS-III spectra S/N~2-3 - 160,000 spectra

Used to detect BAOs at z=2.3 and correlations in the transverse direction

Used to place stringent constraints on neutrino masses <0.12 eV

Busca+13, Slosar+14, Font-Ribera+14
Palanque-Delabrouille+15
Seljak+06, Baur+16, Yeche+17 etc.

Medium resolution X-Shooter VLT spectra S/N ~ 30

100 spectra at z>3.5

Used to place stringent constraints on Warm Dark Matter in combination with high res. spectra

> Irsic, MV+ 17a,17b Lopez+16, Irsic+16

High resolution VLT
or Keck spectra S/N
~100 - ~hundreds of
spectra

Used for WDM, astrophysics of the IGM and galaxy formation, variation of fundamental constants

MV+05,08,13, **Becke**r+11 Yeche+17, Garzilli+18, Bosman+18 3D flux power Linear power $P_F(k,\mu) = b_\delta^2 (1+\beta\mu^2)^2 P_L(k) \, D(k,\mu)$

$$eta = rac{b_{F\eta} \, f(\Omega)}{b_{F\delta}}$$

See Seljak 12 for analytical understanding of Lya bias

Linear tracer

$$\delta_F = b_{F\delta}\delta + b_{F\eta}\eta$$

 $b_{F\delta}=rac{\partial \delta_F}{\partial \delta}$, $b_{F\eta}=rac{\partial \delta_F}{\partial \eta}$ $\eta=-rac{1}{aH}rac{\partial v_p}{\partial x_p}$ Density bias Velocity grad. bias Pec. Vel. Grad.

 $D_1(k,\mu) = \exp\left\{\left[q_1\Delta^2(k) + q_2\Delta^4(k)\right]\left[1 - \left(rac{k}{k_v}
ight)^{a_v}\mu^{b_v}\right] - \left(rac{k}{k_p}
ight)^2
ight\}$

Non linearities

Arinyio-i-prats+ 2015

See Desjacques+18 for bias expansion

$$D(k, \mu) \equiv \exp \left\{ \left[\frac{k}{k_{
m NL}} \right]^{lpha_{
m NI}} - \left[\frac{k}{k_P} \right]^{lpha_P} - \left[\frac{k_{\parallel}}{k_V(k)} \right]^{lpha_V} \right\}$$

Non-linear power Pressure smoothing

RSD and thermal Fewer params, better behaved at small k broadening

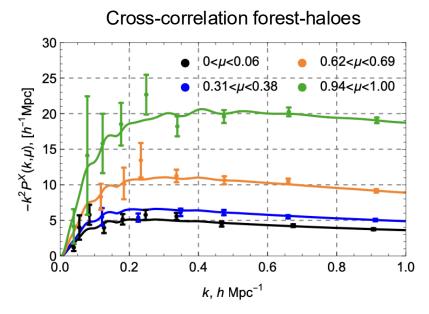
 $k_{NL} \sim 5 \text{ h/Mpc}$ $k_p \sim 10 \text{ h/Mpc}$ $k_v \sim 5-10 \text{ h/Mpc}$ $q_1 \sim 0.5-1.5$

$$\delta_F(\mathbf{x}) = b_1 \, \delta_m(\mathbf{x}) + b_\eta \, \eta(\mathbf{x}) + \sum_i b_{\mathcal{O}_i} \, \mathcal{O}_i(\mathbf{x}) \, + \delta_{\mathrm{ctr}}(\mathbf{x}) + \epsilon(\mathbf{x})$$

- ✓ EFT for the forest (Ivanov 23) 3D flux power with 15 params: 8 free parameters + analytical marginalization on other 7 param Good fit up to k_{max}=3 h/Mpc (z=2.8)
- ✓ Extended also to cross-correlation (Chudaykin & Ivanov 25) good fit to k_{max} = 1h/Mpc
- ✓ Extended to **1D flux power**, tested on sims and applied to data to constrain PBH *Ivanov & Trifinopolous* 25

$$P_F(k_\parallel,z) = rac{1}{2\pi} \int_{k_\parallel}^\infty \mathrm{d}k\, k\, P_F^{
m 3D}\left(k,k_\parallel,z
ight)$$

✓ And also to 3D flux power estimate from cross power in transverse direction *Abdul-Karim+25*

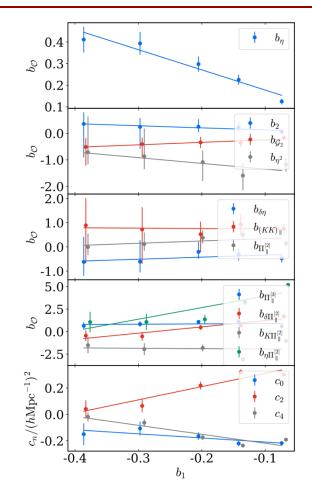


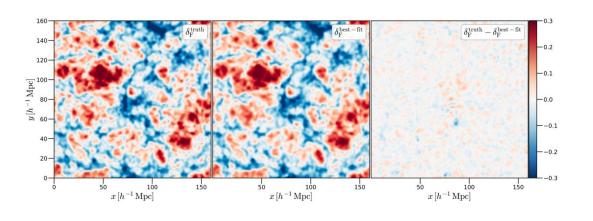
Chudaykin & Ivanov 25

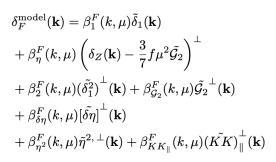
Modelling the 3D flux power

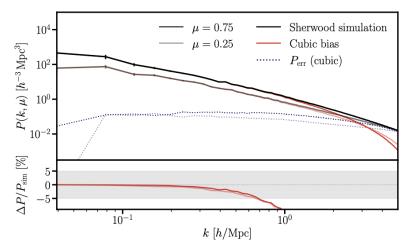
- ✓ Nyx code (Adaptive Mesh Refinement and grid based). DeBelsunce+24 k_{max}=2h/Mpc
- ✓ Degeneracies between the many parameters are crucial

EFT Parameter	Prior	EFT Parameter	Prior
(Sampled)		(Marginalized)	
b_1	$\mathcal{U}(-2,2)$	$\frac{c_{0,2,4,6}}{[h^{-1}\mathrm{Mpc}]^2}$	$\mathcal{N}(0,1^2)$
b_{η}	$\mathcal{U}(-2,2)$	$P_{ m shot}$	$\mathcal{N}(0,5^2)$
b_2	$\mathcal{N}(0,2^2)$	$\frac{a_{0,2}}{[h^{-1}\mathrm{Mpc}]^2}$	$\mathcal{N}(0,5^2)$
$b_{{\cal G}_2}$	$\mathcal{N}(0,2^2)$	$b_{(K\Pi^{[2]})_{\parallel}}$	$\mathcal{N}(0,2^2)$
${b_{(KK)}}_{\parallel}$	$\mathcal{N}(0,2^2)$	$b_{\delta\Pi_{ }^{[2]}}$	$\mathcal{N}(0,2^2)$
$b_{\Pi_{ }^{[2]}}$	$\mathcal{N}(0,2^2)$	$b_{\eta\Pi_{ }^{[2]}}$	$\mathcal{N}(0,2^2)$
$b_{\delta\eta}^{''}$	$\mathcal{N}(0,2^2)$	$b_{\Pi_{\parallel}^{[3]}}$	$\mathcal{N}(0,2^2)$
b_{η^2}	$\mathcal{N}(0, 2^2)$	l II	



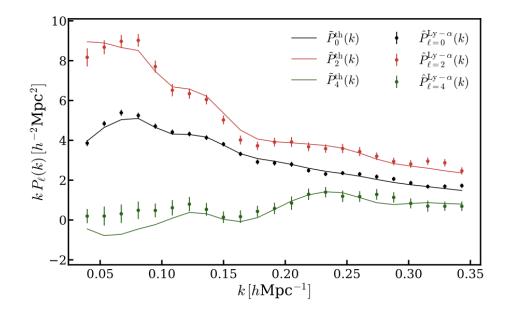






- ✓ De Belsunce et al. 2025: Field level, EFT inspired reconstruction of the flux field (and cross with haloes)
- ✓ Tested on flux power but also on flux pdf (very difficult to fit)

3D flux power from eBOSS DR16

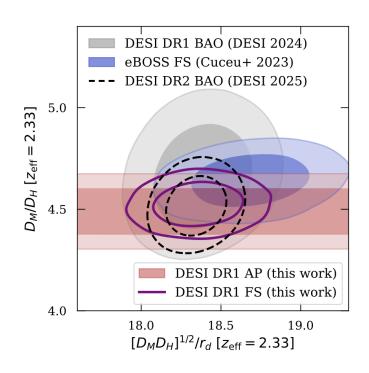


- ✓ De Belsunce+24: 205,000 QSOs with <z> = 2.33 - Pair-count estimator in real space (good for window)
- ✓ Tested against Gaussian mocks and CoLoRe.
- ✓ Kaiser formula + non-linear correction is a good fit for 0.02-0.35 h/Mpc

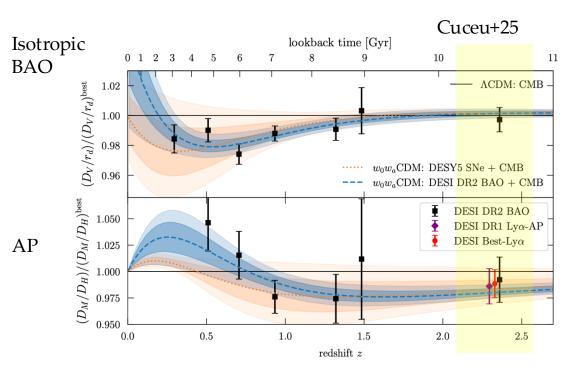
3D correlation function from DESI

$$P_F(\mathbf{k}) = b_F'^2 (1 + \beta_F' \mu_k^2)^2 G(\mathbf{k}) F_{NL}(\mathbf{k}) P_{\text{fid}}(k)$$

$$P_{F \times Q}(\mathbf{k}) = b_F' (1 + \beta_F' \mu_k^2) (b_Q + f \mu_k^2) G(\mathbf{k}) X_{NL}(\mathbf{k}) P_{\text{fid}}(k)$$



