

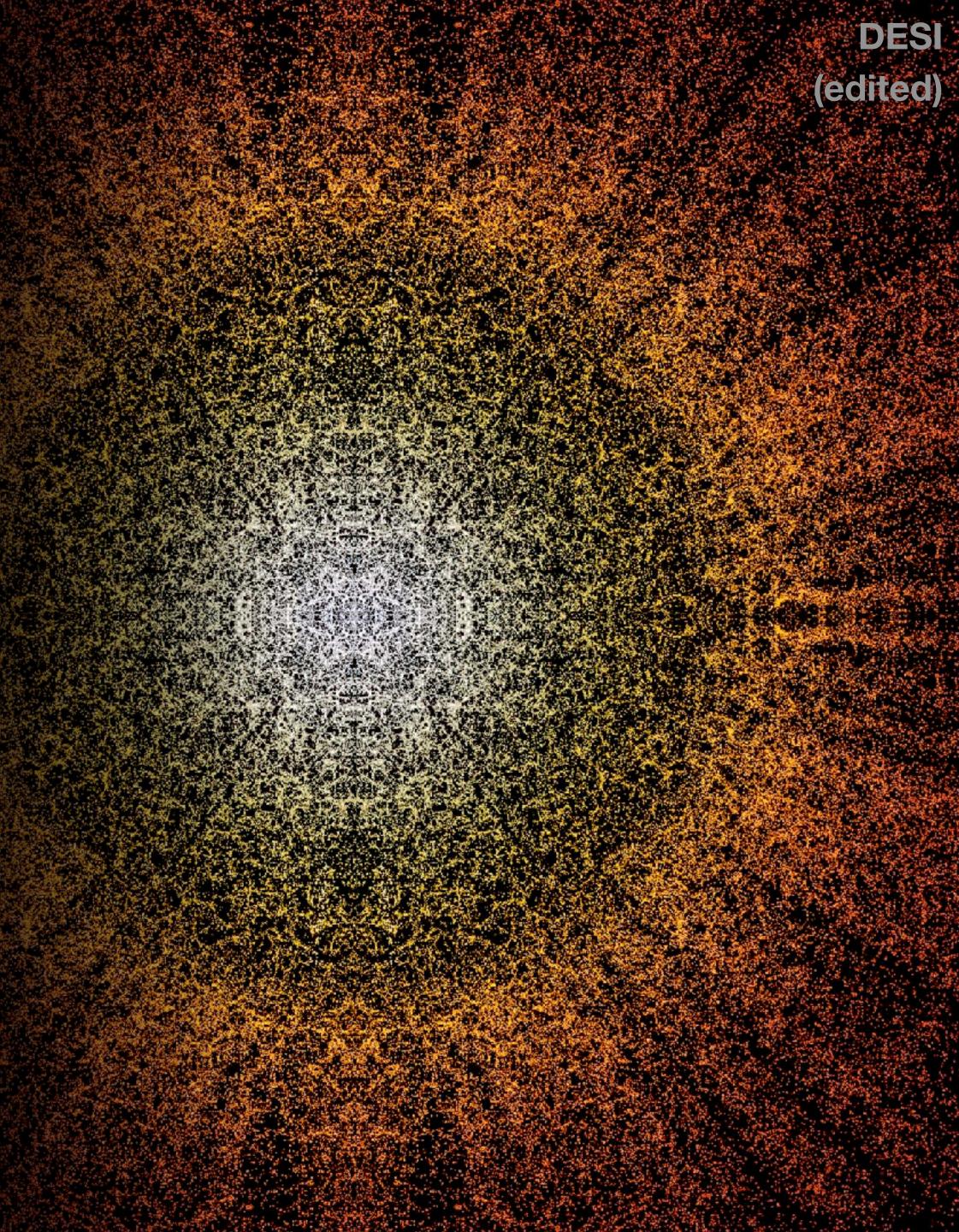
INFLATION

What have we learnt?

What can we learn?

Why should we care?

Oliver H. E. Philcox



What do we want to know about inflation?

Simplest (phenomenological) model

- A single field, ϕ evolving along an almost flat potential
- Curvature is sourced by **quantum fluctuations** in $\delta\phi$

$$\mathcal{L} \sim \frac{1}{2} (\partial \phi)^2 - V(\phi)$$

HOWEVER:

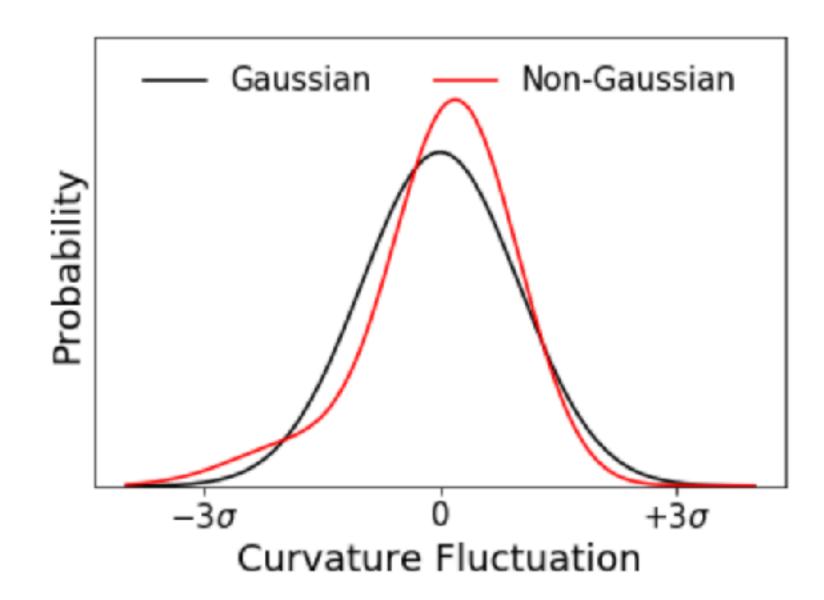
• What sets the potential? ______
$$V(\phi)=???$$

• Were there other fields during inflation? —
$$\phi o \phi, \chi, \psi_u, \cdots$$

How do we learn about inflation?

Vanilla inflation leads to Gaussian fluctuations in the primordial curvature perturbations, ζ

New physics in the early Universe gives non-Gaussian curvature fluctuations



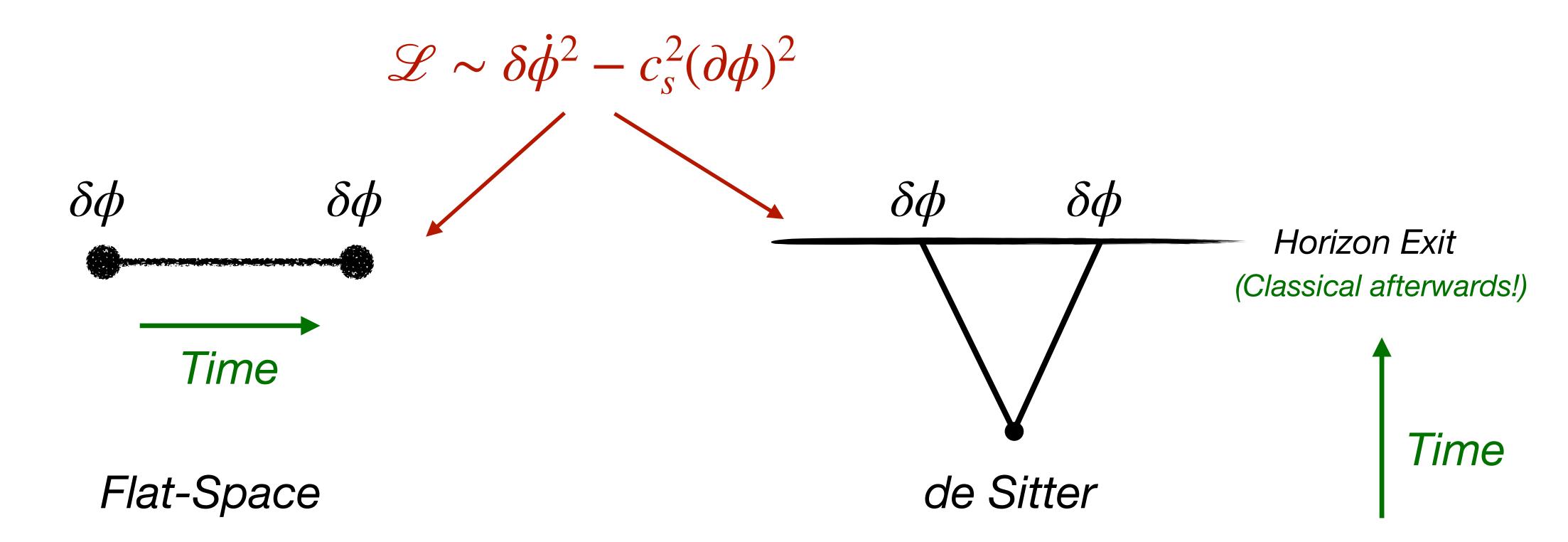
START: Quantum Fluctuations in ϕ Gaussian Non-Gaussian

By searching for non-Gaussianity, we can constrain inflationary physics!

END: Classical Fluctuations in ζ

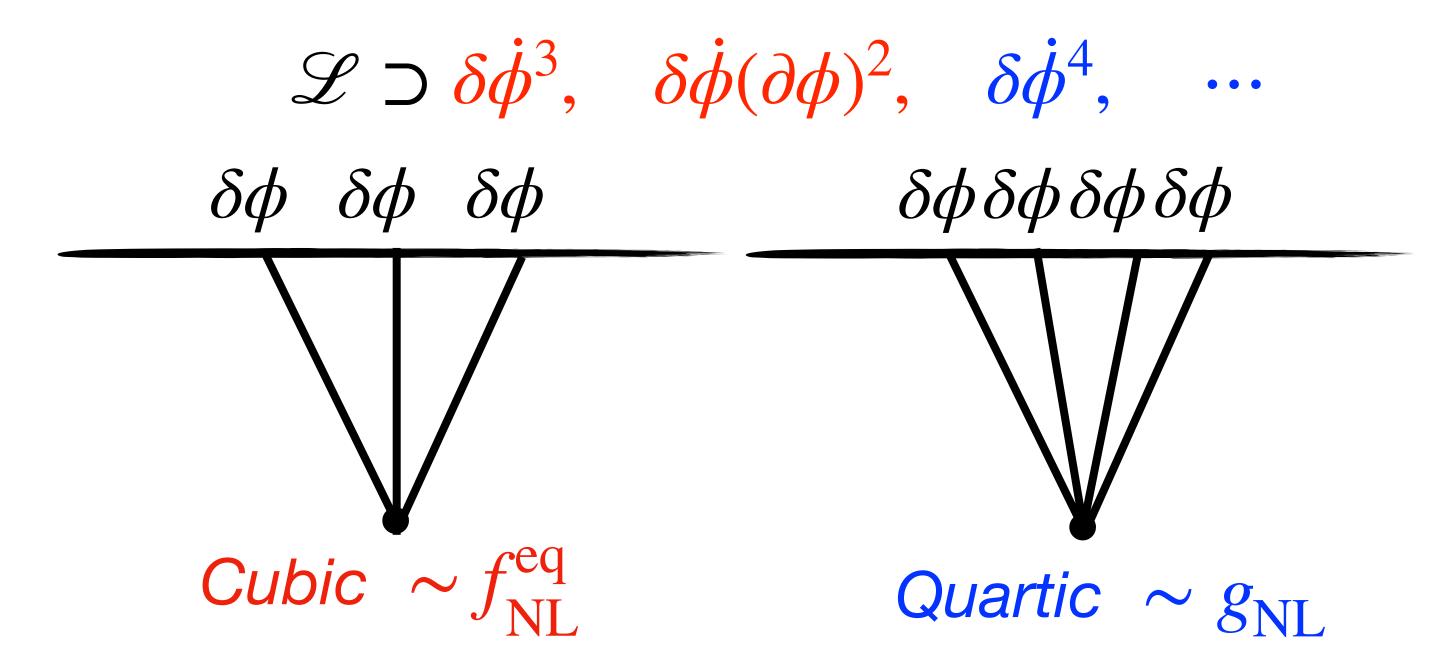
Two-Point Functions

- Let's assume we have just a **single field** ϕ in inflation (the "inflaton")
- The simplest inflationary action is quadratic in perturbations:



