Discussion session: "Tensions" ### **Discussion session: tensions** ### Pick your tension - $S_8 / \sigma_8 / lensing is low$ - H₀ - W_0/W_a - Negative m_g - EB correlation and birefringence - Radio dipole - <shout your own> - Is it solved by KiDS-Legacy? - What evidence is there from non-shear? - Lensing tomography? - o Full-shape? - Cluster counts? - Wasn't strong feedback supposed to solve it? Is feedback not strong anymore? Wright et al https://arxiv.org/pdf/2503.19441 Broxterman et al https://arxiv.org/pdf/2509.08365 Perez Sarmiento et al https://arxiv.org/pdf/2502.06687 | | Planck+DES | SPT | eROSITA | |---------------------------|--|--|---| | $\Omega_{ m m}$ | $0.312^{+0.018}_{-0.024}$ | 0.286 ± 0.032 | $0.29^{+0.01}_{-0.02}$ | | σ_8 | 0.777 ± 0.024 | 0.817 ± 0.026 | 0.88 ± 0.02 | | S_8 | $0.791^{+0.023}_{-0.021}$ | 0.795 ± 0.029 | 0.86 ± 0.01 | | (1-b) | $0.844^{+0.055}_{-0.062}$ | 0.790 ± 0.070 | 0.630 ± 0.034 | | $(1-b)_{\text{XMM-like}}$ | $0.721^{+0.047}_{-0.053}$ | 0.674 ± 0.059 | 0.538 ± 0.029 | | σ_8 S_8 $(1-b)$ | $0.777 \pm 0.024 \\ 0.791^{+0.023}_{-0.021} \\ 0.844^{+0.055}_{-0.062} \\ 0.721^{+0.047}_{-0.053}$ | 0.795 ± 0.029
0.790 ± 0.070 | 0.88 ± 0.02
0.86 ± 0.01
0.630 ± 0.034 | Aymerich et al. https://arxiv.org/pdf/2509.08673 Sailer et al. https://arxiv.org/pdf/2407.04607 ## H - What supernova systematics could cause it? - Supernova environmental effects? - Cepheid calibration? - What CMB systematics could cause it? - Wrong r_s? - \circ A_{lens} ? - Wrong T_{CMB}? - How else can we measure H_0 ? - P_k turnover/curvature - \circ CC - What LCDM+ physics could explain it? - EDE? Clumpy recombination? ## Ho Stiskalek et al. https://arxiv.org/pdf/2509.09665 Zaborowski et al. https://arxiv.org/pdf/2411.16677 H_o Ivanov et al. https://arxiv.org/pdf/2005.10656 - Are there suspicious outliers/internal tension in SNe and BAO data? - What systematics could cause it? - $\circ \quad \text{Wrong } \tau/\text{r}_{\text{s}}/\text{A}_{\text{lens}}/\text{T}_{\text{CMB}}/\Omega_{\text{k}}?$ - What do we need to believe it? - 5-sigma? 7-sigma? - Complementary confirmation? From what? - Can it really be connected to growth? - If it is real, what next? $$W_0 - W_a$$ $$D_{\rm M}/r_{\rm d}(z = 0.70) = 17.86 \pm 0.33, D_{\rm H}/r_{\rm d}(z = 0.70) = 19.33 \pm 0.53,$$ SDSS LRG $$0.6 < z < 0.85,$$ (3.2) respectively, which can be compared to the DESI results in Table 1. While the results at effective redshift z=0.51 are in good agreement, a larger difference can be seen in the 0.6 < z < 0.8 redshift bin, particularly in comparison to the DESI result $D_{\rm M}/r_{\rm d}(z=0.71)=$ 16.85 ± 0.32 . Sailer 2025, https://arxiv.org/pdf/2504.16932 $W_0 - W_2$ Sailer 2025, https://arxiv.org/pdf/2504.16932 ### $W_0 - W_a$ Jhaveri et al. https://arxiv.org/pdf/2504.21813 ### $W_0 - W_a$ Elbers 2025, https://arxiv.org/pdf/2508.21069 ## Negative m - Is this further evidence of w₀-w_a? Should we use PP priors? - How will we ever convince particle physicists of an m, measurement? - Can it be done independently of growth? - Will growth probes ever be sufficiently robust? - Will independent measurements ever be sufficiently sensitive? ### **EB** and birefringence - Is there evidence beyond Planck with foreground assumptions? - Will polangle calibration ever be good enough? (need $\Delta\beta$ ~0.1°) - Could a signal be connected to other parity-violating physics? - Tri/bi-spectrum - Anisotropic birefringence ## **EB** and birefringence α_{100} α_{217} α_{353} ### EB and birefringence Louis et al. 2025 (ACT DR6) https://arxiv.org/pdf/2503.14452 ### Radio dipole - What robustness tests can we use? - **l**=2, 3, 4? - Clustering dipole? x-corr? - Is it worth checking for violations of CP in future data? - If it's real, what does it imply for LCDM/FRW (if anything)? - If it's real, does it tell us something interesting about initial conditions? ### Radio dipole