- ✓ Full-shape analysis of DESI DR1 (Cuceu+25) measurement of Alcock-Paczynski (AP) and RSD - about 750,000 QSOs at z>1.7
- \checkmark β parameter marginalized over. Fit for b_F , b_O and f
- ✓ Tightest AP constraints at z>1, 2.4 times improvement over BAO only
- ✓ First measurement of $f\sigma_8$ from cross



- ✓ Consistent with both CMB and galaxy BAOs
- ✓ Ly α is good at measuring D_H
- ✓ 2.7σ tension with SHOES
- ✓ Slightly reduced tension in w_0 - w_a plane w.r.t. LCDM when Ly α is combined (3.3 σ →3.1 σ)
- ✓ 1.7% on the AP at z=2.33 (could go down to 0.3% at DESI yr5)

 $\sum m_{
u} < 0.0638 \; {
m eV} \; (95\%, \, {
m Ly} lpha {
m -AP + BAO + CMB})$

Particle physics in the cosmic web

Neutrino interactions Warm Dark Matter Cold+Warm Dark Matter

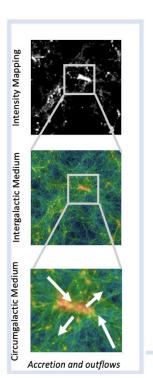
Promises of the post-reionization Universe

Long lever arm in terms of scales/redshifts will in turn allow to break degeneracies between astro and cosmo parameters with:

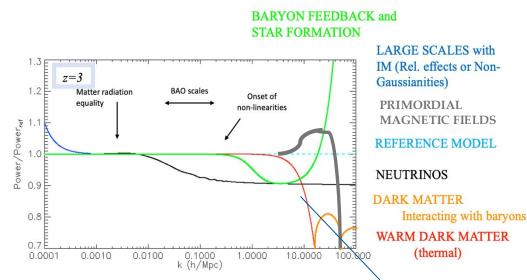
- **Power spectrum**
- > cross-correlations of different tracers
- new estimators (e.g. 1-point function, bispectrum, Machine Learning)

It is an "active phase" of structure formation processes (feedback, star formation, black holes, cosmic bayron cycle etc.)

Environments



Physical Scales

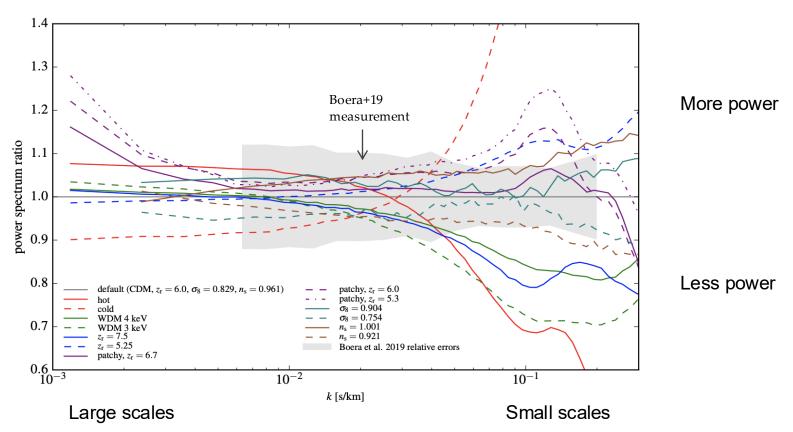


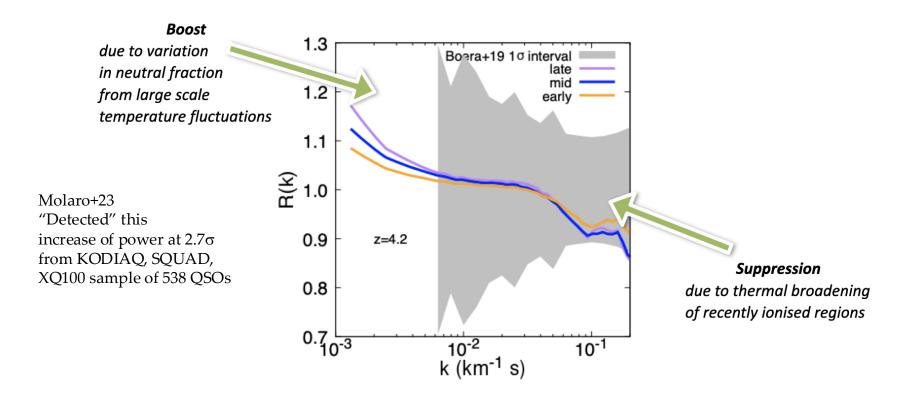
Small scales

HI measures density perturbations in a matter dominated regime!

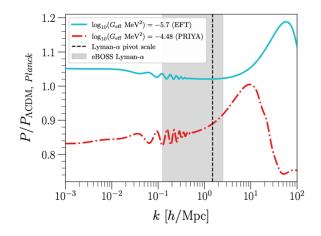
Large scales

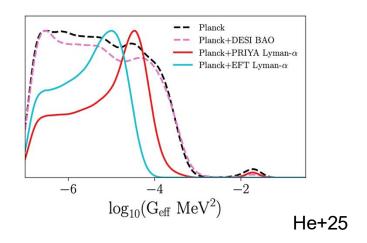
Simulated 1D flux power @ z=4.6



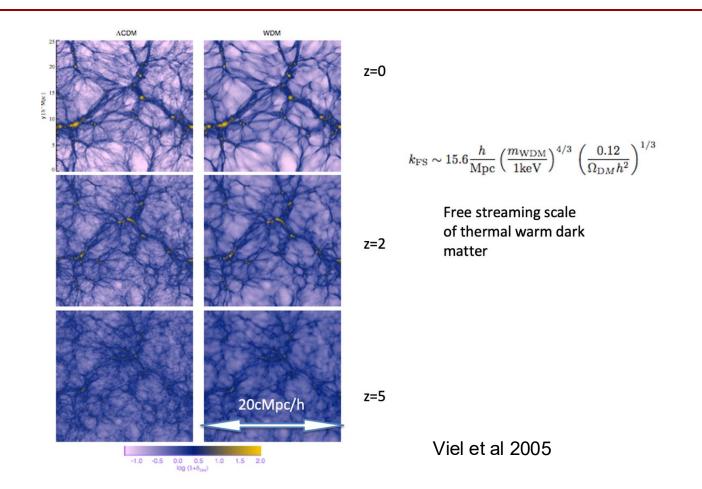


EFT 1D flux power models and applications





- ✓ He+24: strong preference for neutrino self interactions (delayed onset of free streaming) from BOSS full shape analysis of forest (and other data) pointed to Geff=0.01 at 5s, with a compressed likelihood (based on LCDM)
- New likelihood either EFT based or based on a new suite of simulations (Bird et al.) and applied to eBOSS data: result goes away



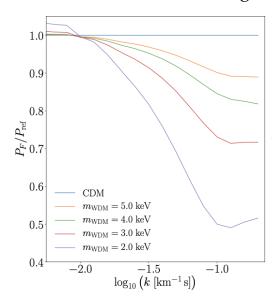
The smoothing scales

Vid Irsic

Unveiling Dark Matter free-streaming at the smallest scales with high redshift Lyman-alpha forest

Vid Iršič^{1,2}, Matteo Viel^{3,4,5,6,7}, Martin G. Haehnelt^{1,8}, James S. Bolton⁹, Margherita Molaro⁹, Ewald Puchwein¹⁰, Elisa Boera^{5,6}, George D. Becker¹¹, Prakash Gaikwad¹², Laura C. Keating¹³, Girish Kulkarni¹⁴

WDM free streaming



The smoothing scales

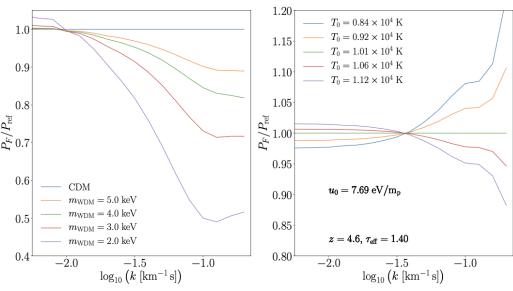
Vid Irsic

Unveiling Dark Matter free-streaming at the smallest scales with high redshift Lyman-alpha forest

Vid Iršič^{1,2}, Matteo Viel^{3,4,5,6,7}, Martin G. Haehnelt^{1,8}, James S. Bolton⁹, Margherita Molaro⁹, Ewald Puchwein¹⁰, Elisa Boera^{5,6}, George D. Becker¹¹, Prakash Gaikwad¹², Laura C. Keating¹³, Girish Kulkarni¹⁴

WDM free streaming

Thermal broadening



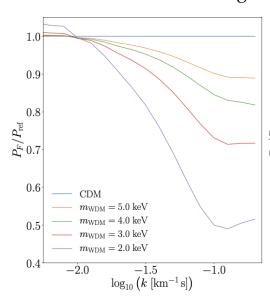
The smoothing scales

Vid Irsic

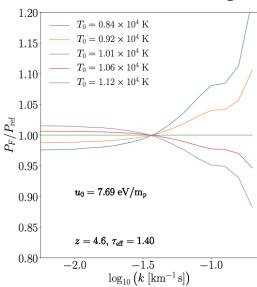
Unveiling Dark Matter free-streaming at the smallest scales with high redshift Lyman-alpha forest