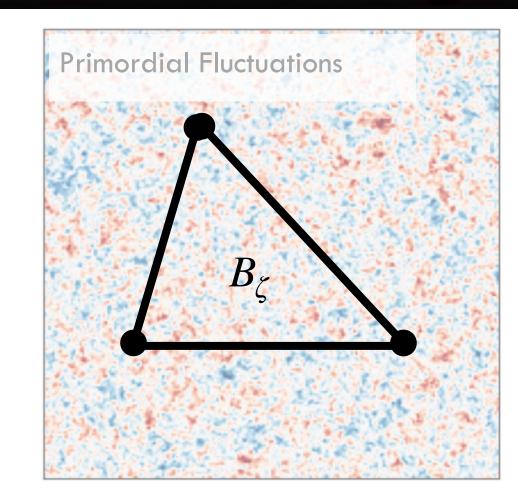
Self-Interactions

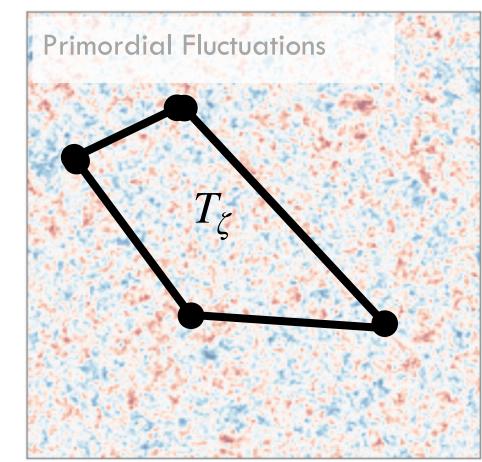
• Many models of inflation feature self-interactions:



- This leads to three- and four-point functions at the end of inflation
- The shape encodes the vertex, the amplitude encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\mathrm{NL}}^{\mathrm{eq}} \times \mathrm{shape}$$

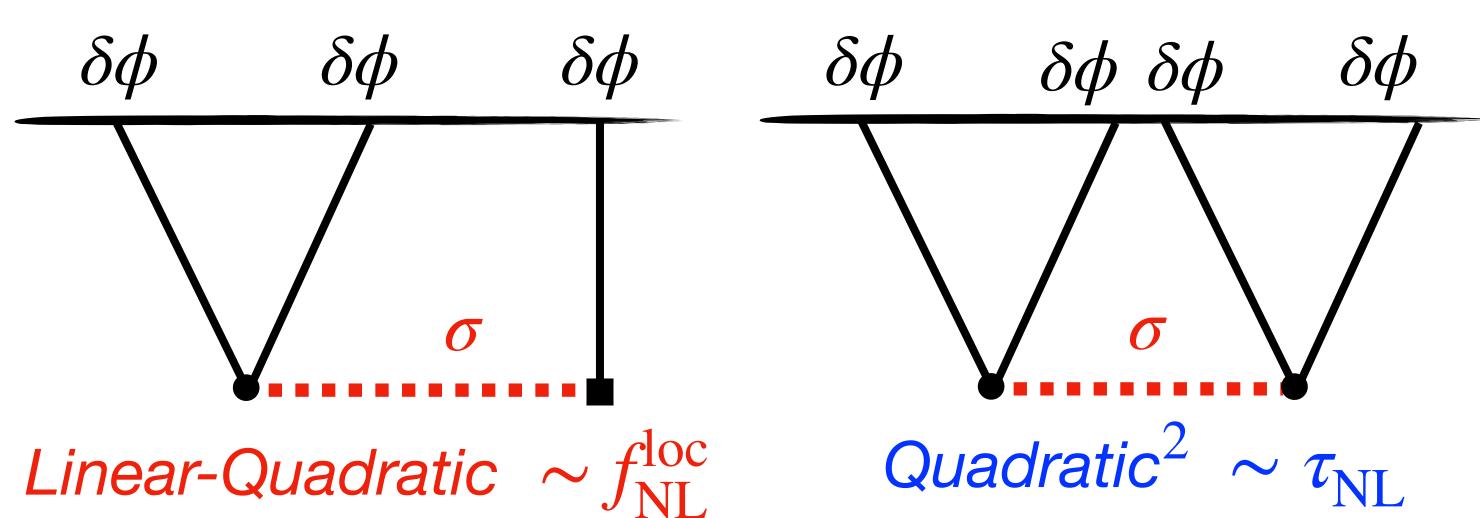




Self-Interactions

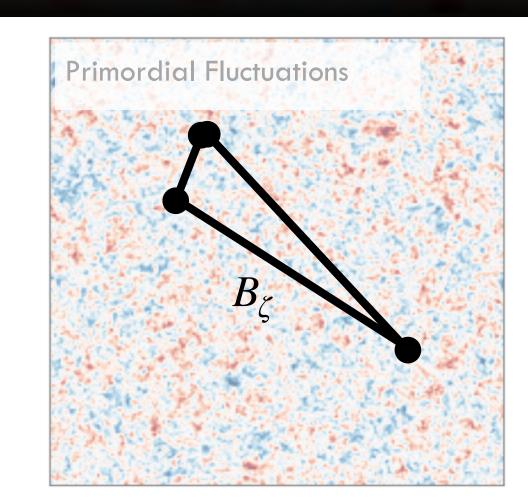
• Other models feature **new particles**, σ :

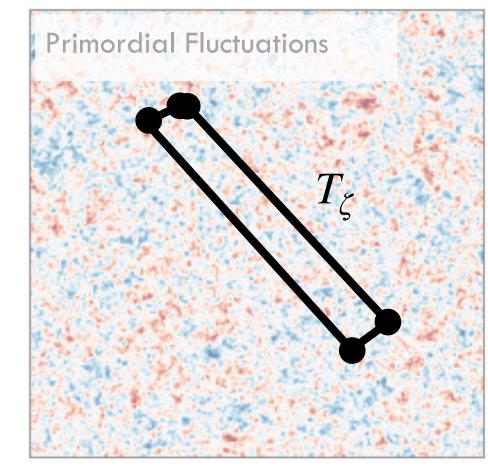
$$\mathcal{L} \supset \delta \dot{\phi} \sigma, \quad \delta \dot{\phi}^2 \sigma, \quad \cdots$$



- This leads to three- and four-point functions at the end of inflation
- The **shape** encodes the vertex, the **amplitude** encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\rm NL}^{\rm loc} \times {\rm shape}$$





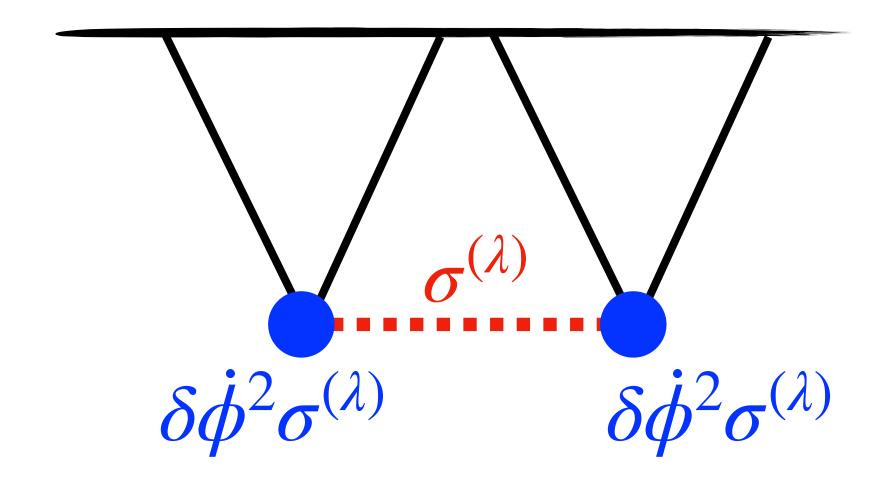
The Cosmological Collider

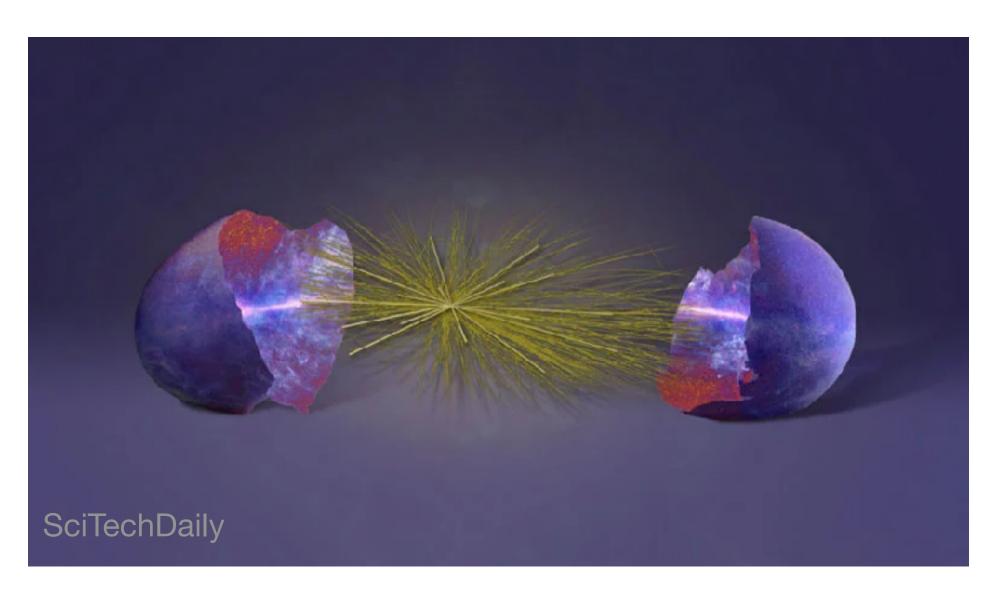
- The four-point function tracks the **exchange** of a particle $\sigma_{\mu_1\cdots\mu_s}$ of mass $m_\sigma\sim H$ and spin $s=0,1,2,\cdots$
- This depends on the power spectrum of σ , including all its helicity states, $\sigma^{(\lambda)}$

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \sim \sum_{\lambda} P_{\zeta}(k_1)P_{\zeta}(k_3)P_{\sigma^{(\lambda)}}(K) \times \text{coupling}$$

- In the collapsed limit (low exchange momentum), the inflationary signatures are set by symmetry
- They depend only on mass and spin (and the speed) not on the microphysical model!

By studying the trispectrum we can probe new particles present during inflation!





