Discussion session: "Tensions"

Discussion session: tensions

Pick your tension

- $S_8 / \sigma_8 / lensing is low$
- H₀
- W_0/W_a
- Negative m_g
- EB correlation and birefringence
- Radio dipole
- <shout your own>

- Is it solved by KiDS-Legacy?
- What evidence is there from non-shear?
 - Lensing tomography?
 - o Full-shape?
 - Cluster counts?
- Wasn't strong feedback supposed to solve it?
 Is feedback not strong anymore?

Wright et al https://arxiv.org/pdf/2503.19441

Broxterman et al https://arxiv.org/pdf/2509.08365

Perez Sarmiento et al https://arxiv.org/pdf/2502.06687

	Planck+DES	SPT	eROSITA
$\Omega_{ m m}$	$0.312^{+0.018}_{-0.024}$	0.286 ± 0.032	$0.29^{+0.01}_{-0.02}$
σ_8	0.777 ± 0.024	0.817 ± 0.026	0.88 ± 0.02
S_8	$0.791^{+0.023}_{-0.021}$	0.795 ± 0.029	0.86 ± 0.01
(1-b)	$0.844^{+0.055}_{-0.062}$	0.790 ± 0.070	0.630 ± 0.034
$(1-b)_{\text{XMM-like}}$	$0.721^{+0.047}_{-0.053}$	0.674 ± 0.059	0.538 ± 0.029
σ_8 S_8 $(1-b)$	$0.777 \pm 0.024 \\ 0.791^{+0.023}_{-0.021} \\ 0.844^{+0.055}_{-0.062} \\ 0.721^{+0.047}_{-0.053}$	0.795 ± 0.029 0.790 ± 0.070	0.88 ± 0.02 0.86 ± 0.01 0.630 ± 0.034

Aymerich et al. https://arxiv.org/pdf/2509.08673

Sailer et al.

https://arxiv.org/pdf/2407.04607

H

- What supernova systematics could cause it?
 - Supernova environmental effects?
 - Cepheid calibration?
- What CMB systematics could cause it?
 - Wrong r_s?
 - \circ A_{lens} ?
 - Wrong T_{CMB}?
- How else can we measure H_0 ?
 - P_k turnover/curvature
 - \circ CC
- What LCDM+ physics could explain it?
 - EDE? Clumpy recombination?

Ho

Stiskalek et al. https://arxiv.org/pdf/2509.09665

Zaborowski et al. https://arxiv.org/pdf/2411.16677

H_o

Ivanov et al.

https://arxiv.org/pdf/2005.10656

- Are there suspicious outliers/internal tension in SNe and BAO data?
- What systematics could cause it?
 - $\circ \quad \text{Wrong } \tau/\text{r}_{\text{s}}/\text{A}_{\text{lens}}/\text{T}_{\text{CMB}}/\Omega_{\text{k}}?$
- What do we need to believe it?
 - 5-sigma? 7-sigma?
 - Complementary confirmation? From what?
 - Can it really be connected to growth?
- If it is real, what next?

$$W_0 - W_a$$

$$D_{\rm M}/r_{\rm d}(z = 0.70) = 17.86 \pm 0.33, D_{\rm H}/r_{\rm d}(z = 0.70) = 19.33 \pm 0.53,$$
SDSS LRG
$$0.6 < z < 0.85,$$
(3.2)

respectively, which can be compared to the DESI results in Table 1. While the results at effective redshift z=0.51 are in good agreement, a larger difference can be seen in the 0.6 < z < 0.8 redshift bin, particularly in comparison to the DESI result $D_{\rm M}/r_{\rm d}(z=0.71)=$

 16.85 ± 0.32 .

Sailer 2025, https://arxiv.org/pdf/2504.16932

 $W_0 - W_2$

Sailer 2025, https://arxiv.org/pdf/2504.16932

$W_0 - W_a$

Jhaveri et al. https://arxiv.org/pdf/2504.21813

$W_0 - W_a$

Elbers 2025, https://arxiv.org/pdf/2508.21069

Negative m

- Is this further evidence of w₀-w_a? Should we use PP priors?
- How will we ever convince particle physicists of an m, measurement?
 - Can it be done independently of growth?
 - Will growth probes ever be sufficiently robust?
 - Will independent measurements ever be sufficiently sensitive?

EB and birefringence

- Is there evidence beyond Planck with foreground assumptions?
- Will polangle calibration ever be good enough? (need $\Delta\beta$ ~0.1°)
- Could a signal be connected to other parity-violating physics?
 - Tri/bi-spectrum
 - Anisotropic birefringence

EB and birefringence

 α_{100}

 α_{217}

 α_{353}

EB and birefringence

Louis et al. 2025 (ACT DR6) https://arxiv.org/pdf/2503.14452

Radio dipole

- What robustness tests can we use?
 - **l**=2, 3, 4?
 - Clustering dipole? x-corr?
- Is it worth checking for violations of CP in future data?
- If it's real, what does it imply for LCDM/FRW (if anything)?
- If it's real, does it tell us something interesting about initial conditions?

Radio dipole