Vid Iršič^{1,2} , Matteo Viel^{3,4,5,6,7} , Martin G. Haehnelt^{1,8} , James S. Bolton⁹ , Margherita Molaro⁹ , Ewald Puchwein¹⁰ , Elisa Boera^{5,6} , George D. Becker¹¹ , Prakash Gaikwad¹² , Laura C. Keating¹³ , Girish Kulkarni¹⁴

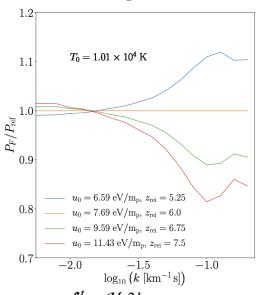
WDM free streaming



Thermal broadening

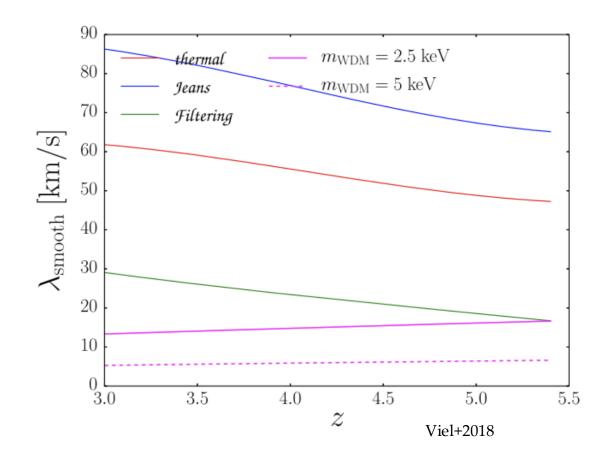


Gas pressure



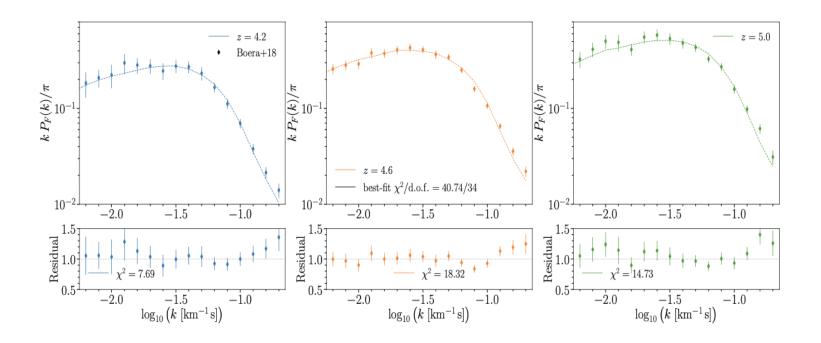
$$u_0(t) = \int_0^t dt \frac{\mathcal{H}}{\bar{\rho}_m} \frac{3k_B}{2\mu}$$
 H is heating rate

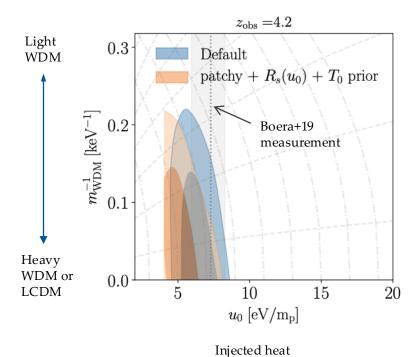
The smoothing scales - II



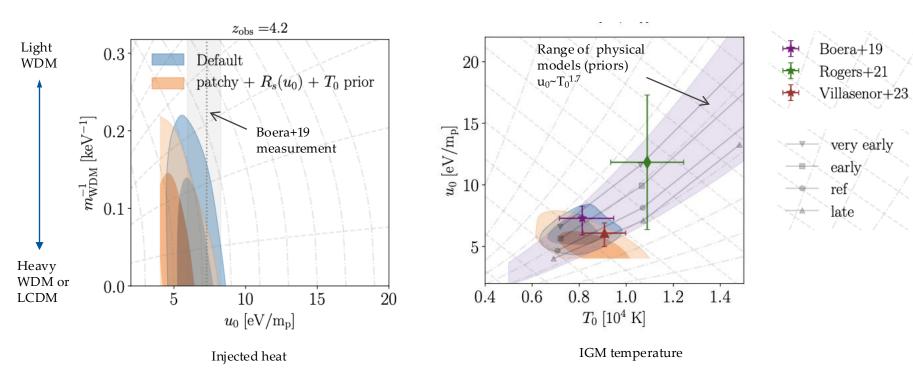
Different physical scales (on top of instrumental resolution) affect the power spectrum cutoff:

- thermal: instataneous temperature at that redshift;
- ➤ filtering scale: depends on all the past thermal history – related to Jeans scale;
- WDM cutoffs are basically redshift independent



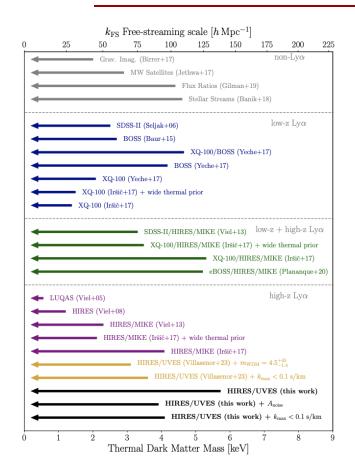


Irsic, MV +23



Irsic, MV +23

Thermal WDM

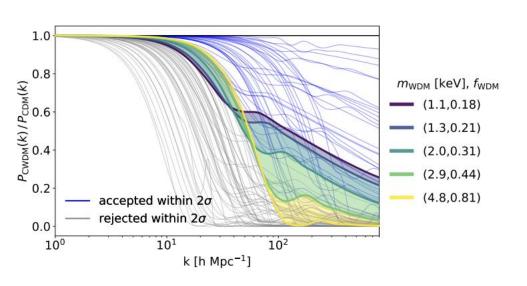


Tests made:

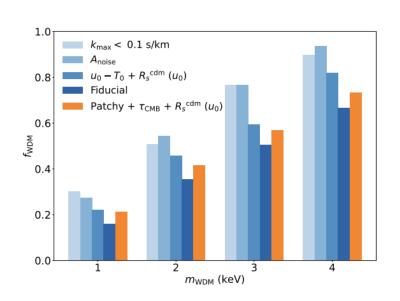
Cut small scales
Marginalize over data noise
Assume/Remove T₀ priors
Correct for a model dependent resolution
Patchy reionization models

. 10100-	•	-	. •	~			
Name	$m_{\rm WDM}$ [keV] (2σ)	$\tau_{\rm eff}(z=4.6)$	$T_0(z = 4.6) [10^4 \text{ K}]$	$[] \gamma(z=4.6)$	$u_0(z = 4.6) \text{ [eV/mp]}$	$A_{\text{noise}}(z=4.6)$	χ^2/dof
Default	> 5.72	$1.502^{+0.061}_{-0.061}$	$0.743^{+0.041}_{-0.075}$	$1.35^{+0.24}_{-0.19}$	$6.19^{+0.68}_{-0.68}$	-	40.7/34
$k_{\rm max} < 0.1 \; {\rm km}^{-1} {\rm s}$	> 4.10	$1.501^{+0.060}_{-0.074}$	$0.840^{+0.095}_{-0.340}$	$1.28^{+0.09}_{-0.28}$	$8.91^{+1.57}_{-5.26}$	-	10.2/20
A _{noise}	> 3.91	$1.458^{+0.053}_{-0.074}$	$0.966^{+0.156}_{-0.466}$	$1.23^{+0.06}_{-0.23}$	$5.93^{+0.38}_{-2.28}$	$1.12^{+0.49}_{-0.29}$	18.4/31
T_0 prior	> 5.85	$1.494^{+0.062}_{-0.077}$	$0.770^{+0.110}_{-0.120}$	$1.31^{+0.10}_{-0.31}$	$6.50^{+1.00}_{-1.60}$	-	47.6/34
$R_s(u_0)$ mass resolution	> 4.44	$1.531^{+0.073}_{-0.064}$	$0.617^{+0.007}_{-0.118}$	$1.38^{+0.28}_{-0.13}$	$7.90^{+1.70}_{-2.30}$	-	30.7/34
patchy reion.	> 5.10	$1.486^{+0.058}_{-0.068}$	$0.686^{+0.046}_{-0.080}$	$1.33^{+0.17}_{-0.26}$	$5.32^{+0.58}_{-0.52}$	-	41.0/34
$R_s(u_0) + T_0$ prior	> 4.24	$1.473^{+0.056}_{-0.076}$	$0.83^{+0.11}_{-0.11}$	$1.28^{+0.09}_{-0.28}$	$5.53^{+0.73}_{-1.2}$	-	39.4/34
patchy + $R_s(u_0)$ + T_0 prior	> 5.90	$1.450^{+0.051}_{-0.070}$	$0.828^{+0.098}_{-0.098}$	$1.26^{+0.08}_{-0.26}$	$4.87^{+0.52}_{-0.71}$	-	40.8/34