The Cosmological Collider

 The three-point function also probes particleexchange
 See Sam's talk!

$$B_{\zeta}(k_1, k_2, k_3) \sim P_{\zeta}(k_1) P_{\sigma^{(0)}}(k_3) \times \text{coupling}$$

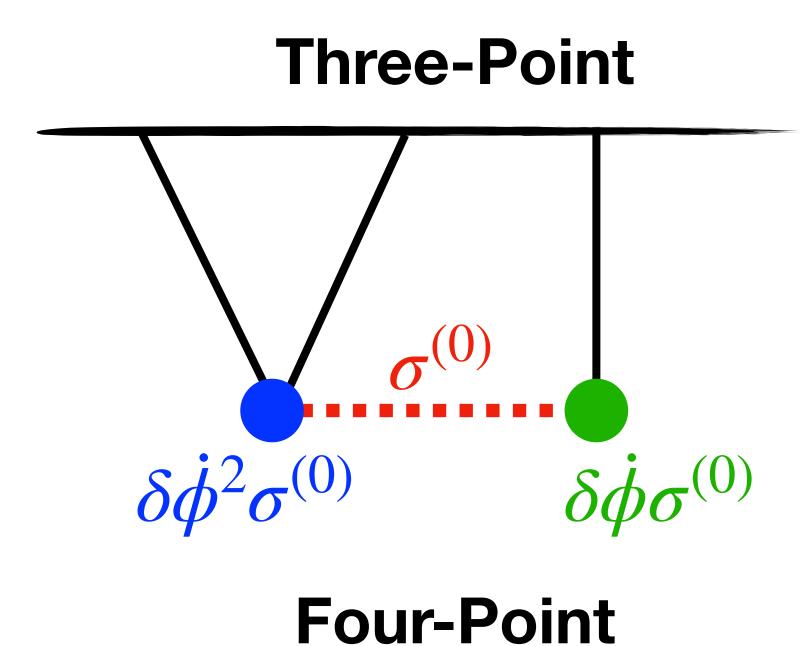
- However,
 - It requires a quadratic coupling

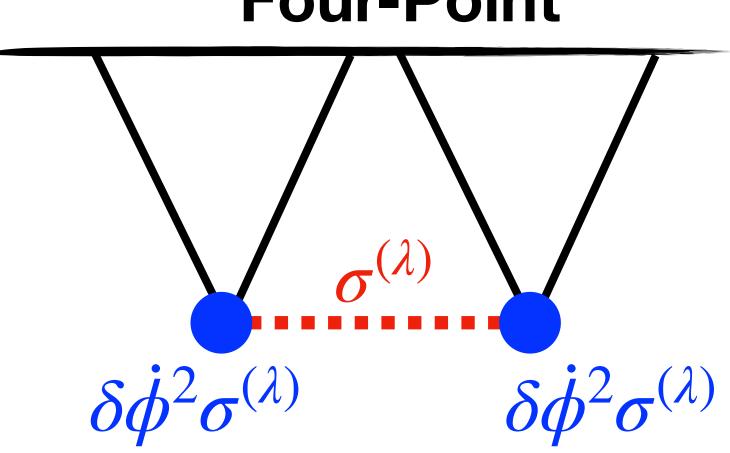
(which could be slow-roll suppressed)

• It only probes the longitudinal mode, $\sigma^{(0)}$

(which could be subdominant)

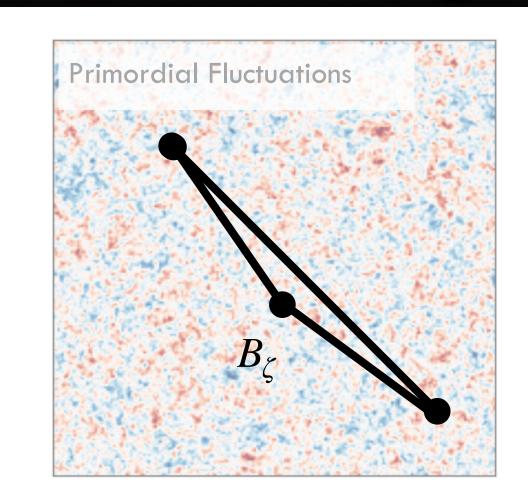
 We need the four-point function to fully probe collider physics!

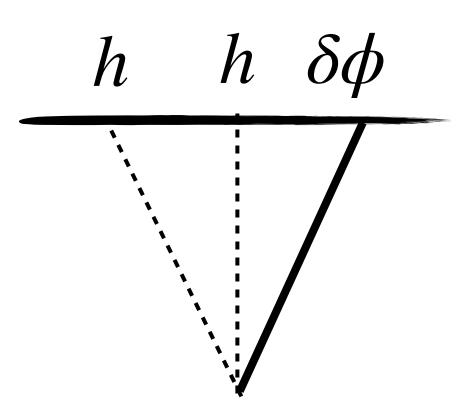




Other Inflationary Effects

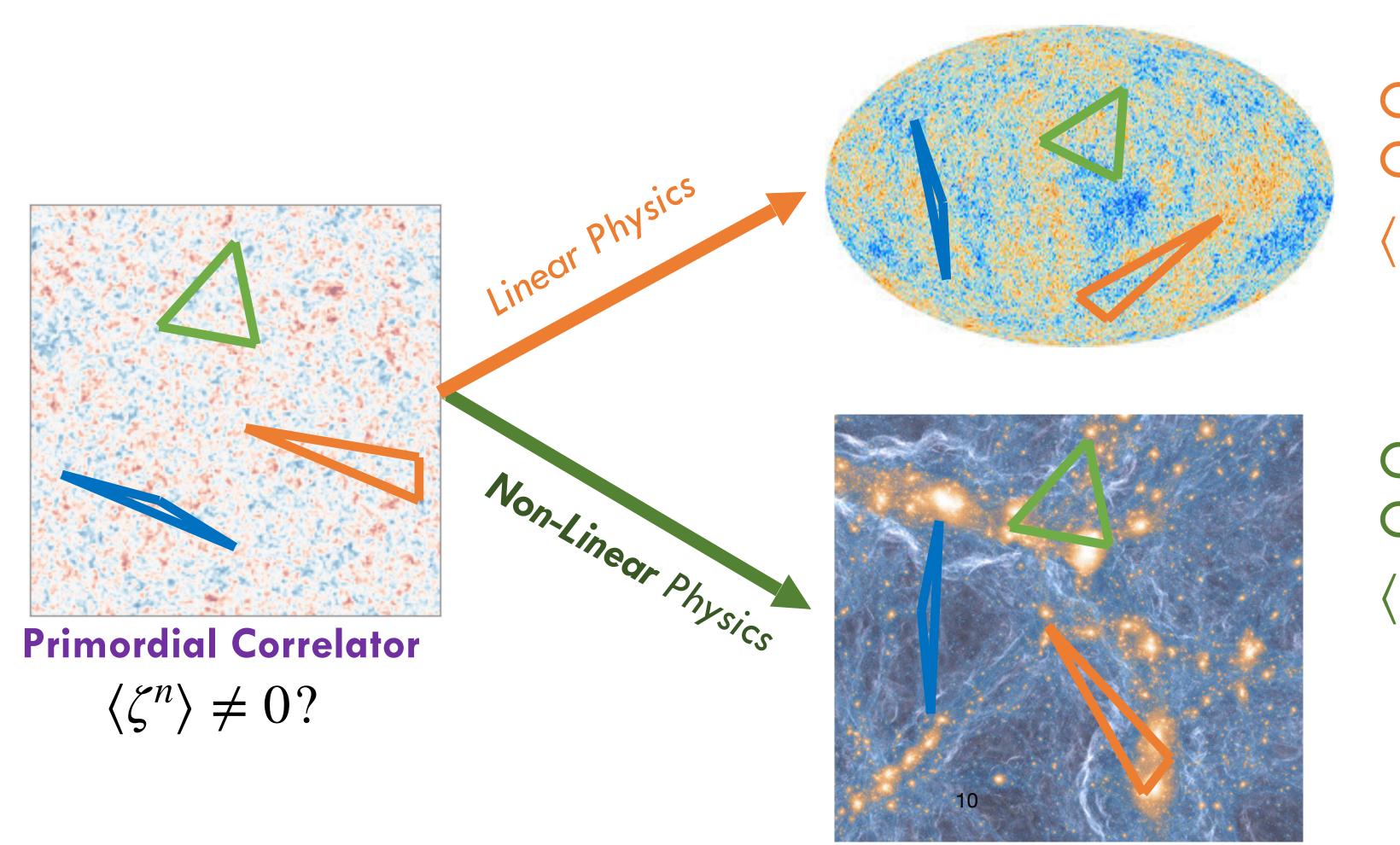
- Folded non-Gaussianity?
 - Dissipative effects in inflation
 - Modified initial conditions
- Oscillatory effects and non-perturbativity?
 - Resonances, axions
 - Very massive particles
- Tensor non-Gaussianity?
 - Modified gravity, gauge fields, massive gravity, magnetic fields...





 $\langle h\zeta\zeta\rangle, \langle hh\zeta\rangle, \langle hhh\rangle \neq 0$?

How to Measure Primordial Non-Gaussianity



Cosmic Microwave Background Correlator

 $\langle \delta T^n \rangle \neq 0$?

Galaxy Distribution
Correlator

$$\langle \delta \rho_{\text{galaxy}}^n \rangle \neq 0$$
?

CMB Constraints (Easyish)

• Planck placed strong constraints on scalar three-point functions

Planck 2018 Local
$$-0.9 \pm 5.1$$
 Equilateral -26 ± 47 Orthogonal -38 ± 24

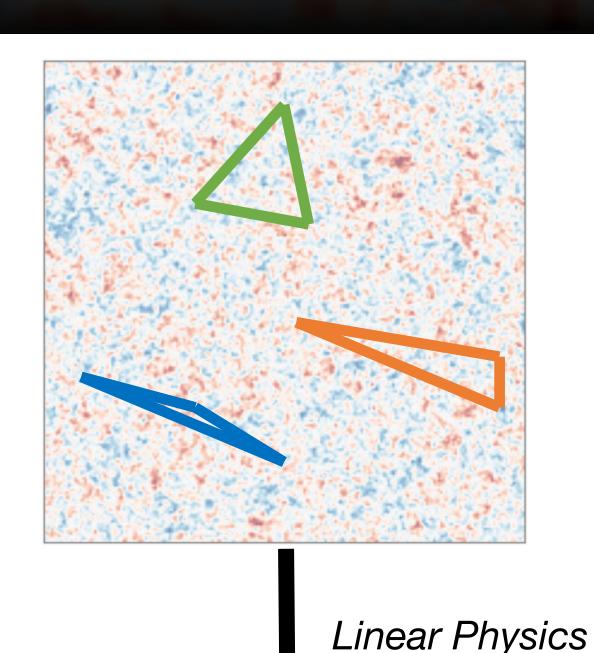
- These span many phenomenological templates
- Recent work by Wuhyun Sohn++ group probed cosmological collider bispectra

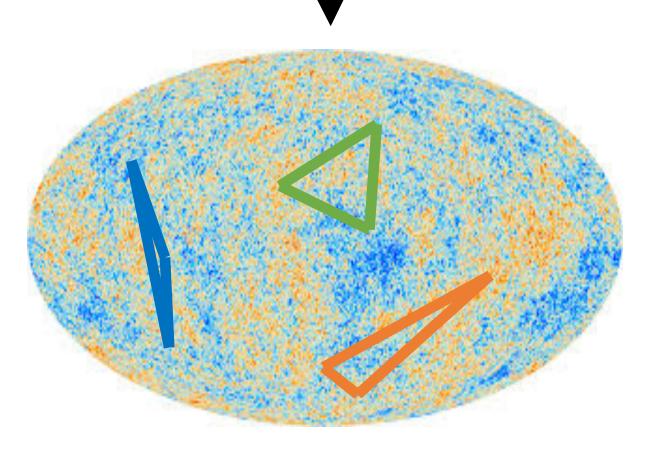
Conclusion: Scalar primordial non-Gaussianity is small!

$$10^{-5} |f_{\rm NL}| \ll 1$$

However, we are still far from the (vaguely defined) theory limits

$$\sigma(f_{\rm NL}) \sim 1$$





CMB Constraints (Hardish)