Irsic+23



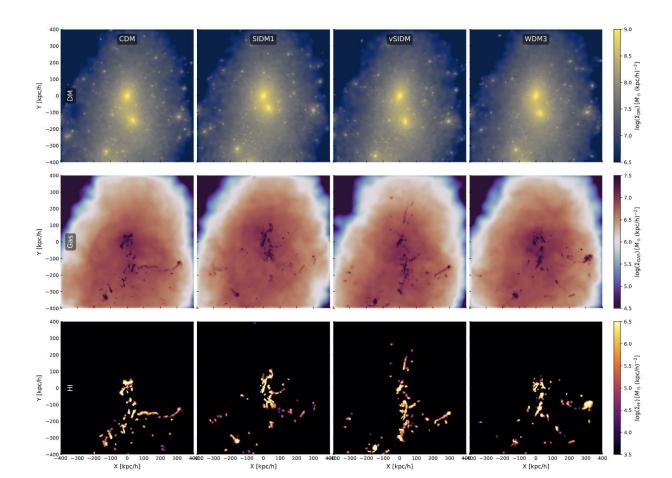
✓ 5 CWDM models allowed by the data and their suppression in terms of matter power

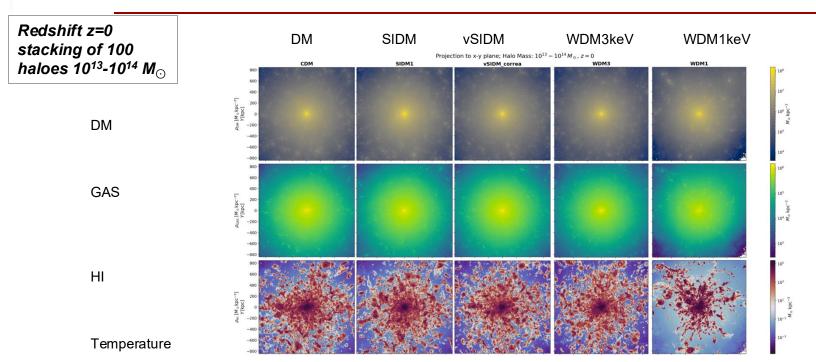


✓ Constraints $f_{\text{WDM}} = 0.14 \, (1 \text{keV}/m_{\text{WDM}})^{-1.1}$.

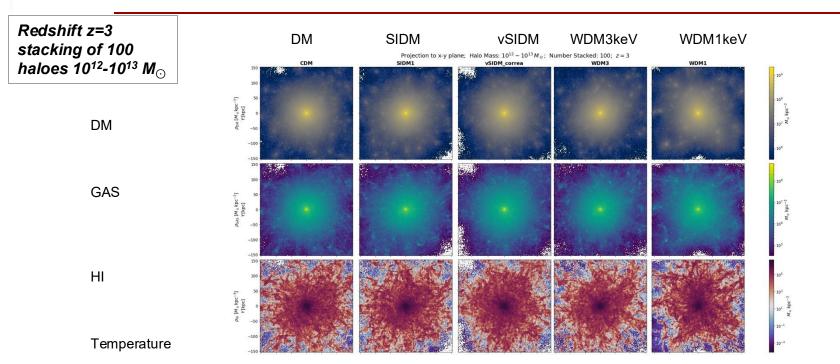
DM + galaxy formation halo environments

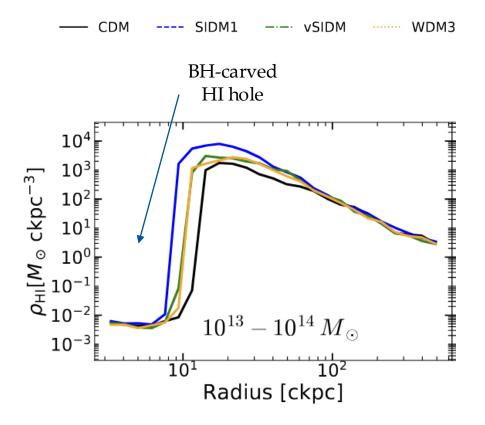
 $4.3 \times 1e13 \ \mathrm{M}_{\odot} \ \mathrm{halo}$ At z=0 50 Mpc/h box $\mathrm{M}_{\mathrm{gas}}$ =6.8e5M $_{\odot}$





How is HI distributed in non-cold DM haloes at z=3?





- ✓ The low-density cosmic web as seen in the high redshift Lyman- α forest allows to constrain DM properties through 1D flux power
- ✓ WDM mass is constrained (<3-5 keV)
- √ WDM fraction is also constrained (f<0.2 depending on mass)
 </p>
- ✓ Cosmic web is relatively cold consistent with CDM
- ✓ No sign of neutrino interactions
- ✓ Small scale HI distribution inside haloes could be impacted by DM nature

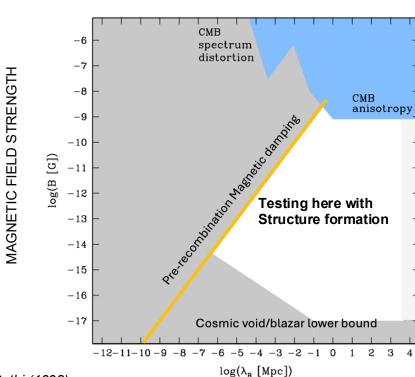
What about increase in power?

Primordial Magnetic Fields (PMFs)

- ✓ Why do we care: observed in the Universe from planet scales up to cosmological scales even in cosmic voids (!)
- ✓ What can they tell us: they could be of astro or primordial origin (produced during inflation or phase transitions in the early Universe)
- ✓ When considered: strong implications for structure formation

Durrer and Neronov 2013

- ✓ Why do we care: observed in the Universe from planet scales up to cosmological scales even in cosmic voids (!)
- ✓ What can they tell us: they could be of astro or primordial origin (produced during inflation or phase transitions in the early Universe)
- ✓ When considered: strong implications for structure formation

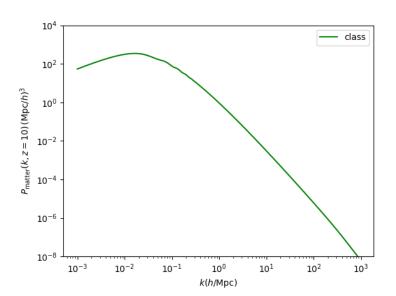


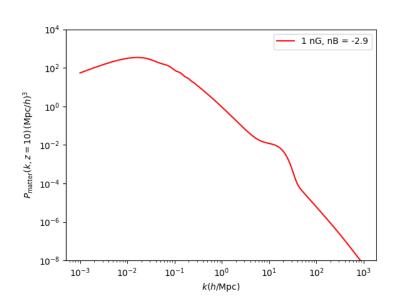
Wasserman (1978); Kim+ (1996); Subramanian & Barrow (1997); Gopal&Sethi (1998)

$$\langle B_i(k)B_j^*(k')\rangle = (2\pi)^3 \delta^3(k-k') \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \frac{P_{\mathrm{B}}(k)}{2}$$

 $P_{\rm B}(k) \propto B_{\rm 1Mpc}^2 k^{n_B}$

$P_{\Lambda CDM}$

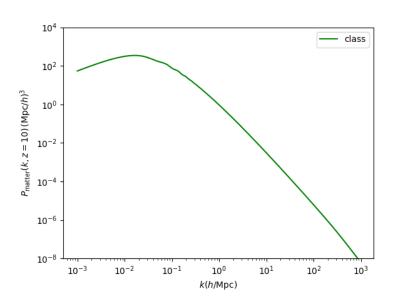


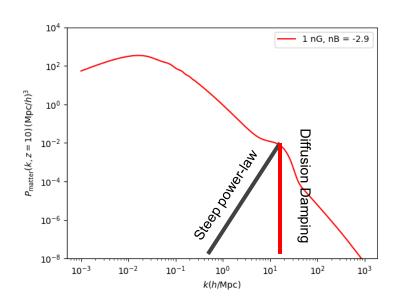


$$\langle B_i(k)B_j^*(k')\rangle = (2\pi)^3 \delta^3(k-k') \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \frac{P_{\mathrm{B}}(k)}{2}$$

$$P_{\rm B}(k) \propto B_{\rm 1Mpc}^2 k^{n_B}$$

$P_{\Lambda CDM}$

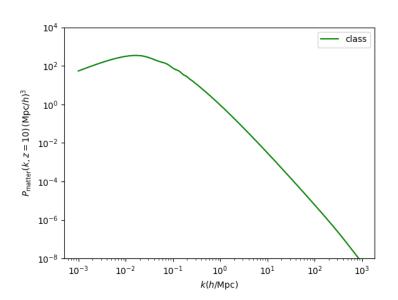


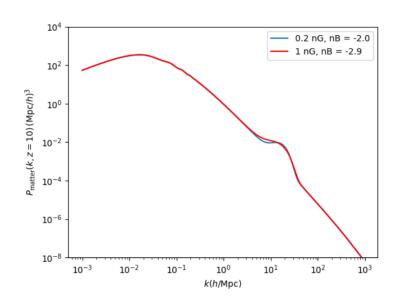


$$\langle B_i(k)B_j^*(k')\rangle = (2\pi)^3 \delta^3(k-k') \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \frac{P_{\mathrm{B}}(k)}{2}$$

$$P_{\rm B}(k) \propto B_{\rm 1Mpc}^2 k^{n_B}$$

$P_{\Lambda CDM}$

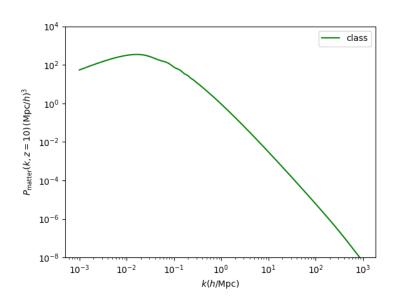


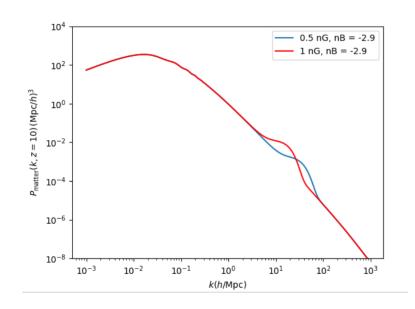


$$\langle B_i(k)B_j^*(k')\rangle = (2\pi)^3 \delta^3(k-k') \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \frac{P_{\mathrm{B}}(k)}{2}$$