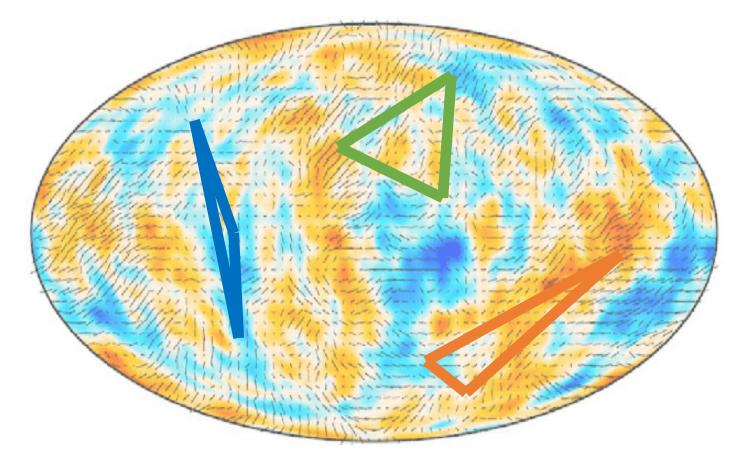
• Planck can also constrain tensor three-point functions

e.g.,
$$\langle TTB \rangle \sim \langle \zeta \zeta (h_{+} - h_{\times}) \rangle$$

- Recent work has constrained several gravitational wave templates:
 - Weyl gravity, squeezed bispectra, massive gravity, gauge fields, ...
- This uses binned bispectrum estimators (not very optimal)
- The signals are mostly on large scales due to tensor transferfunctions
- This is limited by lensing and B-mode noise, not cosmic variance

Conclusion: Tensor primordial non-Gaussianity is small!

$$10^{-5} |f_{\rm NL}^{\rm tens}| \ll 1$$



Model		Planck		
		Т	T+E	T+E+B
Tensor-Tensor-Tensor				
Squeezed	$(\times 10^{-1})$	51 ± 32	-4 ± 13	7 ± 9
Equilateral	$(\times 10^{-2})$	-5 ± 13	-3 ± 5	-0 ± 3
$W^3 \left(n_{ m NL} = +1 ight)$	$(\times 10^{-3})$	-63 ± 34	-7 ± 7	8 ± 4
$W^3 \left(n_{ m NL} = 0 ight)$	$(\times 10^{-2})$	-8 ± 14	-4 ± 6	4 ± 4
$W^3 \left(n_{ m NL} = -1 ight)$	$(\times 10^{0})$	-3 ± 41	-7 ± 27	$\mathbf{-6} \pm 15$
$\widetilde{W}W^2$ $(n_{ m NL}=+1)$	$(\times 10^{-3})$	61 ± 98	-18 ± 15	-8 ± 6
$\widetilde{W}W^2 (n_{ m NL}=0)$	$(\times 10^{-2})$	42 ± 63	-9 ± 11	-3 ± 5
$\widetilde{W}W^2$ $(n_{ m NL}=-1)$	$(\times 10^{0})$	136 ± 222	-24 ± 55	5 ± 20
$\widetilde{F}F$	$(\times 10^{-2})$	-16 ± 27	-10 ± 10	3 ± 6
$Tensor ext{-} Tensor ext{-} Scalar$				
$\widetilde{W}W$	$(\times 10^{-2})$	29 ± 460	31 ± 67	5 ± 11
Tensor-Scalar-Scalar				
Squeezed	$(\times 10^{0})$	-17 ± 31	9 ± 15	13 ± 10

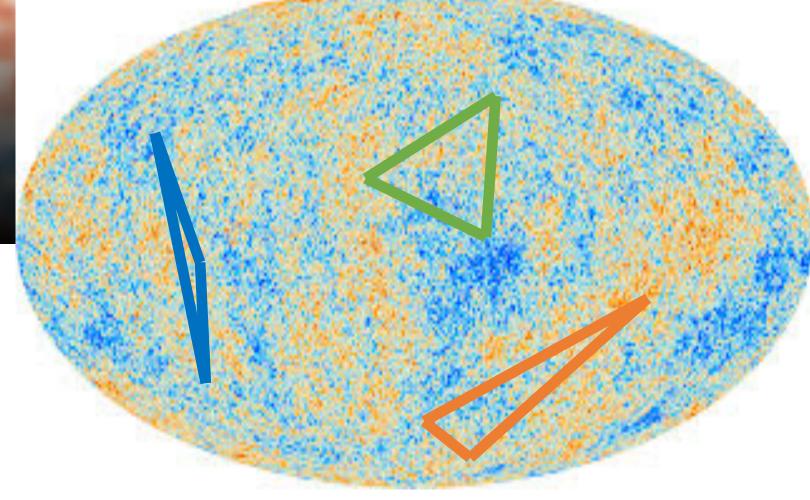
CMB Constraints (Nightmarish)

 Very few previous works have considered four-point functions!

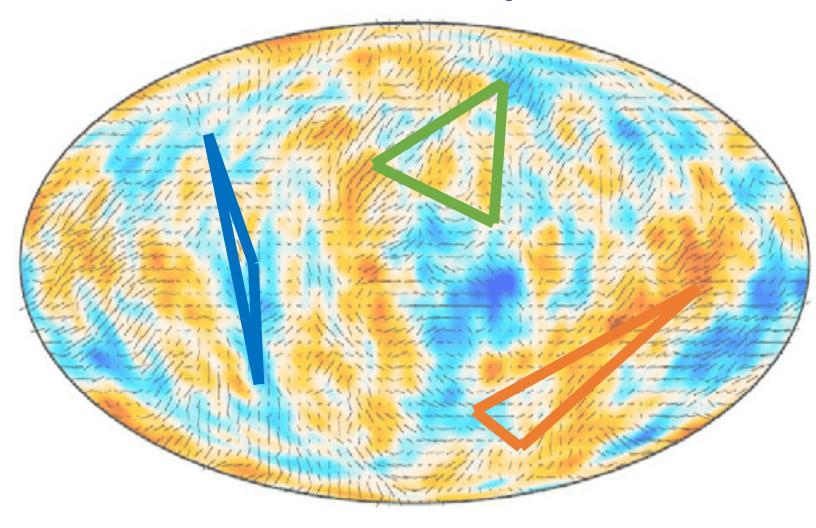
- Until recently, we only had constraints on
 - Local effects $(g_{\rm NL}^{\rm loc}, au_{\rm NL}^{\rm loc})$
 - Self-interactions (from the EFT of inflation: $g_{
 m NL}^{
 m equil}$ imes 3)

There's much more to learn from the CMB!

Let's search for primordial physics in the CMB four-point function!



Planck CMB Temperature



Planck CMB Polarization

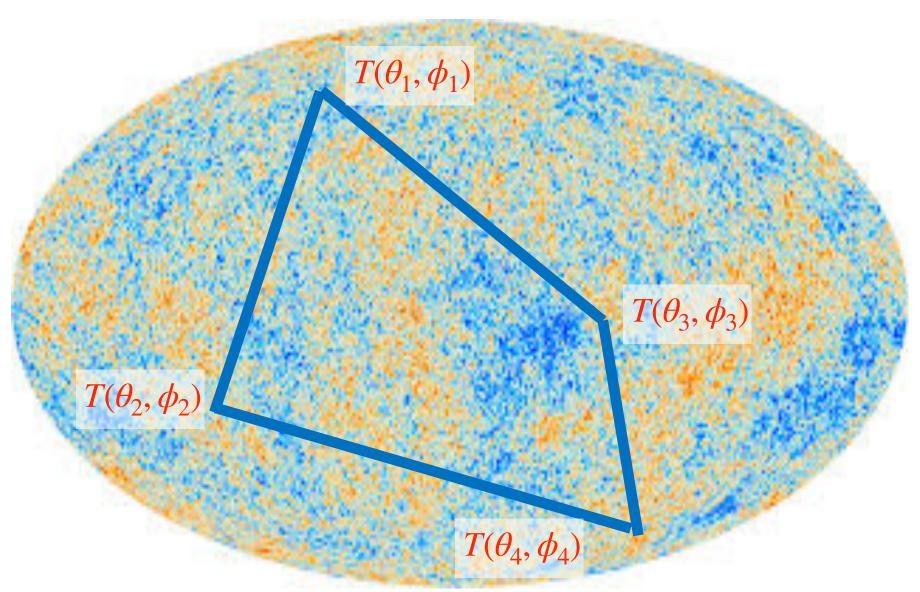
How to Measure a Four-Point Function

 CMB experiments measure the temperature and polarization across the whole sky

$$T(\theta,\phi), \quad E(\theta,\phi) \quad \leftrightarrow \quad a_{\ell m}^T, \quad a_{\ell m}^E$$

 Since the physics is linear we just need to correlate the CMB at four angles

$$\langle T(\theta_1, \phi_1) T(\theta_2, \phi_2) T(\theta_3, \phi_3) T(\theta_4, \phi_4) \rangle \leftrightarrow \langle a_{\ell_1 m_1}^T a_{\ell_2 m_2}^T a_{\ell_3 m_3}^T a_{\ell_4 m_4}^T \rangle$$



- BUT:
 - The trispectrum is 8-dimensional!?
 - There's 10^{28} combinations of points?!

Optimal Trispectrum Analyses

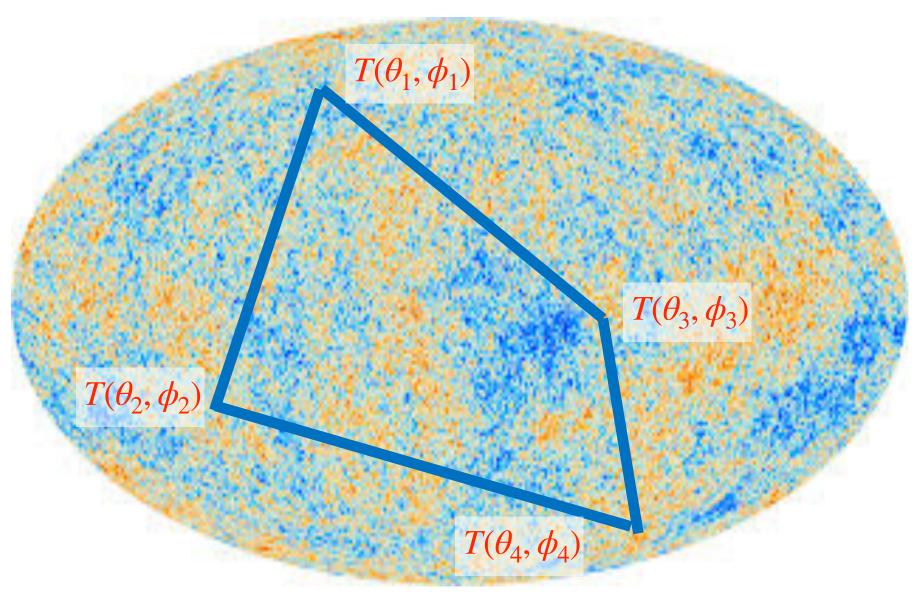
• To compress the data, we'll use techniques from signal processing

$$\widehat{A} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3 \ell_4 m_4} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger} \times (a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4})$$

Model

Data

- We compress all 10^{28} elements into a **single** number!
- This encodes the **amplitude** of a specific model, e.g., $au_{\rm NL}$, which traces the **microphysics** of inflation
- To **compute** the ℓ , m sum we use a variety of tricks, including low-dimensional integrals, harmonic transforms, and Monte Carlo summation
- If the trispectrum can be (integral-)factorized, this reduces the complexity from $\mathcal{O}(\ell_{\max}^8)$ to $\mathcal{O}(\ell_{\max}^2 \log \ell_{\max})$