$P_{\rm B}(k) \propto B_{\rm 1Mpc}^2 k^{n_B}$

$P_{\Lambda CDM}$





Ideal MHD in the postrecombination Universe

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + H \vec{v}_b + \frac{(\vec{v}_b \cdot \nabla) \vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a^5 \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v} \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + H \vec{v}_b + \frac{(\vec{v}_b \cdot \nabla) \vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a^5 \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

At large scales δ <<1 v_b << aH

Velocity field is generated

$$\partial_t v_b \propto (\nabla \times B) \times B$$

$$\frac{\partial \ (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

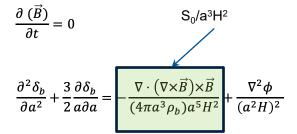
$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Comoving Magnetic field is conserved

Baryon perturbations driven by magnetic field and gravity

Gravity has the usual form



$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$S_0 = \frac{\nabla \cdot [(\nabla \times \vec{B}) \times \vec{B}]}{4\pi a^3 \rho_{\rm b}}$$

Key ingredient is the S_0 source term

Ideal MHD in the postrecombination Universe

$$a^{2} \frac{\partial^{2} \delta_{b}}{\partial a^{2}} + a \frac{3}{2} \frac{\partial \delta_{b}}{\partial a} - \frac{3}{2} \frac{\Omega_{b}}{\Omega_{m} (1 + a_{eq}/a)} \delta_{b} = -\frac{S_{0}}{a^{3} H^{2}} + \frac{3}{2} \frac{\Omega_{DM}}{\Omega_{m} (1 + a_{eq}/a)} \delta_{DM}$$
$$a^{2} \frac{\partial^{2} \delta_{DM}}{\partial a^{2}} + a \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} - \frac{3}{2} \frac{\Omega_{DM}}{\Omega_{m} (1 + a_{eq}/a)} \delta_{DM} = \frac{3}{2} \frac{\Omega_{b}}{\Omega_{m} (1 + a_{eq}/a)} \delta_{b}.$$

DM

Coupled differential equations

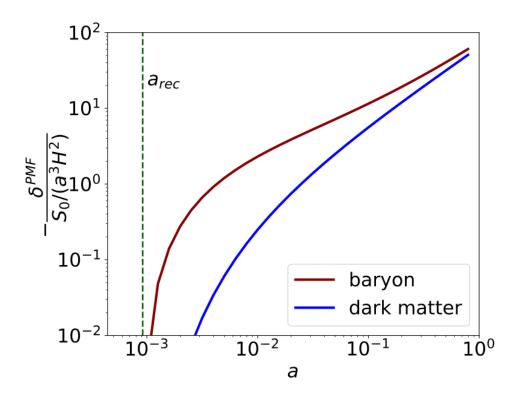
aryons

$$\delta_{\rm b}^{\rm PMF} = -\xi_{\rm b}(a) \frac{S_0}{a^3 H^2}$$

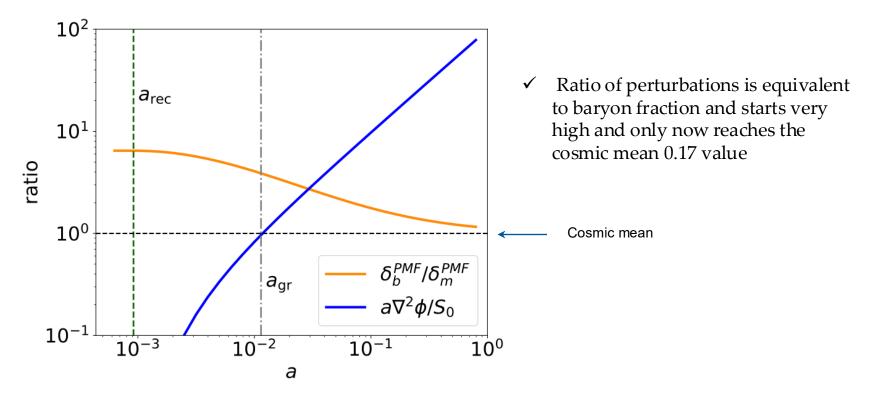
$$\delta_{\rm DM}^{\rm PMF} = -\xi_{\rm DM}(a) \frac{S_0}{a^3 H^2}.$$

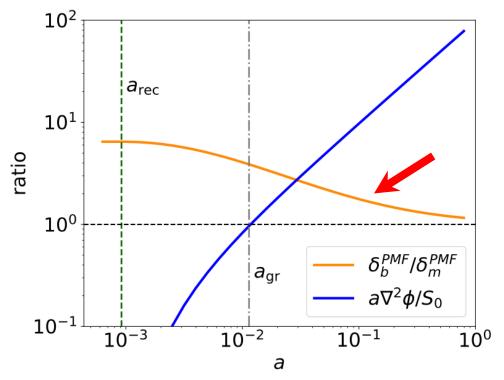
$$P_b^{PMF} \propto P_{S0}$$

Power spectrum of Lorentz force For $n_B \sim -3$ (scale invariant) this returns $P_{matter} \sim k$

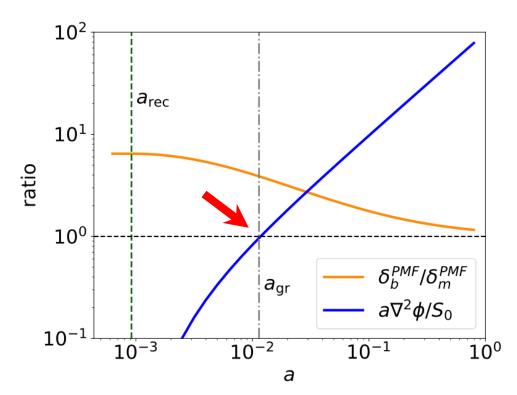


- ✓ Time evolution of perturbations (scale dependence is hidden in S0)
- ✓ Baryons are primarily enhanced
- ✓ DM is lagging behind and eventually catches up at z~0





- ✓ Ratio of perturbations is equivalent to baryon fraction starts very high and only now reaches the cosmic mean 0.17 value
- ✓ At z=10 baryon fraction is 2 times the cosmic mean



- ✓ Ratio of perturbations is equivalent to baryon fraction starts very high and only now reaches the cosmic mean 0.17 value
- ✓ At z=10 baryon fraction is 2 times the cosmic mean
- ✓ At z=100 gravity overcomes Lorentz force (this is independent of B and at all scales)

Magnetic Damping Scale

$$v_{
m b} \sim rac{1}{aH\lambda_{
m D}} rac{ec{B}_{
m phys}^2}{4\pi
ho_{
m b}}.$$

Baryon flow velocity from Euler Equation (Lorentz force)

$$v_{\rm b}/\lambda_{\rm D} \sim aH$$

Breaking of linearity

$$v_{
m A}^2 \equiv rac{\langle ec{
m B}_{
m phys}^2
angle}{4\pi
ho_{
m b}}$$

Alfven velocity def.

$$\lambda_{
m D} \sim rac{v_{
m A}}{aH}$$

- ✓ Linear perturbation theory does not work at small scales
- ✓ Density perturbations backreact on the magnetic field
- ✓ MHD Turbulence suppresses perturbations

$$\lambda_{\rm D} \sim 0.1 {
m Mpc} \left({B \over {
m nG}}
ight) \qquad k_{\scriptscriptstyle D} \sim 3 (nG/B_0) {
m Mpc^{-1}}$$

The baryon PMF induced power spectrum

$$P_{\rm B}(k) = Ak^{n_{\rm B}}e^{-k^2\lambda_{\rm D}^2}$$

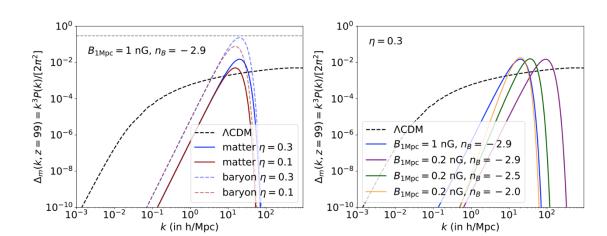
$$B_{1 \text{Mpc}}^2 \equiv \int \frac{d^3k}{(2\pi)^3} P_{\text{B}}(k) e^{-k^2 \lambda_{\text{Mpc}}^2} = \frac{A \lambda_{\text{Mpc}}^{-(3+n_{\text{B}})}}{4\pi^2} \Gamma([n_{\text{B}}+3]/2)$$

$$P_{\rm b}^{\rm PMF}(k) = \xi_{\rm b}^2(a) \frac{k^4}{8(4\pi a^3 \rho_{\rm b}[a^3 H^2])^2} \int \frac{d^3q}{(2\pi)^3} \frac{P_B(q) P_{\rm B}(k-q)}{(k-q)^2} \left[k^2 + 2q^2 + 4\frac{(q\cdot k)^4}{k^4 q^2} - 4\frac{(q\cdot k)^2}{k^2} - 4\frac{(q\cdot k)^3}{k^2 q^2} + \frac{(q\cdot k)^2}{q^2}\right]$$

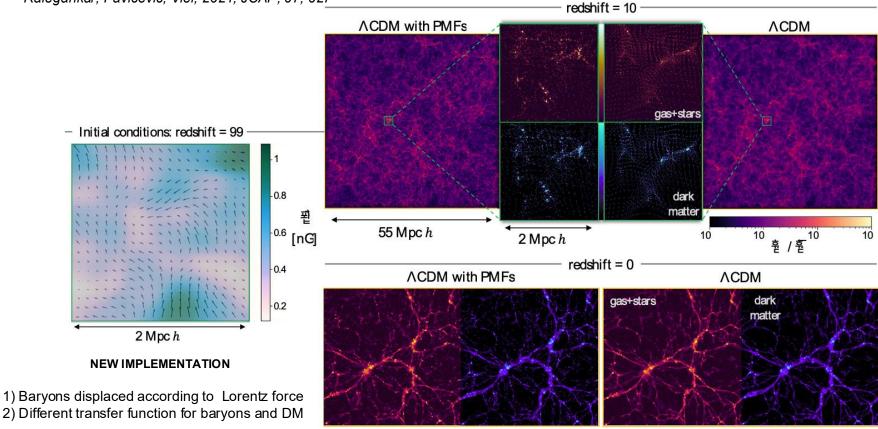
$$\Delta_{\rm b}^{\rm PMF}(k) \equiv \frac{k^3 P_{\rm b}^{\rm PMF}(k)}{2\pi^2} = 10^{-4} \xi_{\rm b}^2(a) \left(\frac{k}{\rm Mpc^{-1}}\right)^{2n_{\rm B}+10} \left(\frac{B_{\rm 1Mpc}}{\rm nG}\right)^4 G_{\rm ng} e^{-2k^2 \lambda_{\rm D}^2}, \quad (2.2)$$

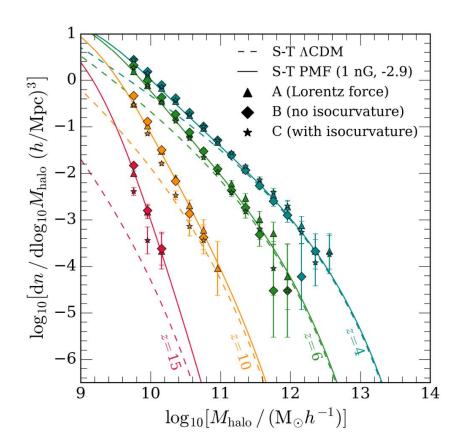
where $G_{n_{\rm R}}$ is a dimensionless number determined by

$$G_{\rm n_B} = \int_0^\infty dx \int_{-1}^1 \frac{dy}{2} x^{n_{\rm B}+2} (1+x^2-2xy)^{n_{\rm B}/2-1} \frac{\left[1+2x^2+4y^4x^2-4y^2x^2-4y^3x+y^2\right]}{\Gamma^2([n_{\rm B}+3]/2)}$$



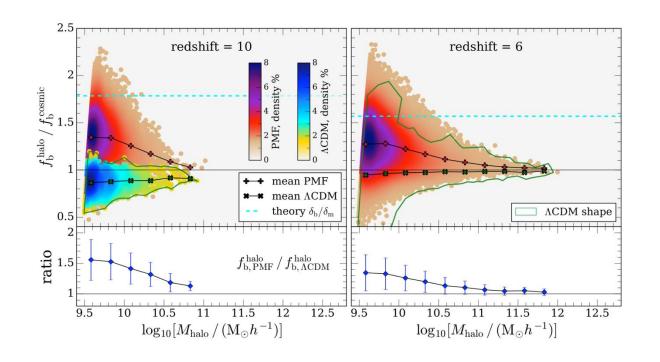
Ralegankar, Pavicevic, Viel 2024 Adi, Cruz, Kamionkowski 2024 Ralegankar, Pavicevic, Viel, 2024, JCAP, 07, 027





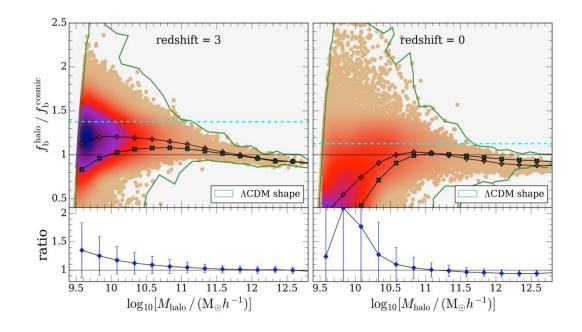
- ✓ Extra PMFs power produces more haloes, at "low" mass
- ✓ With lower B values (< 1 nG) the enhancement will move to lower masess
- ✓ Below 0.05 nG effect is probably too small at any scale

Halo Baryon Fractions at high redshift



- ✓ Larger baryon fraction in haloes also shown in hydro sims
- ✓ At large masses (scales) cosmic values is recovered
- ✓ More scatter in PMF models

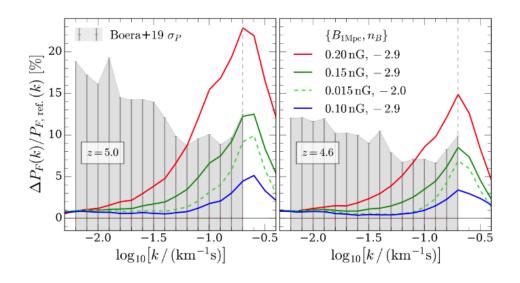
Halo Baryon fraction at lower redshift



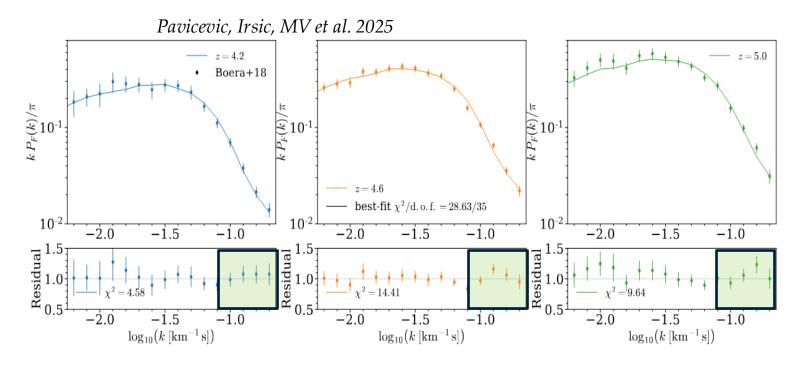
✓ At low (z<3) redshift the effect vanishes

Impact on flux power

Pavicevic, Irsic, MV et al. 2025

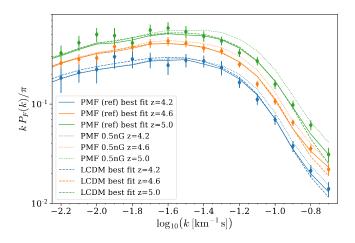


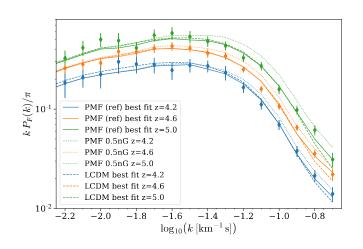
✓ Strong scale/z dependent increase of power



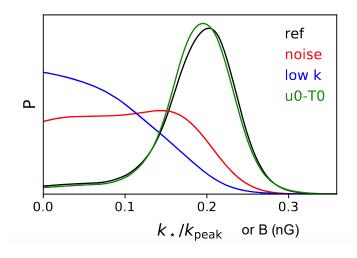
 $\chi^2_{\Lambda {
m CDM}} = 40.8$ for 36 d.o.f.

 $\chi^2_{\rm PMF} = 28.63$ for 35 d.o.f.





$$k_{
m peak} = \lambda_{
m D}^{-1} \sqrt{rac{n_{
m B}+5}{2}} \,\,{
m Mpc^{-1}} \qquad k_{\star} = 10 \,{
m Mpc}^{-1}$$



Pavicevic, Irsic, MV et al. 2025

Detection \rightarrow B=0.2 ± 0.05 nG (1s) Upper limit \rightarrow B=0.3 nG (3s) Part 6

Matteo Viel

IGM as a calorimeter

✓ Dark Photon Dark Matter: simple extension of the SM of particle physics

$$\mathcal{L}_{\gamma A'} = -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{4} (F'_{\mu\nu})^2 - \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2$$

✓ Dark photon converts into standard photon when a resonance condition is met

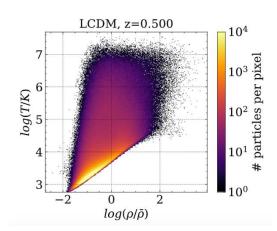
$$E_{A'
ightarrow \gamma} \sim 2.5 \, \mathrm{eV} \left(rac{\epsilon_{-14}}{0.5}
ight)^2 \left(rac{3}{1+z_{\mathrm{res}}}
ight)^{3/2} \left(rac{m_{-13}}{0.8}
ight)$$

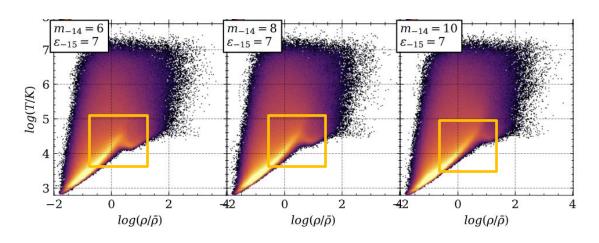
✓ Dark photon Dark Matter: simple extension of the SM of particle physics

$$\mathcal{L}_{\gamma A'} = -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{4} (F'_{\mu\nu})^2 - \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 [A'_{\mu}]$$