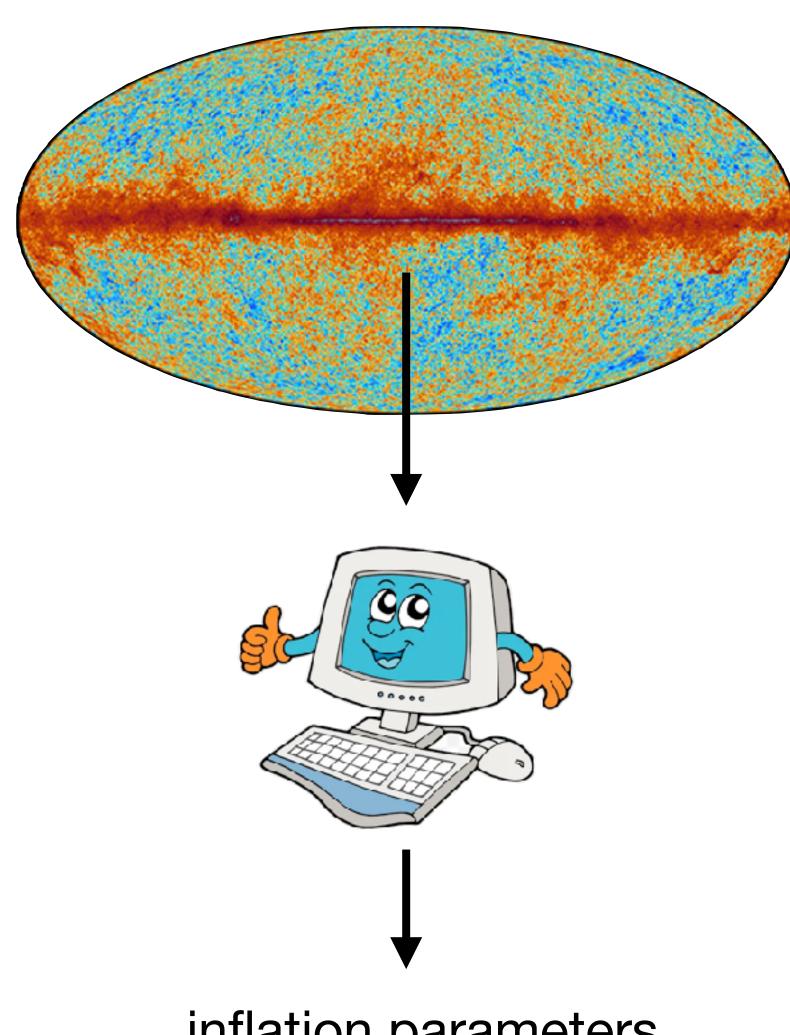


Optimal Trispectrum Analyses

The result: **fast** estimation of four-point amplitudes!

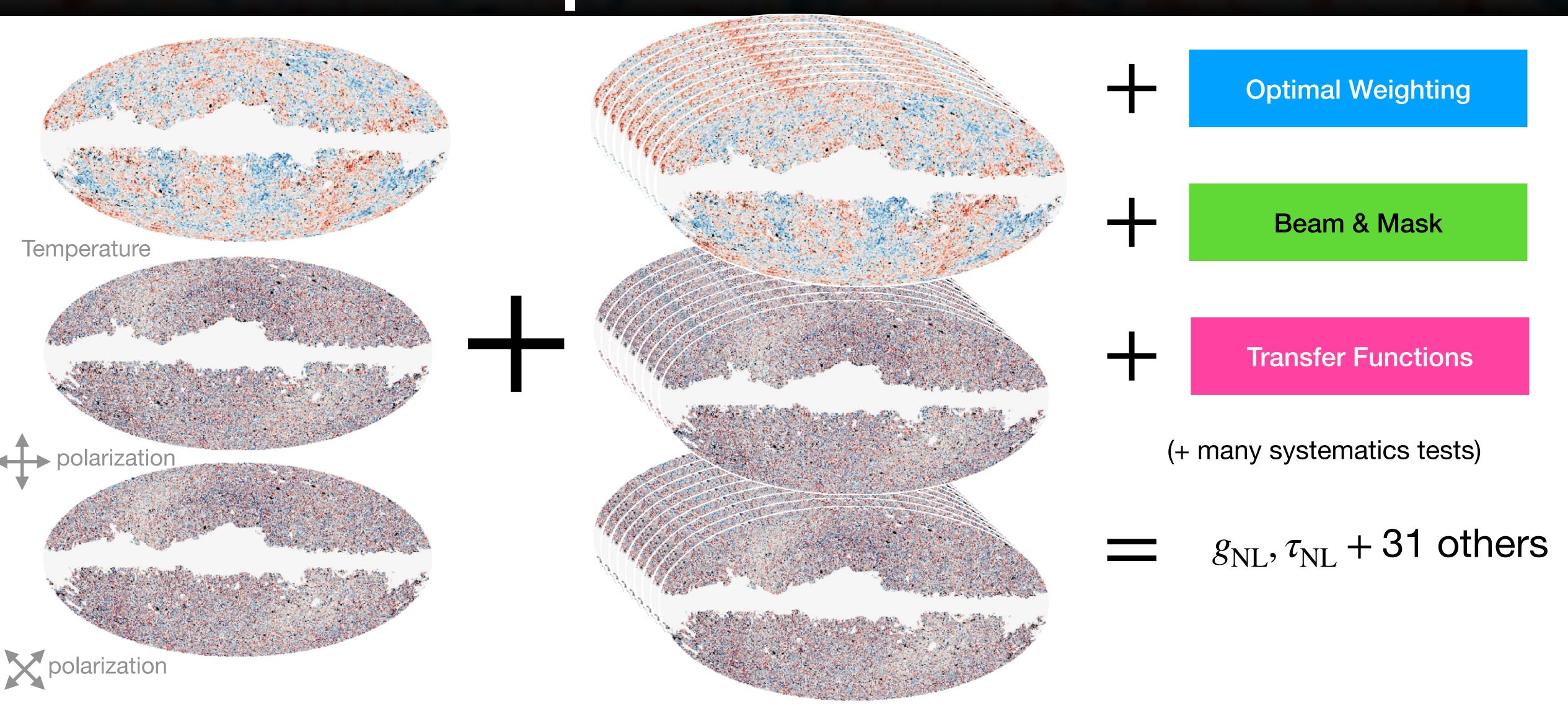
The estimators are

- Unbiased (by the mask, geometry, beams, lensing, ...)
- Efficient (limited by spherical harmonic transforms)
- Minimum-Variance (they saturate the Cramer-Rao bound)
- Open-Source (entirely written in Python/Cython)
- General (17 classes of model included so far)



inflation parameters

The Planck Trispectrum



Planck PR4/NPIPE data

100 FFP10 simulations

What did we try to detect?

- 1. Cubic local shape (g_{NL}^{loc})
- 2. Quadratic² local shape (τ_{NL}^{loc})
- 3. Constant shape (g_{NL}^{con})
- 4. Effective Field Theory of Inflation shapes ($\times 3$)
- 5. Direction-Dependent shapes
- 6. Cosmological Collider Shapes
- 7. Weak Gravitational Lensing
- 8. Unresolved **Point-Sources**
- 9. ISW-lensing Trispectra

What did we try to detect?

1. Cubic local shape (g_{NI}^{loc})

2. Quadratic² local shape (τ_{NI}^{loc})

3. Constant shape (g_{NL}^{con})

4. Effective Field Theory of Inflation shapes ($\times 3$)

Direction-dependent shapes

Cosmological Collider shapes

7. Weak Gravitational Lensing

Unresolved **Point-Sources**

ISW-lensing Trispectra

Did we detect it?

No

No

No

No $(\times 3)$

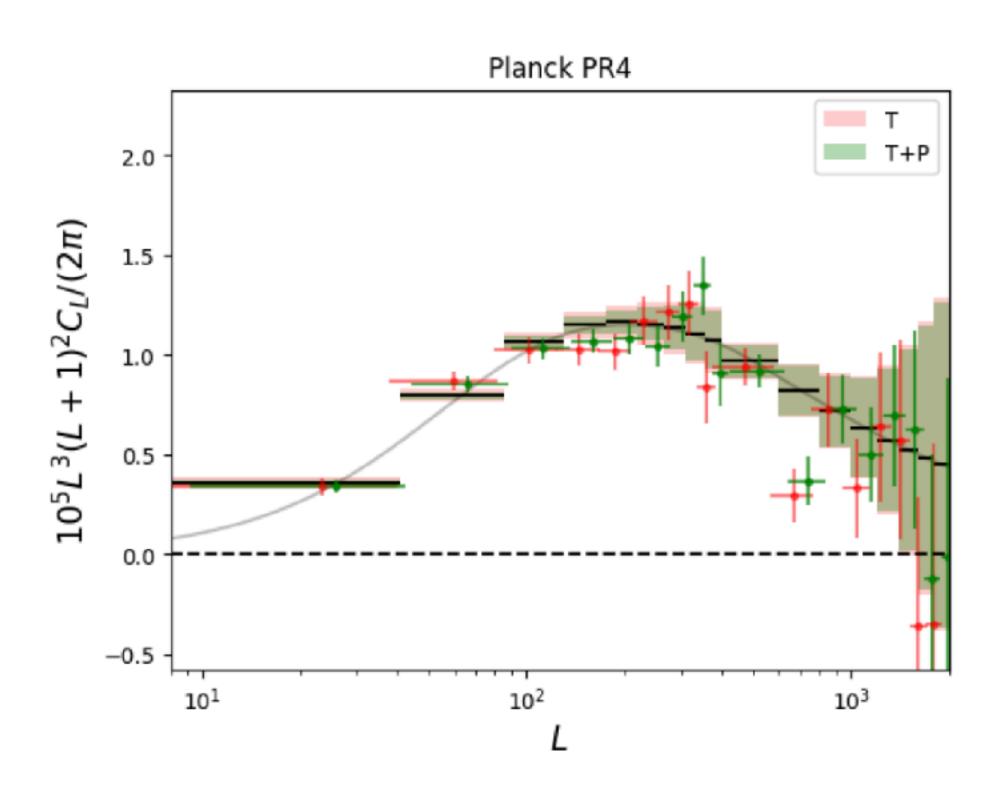
No $(\times 8)$

No $(\times 17)$

Yes!!!

No

No



OMG! Lensing! (already detected many times)

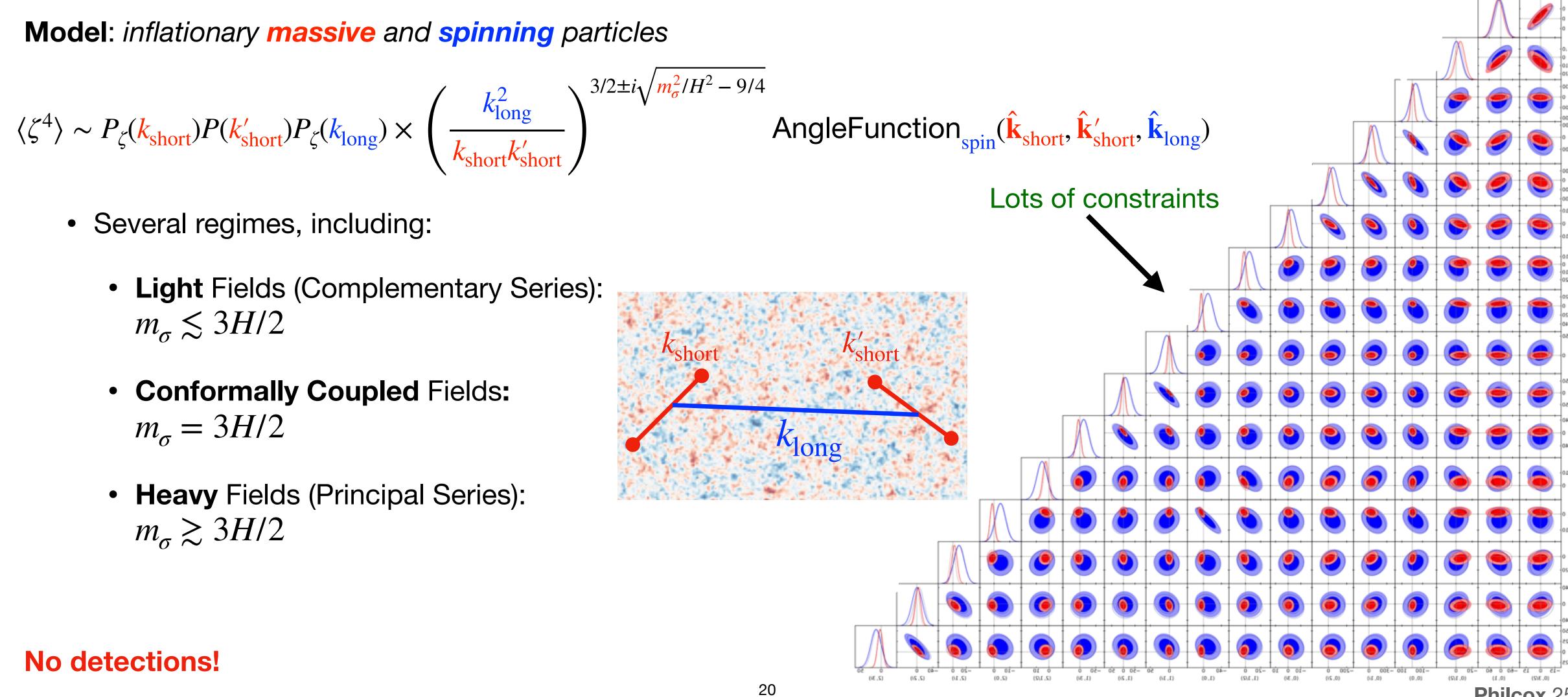
An Example: Cosmological Colliders

Model: inflationary massive and spinning particles

$$\langle \zeta^4 \rangle \sim P_{\zeta}(k_{\text{short}})P(k'_{\text{short}})P_{\zeta}(k_{\text{long}}) \times \left(\frac{k_{\text{long}}^2}{k_{\text{short}}k'_{\text{short}}}\right)^3$$

Several regimes, including:

- Light Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
- Conformally Coupled Fields: $m_{\sigma} = 3H/2$
- Heavy Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$



No detections!

What's Next For the Trispectrum?

There are many ways to extend.

1. More Data

$$\sigma(\tau_{\rm NL}) \sim \ell_{\rm max}^{-2}$$

- ACT, SPT, Simons Observatory, LiteBird, CMB-HD, CMB-S4 will provide data down to much smaller scales!
- Polarization will be particularly useful and could benefit from delensing

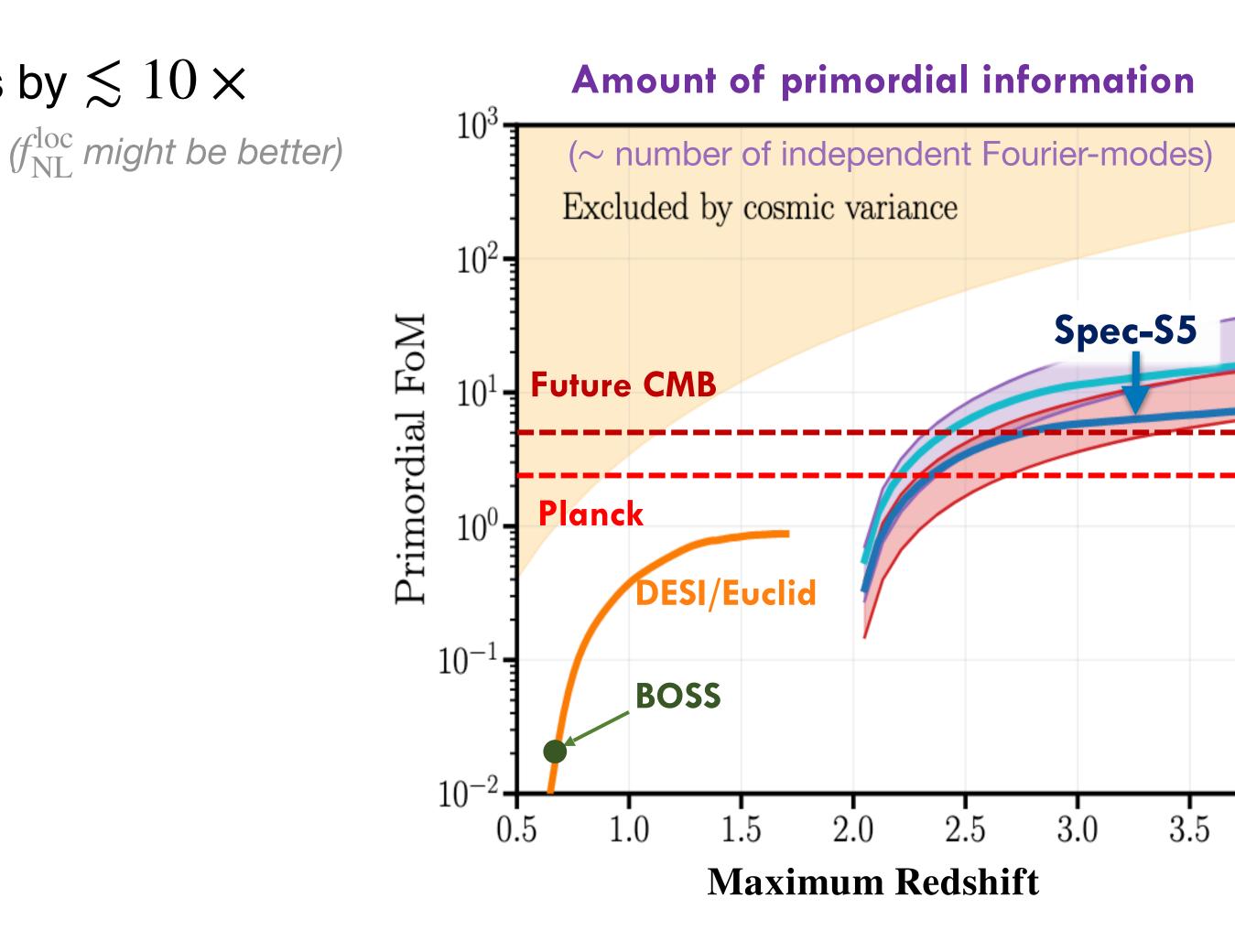
2. More Models

- Lighter particles? Heavier particles?
- Tensor non-Gaussianity?
- Collider physics beyond the collapsed limit?
- Thermal baths? Higher-spin particles? Modified sound speeds? Fermions?
- Scale-dependence? Isocurvature? Primordial magnetic fields?

The Future of Non-Gaussianity

- Future CMB experiments will improve bounds by $\lesssim 10 \, \times$
 - This is a two-dimensional field
 - We're running out of modes to look at!
 - Small-scales are hard

- What about galaxy surveys?
 - The data precision is rapidly increasing
 - This is a **three-dimensional** field
 - We aren't limited by projection effects
 - There are new observables e.g., galaxy **shapes**

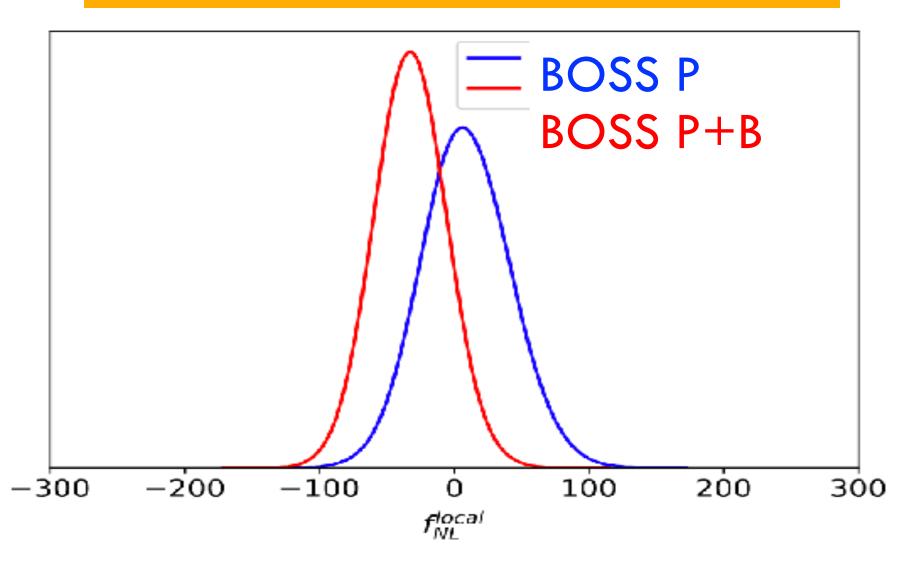


Inflation from Galaxy Surveys

- The BOSS galaxy survey has been used to constrain primordial three-point functions using the
 - One-loop power spectrum: $P_{\mathcal{C}}(k) \supset f_{\mathrm{NL}} P_{12}$
 - Tree-level bispectrum: $B_0(k_1,k_2,k_3)\supset f_{\rm NL}B_{111}$
 - Skew-spectra: $P[\delta, \delta \star \delta] \supset f_{\rm NL} B_{111}$
- We have constrained:
 - Local three-point functions $f_{
 m NL}^{
 m loc}$ from additional light fields

LOCAL

See Dennis' talk for Euclid prospects! See Marina's talk for eBOSS quasars!



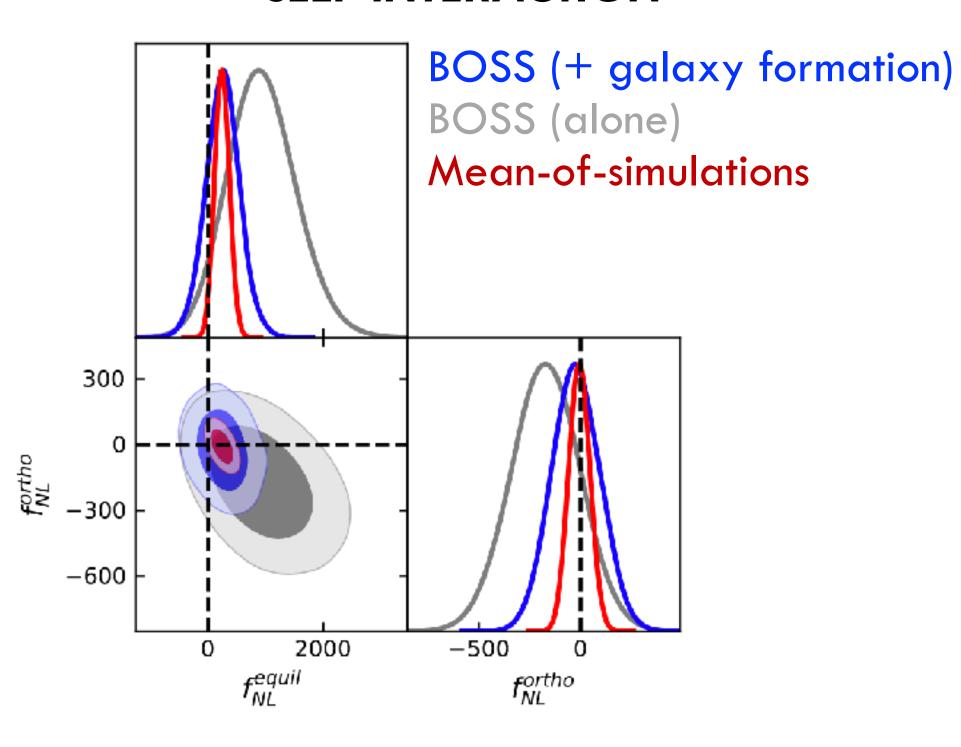
$$f_{\rm NL}^{\rm loc} = -33 \pm 28 \quad (9 \pm 34 \, \text{w/o} \, B_g)$$
 (Now better with DESI Quasars: ± 9)

(CMB: ± 5 , Target: ± 1)