✓ Dark photon converts into standard photon when a resonance condition is met

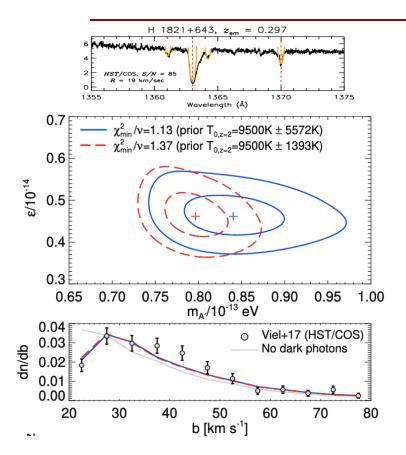
$$E_{A' \to \gamma} \sim 2.5 \,\text{eV} \left(\frac{\epsilon_{-14}}{0.5}\right)^2 \left(\frac{3}{1 + z_{\text{res}}}\right)^{3/2} \left(\frac{m_{-13}}{0.8}\right)$$





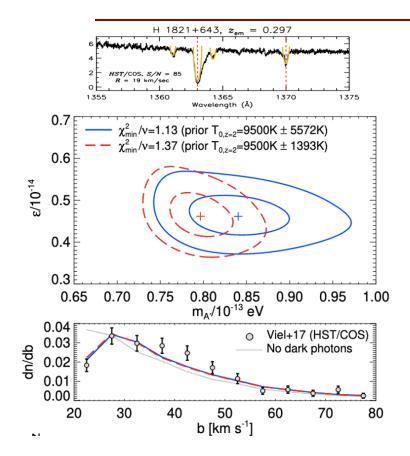
Bolton, Caputo, Liu, MV, PRL, 2022 - see also Trost+arXiv: 2410.02858

The IGM as a thermometer - II

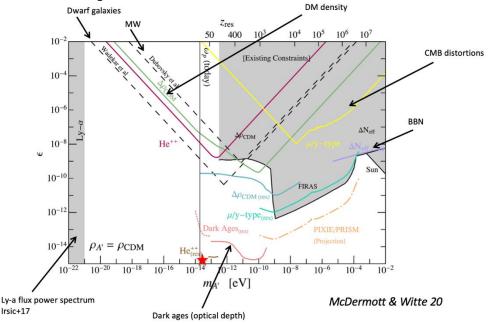


- ✓ Effect is small but can be used to place constraints on extra-heating
- \checkmark At z=0.1 COS/HST lines are broader than
- ✓ expected (feedback, turbulence?)

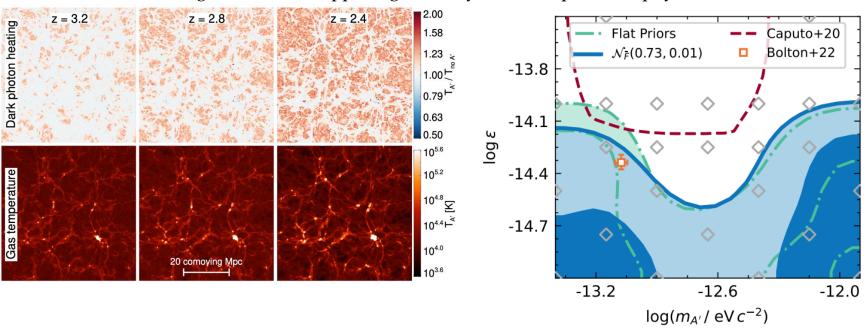
The IGM as a thermometer - II



- Effect is small but can be used to place constraints on extra-heating
- At z=0.1 COS/HST lines are broader than expected (feedback, turbulence?)

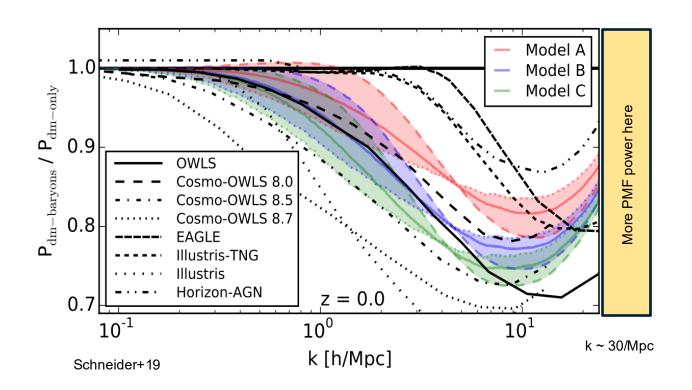


Distinctive heating mechanism happening far away from complex astrophysics

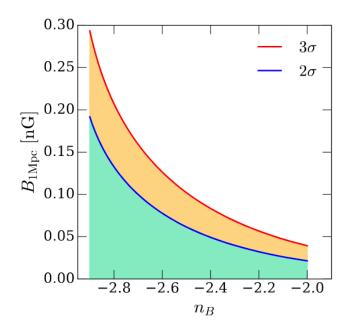


Trost+arXiv: 2410.02858

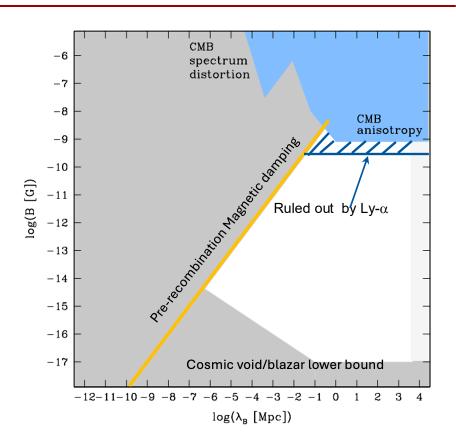
- ✓ PMFs can enhance baryon fraction apart from enhancing matter power spectrum
- ✓ Can affect **star formation/important for JWST**
- ✓ Observing **high baryon fraction** at high redshift will be smoking gun signal for PMFs
- ✓ **Lyα forest ideal probe** of PMFs, since it samples low density environments far from galaxies
- ✓ Constraints from Lyα forest point to a **detection at 0.2 nG** or more conservatively a tight 3σ **upper limit of 0.3 nG**



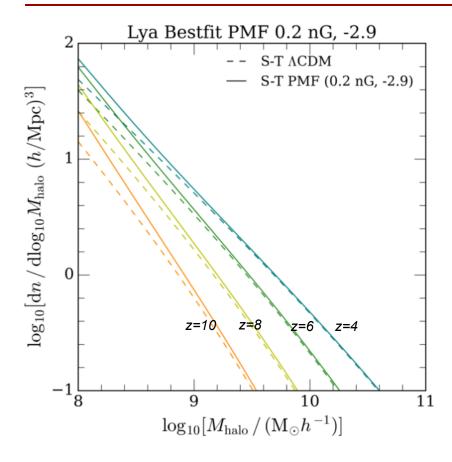
Constraints on peak position



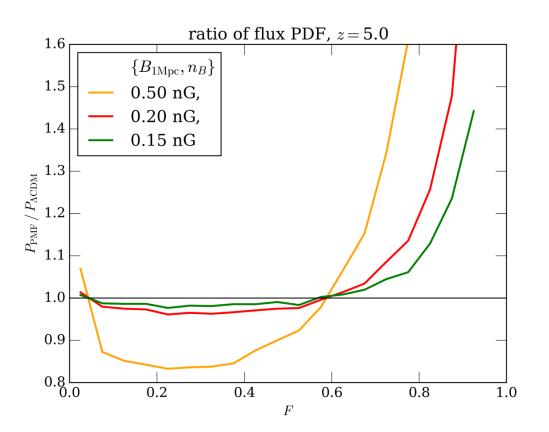
Extending to other n_{B} values



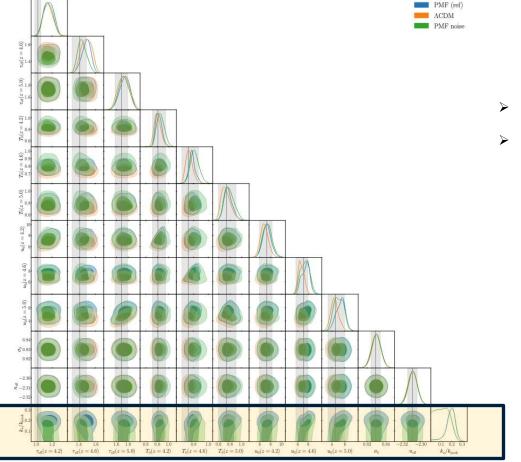
Implications for the detection



- MF is boosted at M_{halo}<10⁹ M_☉/h
- ightharpoonup ~2 more 10 8 M $_{\odot}$ /h haloes at z=10 expected compared to Λ CDM

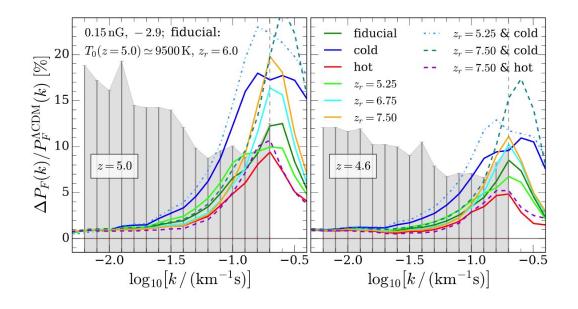


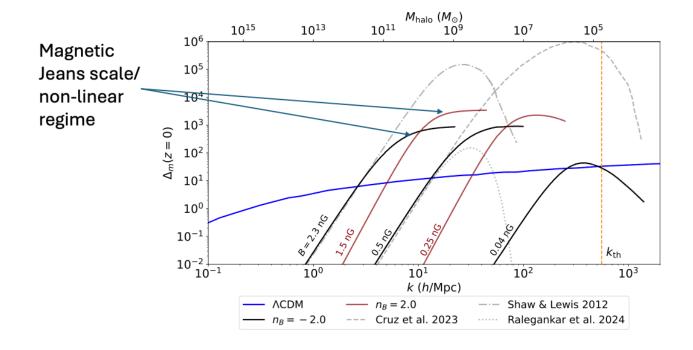
Extra slides: triangle plot

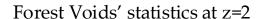


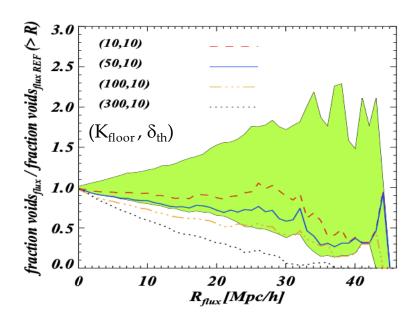
- > Not strong degeneracies present
- Weak degeneracies with injected heat and noise modelling