Inflation from Galaxy Surveys

- The BOSS galaxy survey has been used to constrain primordial three-point functions using the
 - One-loop power spectrum: $P_{\mathcal{C}}(k) \supset f_{\mathrm{NL}} P_{12}$
 - Tree-level bispectrum: $B_0(k_1,k_2,k_3)\supset f_{\rm NL}B_{111}$
 - Skew-spectra: $P[\delta, \delta \star \delta] \supset f_{\rm NL} B_{111}$
- We have constrained:
 - Local three-point functions $f_{
 m NL}^{
 m loc}$ from additional light fields
 - Equilateral three-point functions $f_{
 m NL}^{
 m eq,orth}$ from cubic interactions in single-field inflation

SELF-INTERACTION



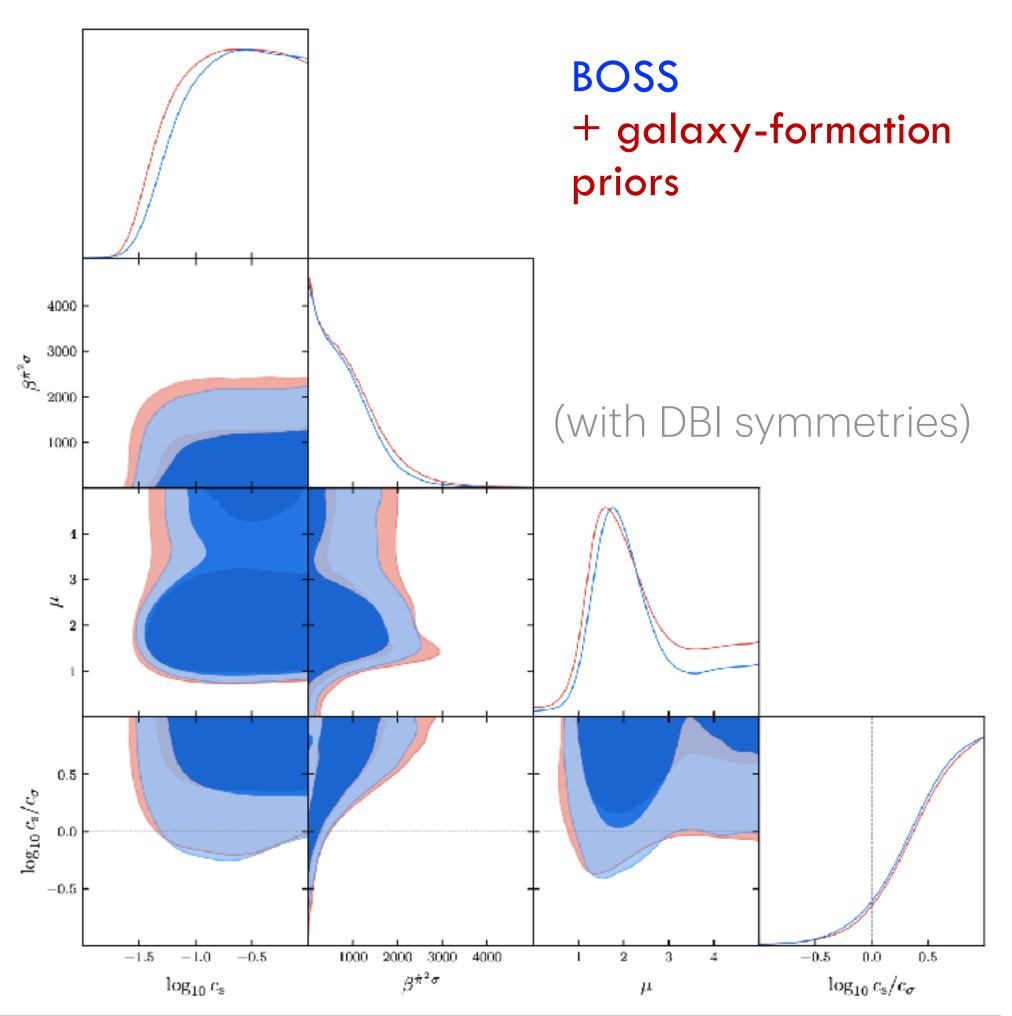
$$f_{\rm NL}^{\rm eq} = 260 \pm 300, f_{\rm NL}^{\rm orth} = -23 \pm 120$$

(CMB: ± 50 , ± 25 , Target: ± 1)

Inflation from Galaxy Surveys

- The BOSS galaxy survey has been used to constrain primordial three-point functions using the
 - One-loop power spectrum: $P_{\mathcal{C}}(k) \supset f_{\mathrm{NL}} P_{12}$
 - Tree-level bispectrum: $B_0(k_1,k_2,k_3)\supset f_{\rm NL}B_{111}$
 - Skew-spectra: $P[\delta, \delta \star \delta] \supset f_{\rm NL}B_{111}$
- We have constrained:
 - Local three-point functions $f_{
 m NL}^{
 m loc}$ from additional light fields
 - **Equilateral** three-point functions $f_{\rm NL}^{\rm eq,orth}$ from cubic interactions in single-field inflation
 - Collider three-point functions from the exchange of massive scalar fields

MASSIVE PARTICLE



- Current LSS constraints are $\sim 5 20 \times$ worse than the CMB, because:
 - Volume BOSS contains fewer modes than Planck

• Scale-cuts — we can't model beyond $k_{
m NL}$

• Galaxy formation — few assumptions on non-linear physics

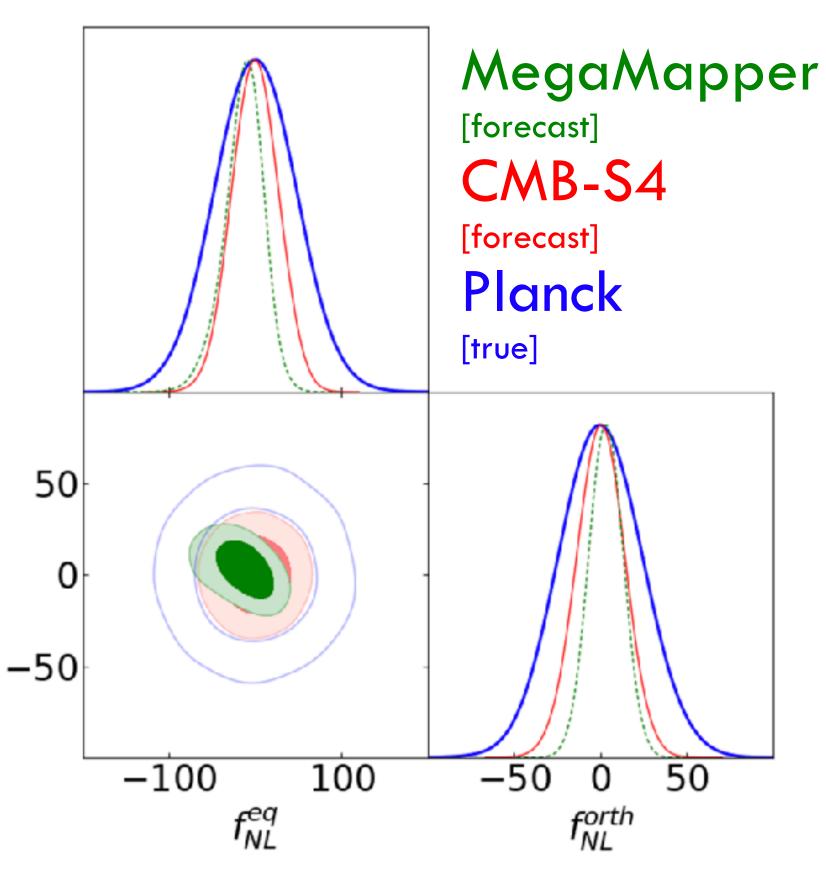
• Statistics — information propagates to other observables

- Current LSS constraints are $\sim 5 20 \times$ worse than the CMB, because:
 - Volume BOSS contains fewer modes than Planck
 - DESI, Euclid, Spec-S5 will improve this
 - Scale-cuts we can't model beyond $k_{
 m NL}$
 - Use **simulations** or *non-linear responses*

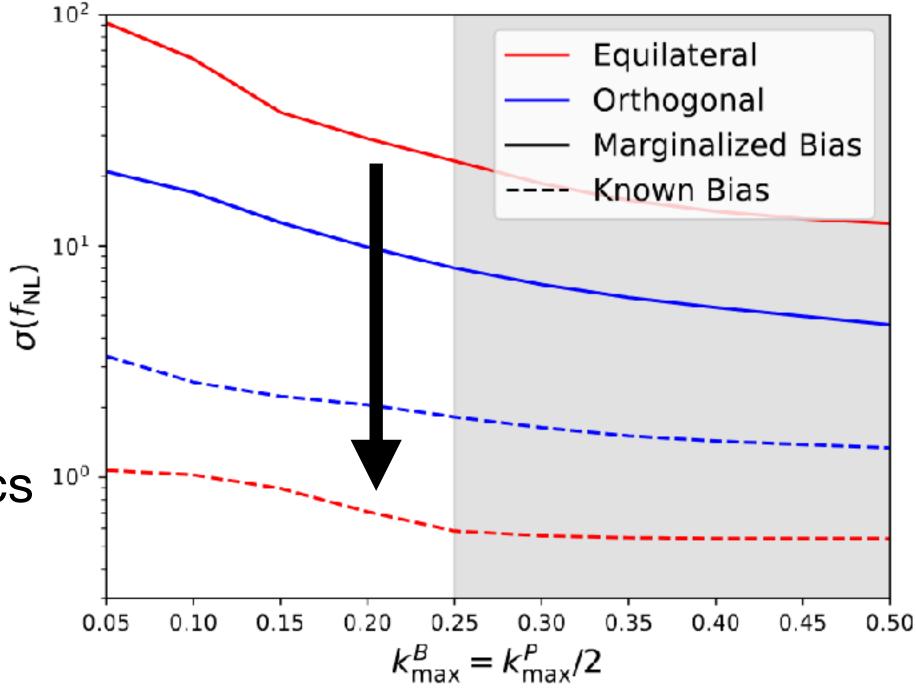
See Sam's talk / Will's talk

- Galaxy formation few assumptions on non-linear physics \(\bar{\gamma} \)
 - (Careful) priors on bias parameter relations
- Statistics information propagates to other observables
 - Use new statistics

Self-Interactions



- Current LSS constraints are $\sim 5-20 \times$ worse than the CMB, because:
 - Volume BOSS contains fewer modes than Planck
 - DESI, Euclid, Spec-S5 will improve this
 - Scale-cuts we can't model beyond $k_{
 m NL}$
 - Use **simulations** or *non-linear responses*
 - Galaxy formation few assumptions on non-linear physics
 - (Careful) priors on bias parameter relations
 - Statistics information propagates to other observables
 - Use new statistics



(Optimistic $k_{\rm max}$ — see Jamie's talk)

- Current LSS constraints are $\sim 5 20 \times$ worse than the CMB, because:
 - Volume BOSS contains fewer modes than Planck
 - DESI, Euclid, Spec-S5 will improve this
 - Scale-cuts we can't model beyond $k_{
 m NL}$
 - Use **simulations** or *non-linear responses*
 - Galaxy formation few assumptions on non-linear physics
 - (Careful) **priors** on bias parameter relations
 - Statistics information propagates to other observables
 - Use new statistics

Other observables

Trispectra / kurtospectra
 kSZ correlators

CMB lensing correlators

Weak lensing statistics

Galaxy shapes

Galaxy spins

Halo mass functions

(and many others)

The Next Generation of LSS

- DESI has already observed millions of galaxies across a wide range of redshifts
- So far, this has been used primarily through:
 - BAO parameters: $\alpha_{\parallel,\perp} \sim r_d/D_{\!A}(z), H(z)r_d$
 - Power spectra (galaxies & Ly- α)
- to measure ΛCDM + extensions:
 - $H_0, \Omega_m, \sigma_8, \sum m_{\nu}$
 - Ω_k, w_0, w_a
 - $f_{\rm NL}^{\rm loc}$

Each blob is a 3D galaxy position!

The year one data is now **public** — what else could we measure?

The Next Generation of LSS

- The first (roughly independent) re-analyses of DESI data are being performed!
 - These include power spectra & bispectra from all galaxy chunks
- This is hard:
 - The public data only contains galaxy positions and weights
 - There's no simulations to use or covariances
- There's lots of systematics to account for, including:
 - Fiber collisions
 - **Bispectrum** window functions
 - Angular systematics

TARGETID	Z	NTILE	RA	DEC	
int64	float64	int64	float64	float64	
39627540901396844	0.42060841162467566	1	159.30684159361635	-10.155757636765902	
39627546836338876	0.8668980715716706	1	158.44667596279407	-9.962760066342906	
39627546840531340	0.9348172077800124	1	158.4799294702238	-9.880343166939232	
39627546840533707	0.7646678553759423	1	158.65071160360105	-9.900898173028425	
39627546840534067	0.88129590000311	1	158.67878216902403	-9.91791308567385	
39627546840534396	0.6646155566176719	1	158.70027052890555	-9.885818986284596	
39627546844725593	0.7619120932610688	1	158.72751630870823	-10.011383569041937	
39627546844726132	0.8129116729090922	1	158.76343950179967	-9.912671320450734	
39627546844726593	0.835471640017949	1	158.79898500886574	-9.952788127324665	
39627546848921194	0.8148312339778753	1	159.052157885943	-9.992428612452807	
39627546848922139	0.7200341373651288	1	159.10202657806508	-9.938566366253678	
39627546848922621	0.7606337242857438	1	159.1309146297404	-10.02377942401391	
39627546848922874	0.7198972751282844	1	159.1462785833043	-9.950181865635432	
39627546848923188	0.7210857282186207	1	159.16399100631358	-9.912947332242044	
39627546848923381	0.569430729151765	1	159.17802210549974	-9.97892860399317	
39627546848923415	0.8891288789150124	1	159.18008439182032	-10.072752528866118	
39627546848923493	0.9513285375888253	1	159.1840389390485	-9.910321824120278	
39627546848923519	0.7212784017696859	1	159.1860701777553	-9.944737378735352	
39627546853114634	0.8131126675553368	1	159.25137421856687	-10.058275905081851	
39627546853115304	0.5559672054059013	1	159.28855963426028	-9.955979493106813	
39627546853115470	0.7147216867384578	1	159.2970230990033	-10.012836906791499	
39627546853115682	0.9274570688680336	1	159.30835543527493	-10.106935803496164	

Reanalyzing DESI DR1:

1. ACDM Constraints from the Power Spectrum & Bispectrum

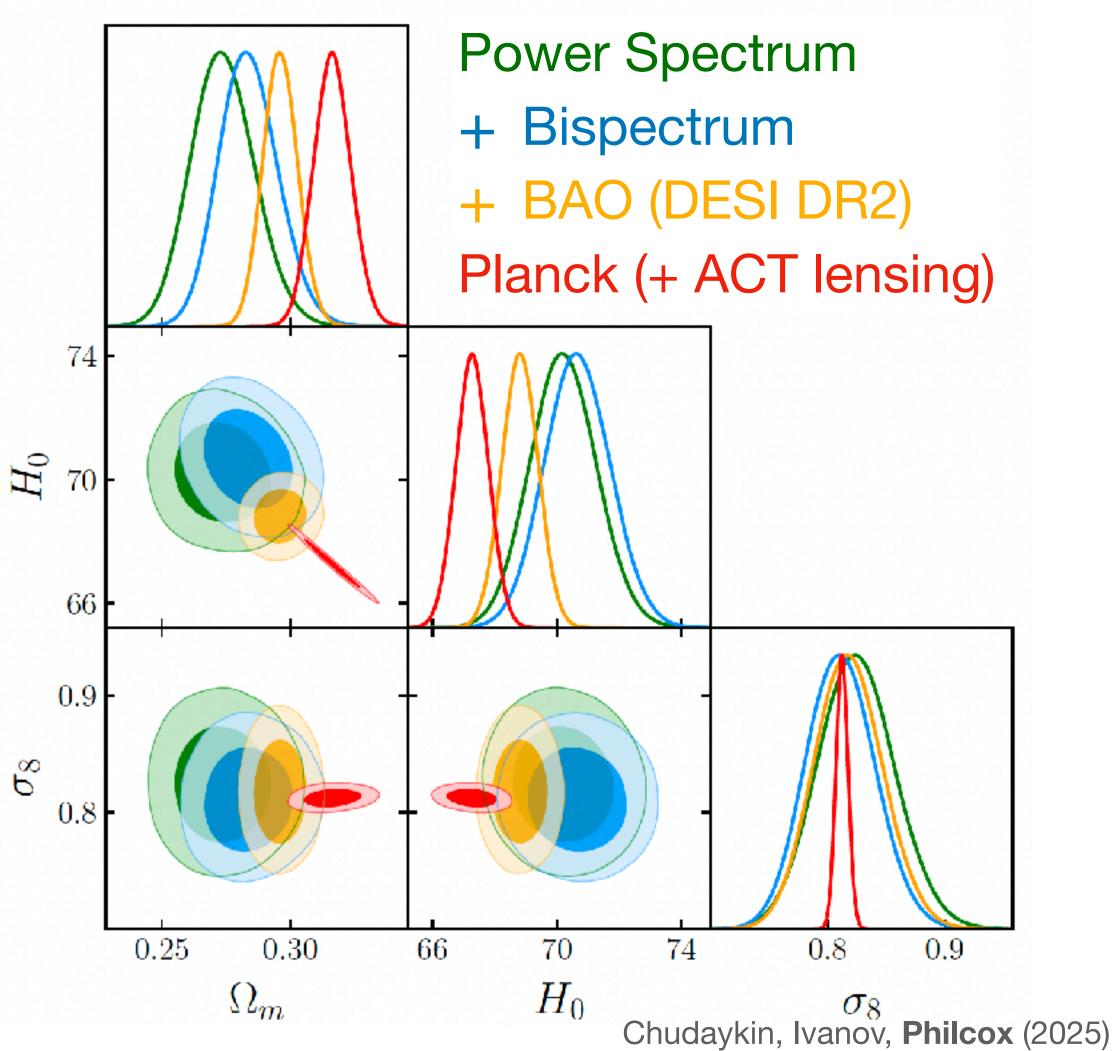
Anton Chudaykin,^{1,*} Mikhail M. Ivanov,^{2,3,†} and Oliver H.E. Philcox^{4,5,6,7,‡}

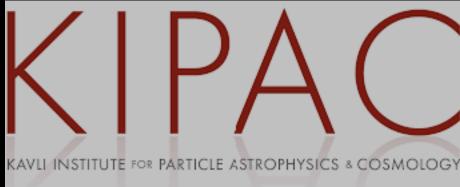
arXiv:2507.13433

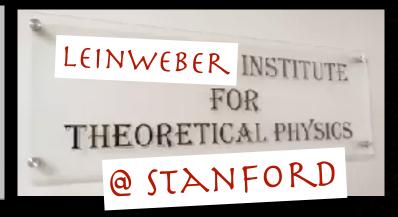
The Next Generation of LSS

- The first (roughly independent) re-analyses of DESI data are being performed!
 - These include power spectra & bispectra from all galaxy chunks
- So far, we only have published ΛCDM constraints
 - Λ CDM extensions coming soon!
- There's a **lot** more to explore, including:
 - Bispectrum templates: $f_{\rm NL}^{\rm loc}$, $f_{\rm NL}^{\rm eq}$, $f_{\rm NL}^{\rm orth}$
 - Cosmological colliders (including mass and spin)
 - Trispectrum templates: $g_{\mathrm{NL}}^{\mathrm{loc}}, au_{\mathrm{NL}}^{\mathrm{loc}}, g_{\mathrm{NL}}^{\mathrm{eq}}, \cdots$

DESI DR1 Constraints





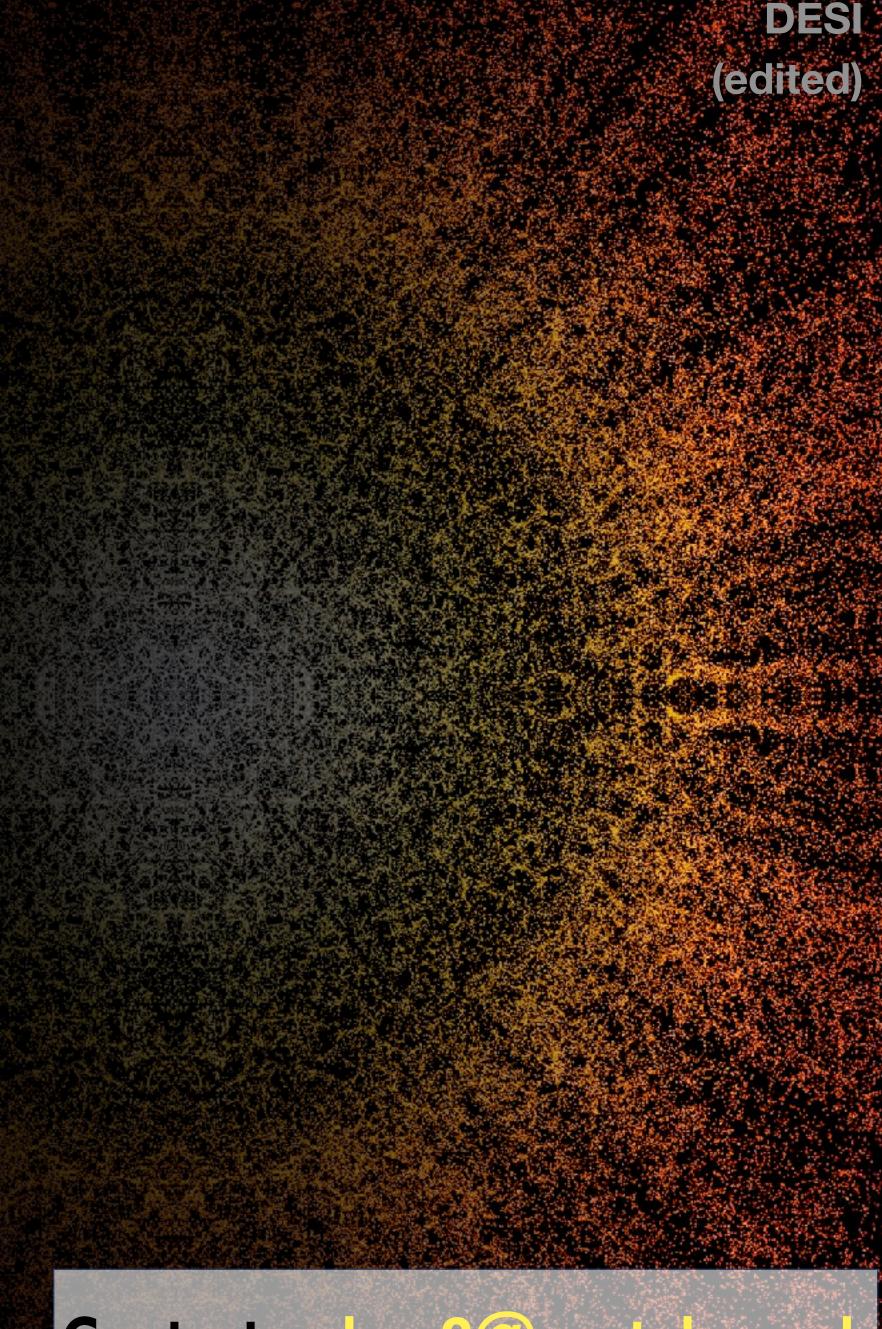


Summary

There are many sources of inflationary non-Gaussianity

 The CMB is a powerful probe for measuring PNG (though the results are depressing)

 Galaxies will become a leading probe of PNG (eventually)



Contact: ohep2@cantab.ac.uk