Extra slides: PMFs vs thermal parameters

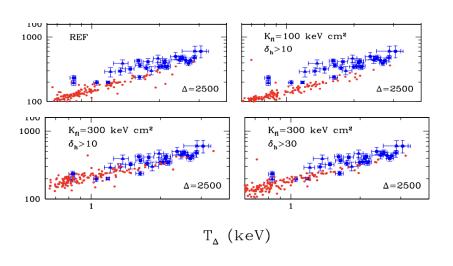






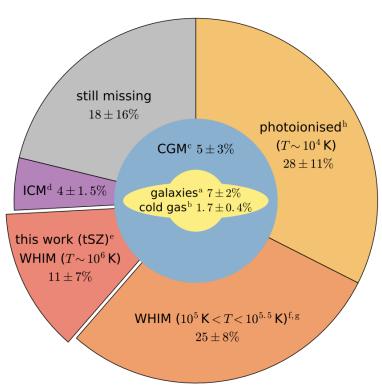


CHANDRA entropy-temperature profiles

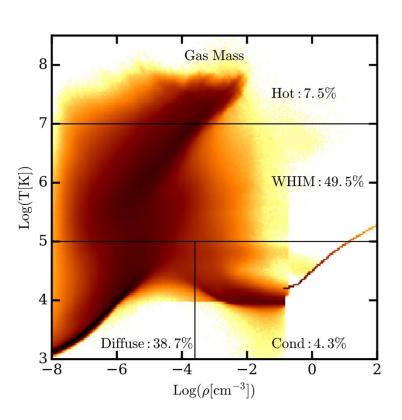


Pre-heating: gas at z=4 with $\delta > \delta_{th}$ and K<K_{floor}

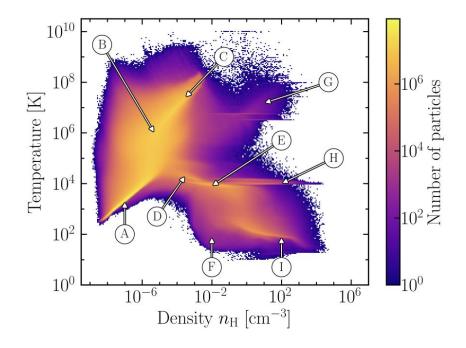
Must occur at δ >10-30 and/or at z<1



De Graaf et al. 2019 Parimbelli, Branchini, MV, Villaescusa-Navarro, ZuHone 2023



Torrey+19 [IllustrisTNG]



Impressive dynamical range

- ✓ A: diffuse IGM
- ✓ B: WHIM and CGM
- ✓ C: ICM
- ✓ D: cool CGM
- ✓ E: thermal equilibrium of low Z gas
- ✓ F: cold ISM
- ✓ G: hot ISM (from feedback)
- ✓ H: HII ionized regions
- ✓ I: very cold ISM

Schaye+25 *COLIBRE simulations*

12.0 18.0 24.0

 $X \text{ (in } h^{-1} \text{ cMpc)}$

2 × 10°

 $k[hcMpc^{-1}]$

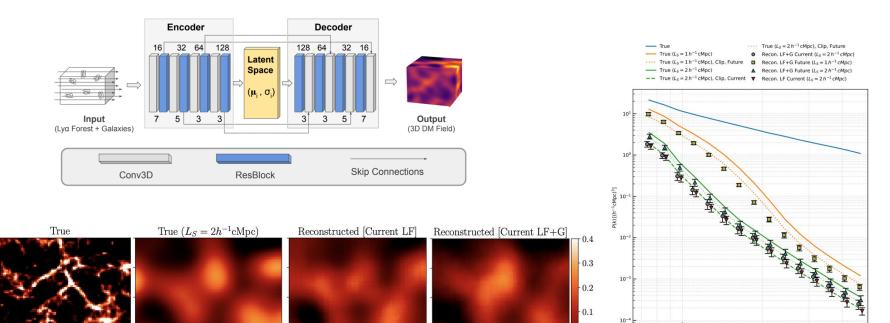
0.0

-0.1

12.0 18.0 24.0

 $X \text{ (in } h^{-1} \text{ cMpc)}$

3 × 10°



Maitra, Kulkarni, Viel 25

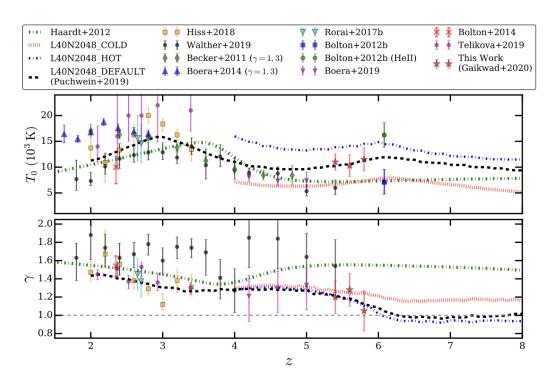
12.0 18.0 24.0

X (in h^{-1} cMpc)

Y (in h^{-1} cMpc) 18.0

12.0 18.0 24.0

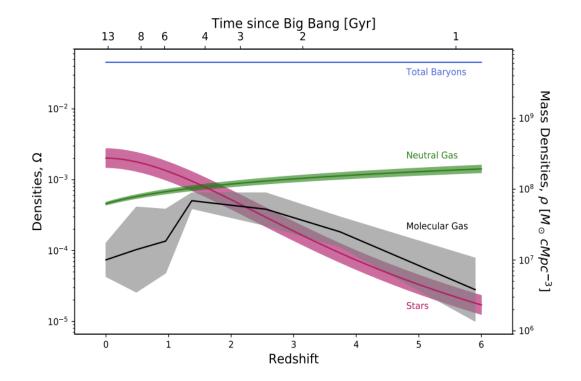
 $X \text{ (in } h^{-1} \text{ cMpc)}$



- ✓ Temperature density relation can indeed be measured by using a variety of methods like wavelets, pdf of the gas, power spectrum, bispectrum, Voigt profile fitting.
- ✓ HeII bump quite "prominent"

Gaikwad+20

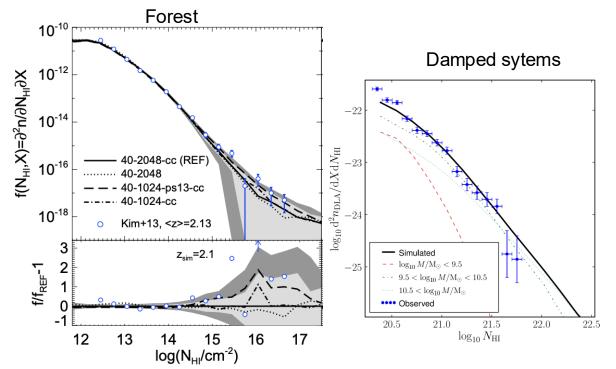
Evolution of the condensed phases



Peroux & Howk 2021

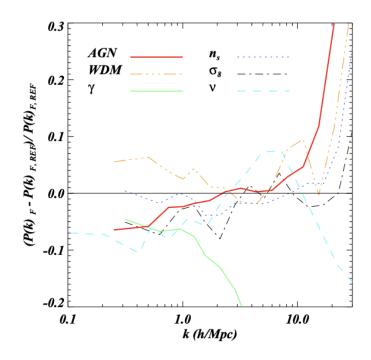
- ✓ Molecular gas traces star formation rate
- ✓ Neutral gas always dominating the budget at z>2 and always above the molecular
- ✓ Total budget is subdominant compared to total baryons

Bolton+17



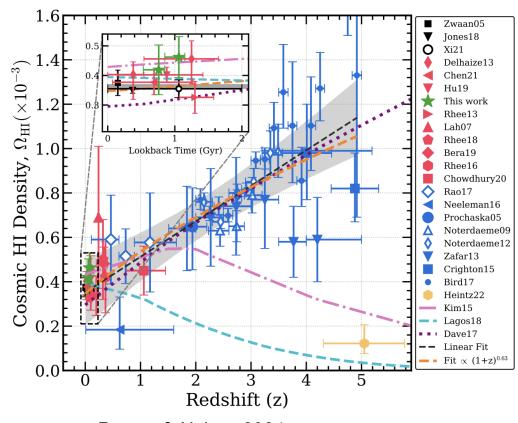
Pontzen+09

- ✓ Fitting with Voigt profile allows to extract the HI column density
- ✓ Good agreement over about 10 orders of magnitude, spanning very underdense gas up to Damped systems (galaxies)
- ✓ Smaller scales are more complex and rich in physics (feedback, AGN, star formation, molecules, dust, metals)



Viel, Schaye & Booth 2012 Chabanier+2025

- ✓ Impact of AGN feedback at low z (z~2) is of the same order of the cosmo params
- ✓ These effects can only partially be captured by changes in the Temp. density relation of photoionized gas
- ✓ Especially for AGN, changes in the density distribution and in the fraction of hot, collisionally ionised gas (T>10⁵K)



Peroux & Nelson 2024

- ✓ Evolution of HI mass density is relatively mild compared to other physical quantities like SFR
- ✓ This quantity is dominated by DLAs and is important when 21cm intensity mapping models are built