Simulation-based inference for galaxy clustering with LEFT field

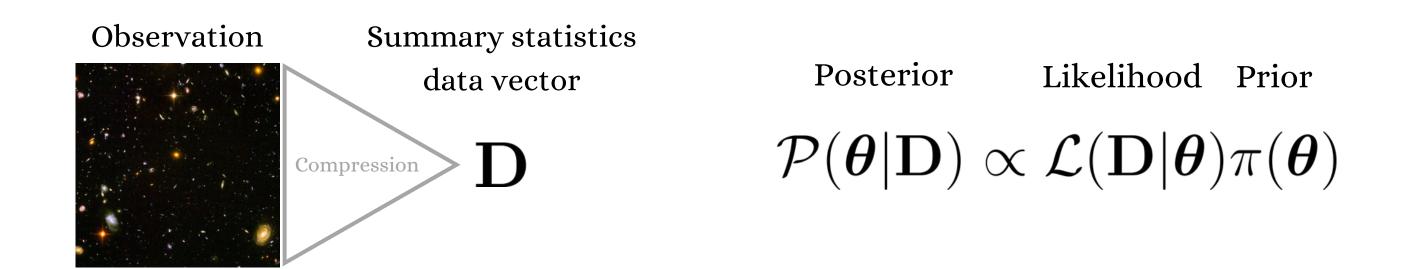
Beatriz Tucci

MPA (→ Stanford LITP soon)

with Fabian Schmidt, Nhat-Minh Nguyen, Ivana Nikolac, Ivana Babić, Julia Stadler, Andrija Kostić, Martin Reinecke

New Physics from Galaxy Clustering at GGI

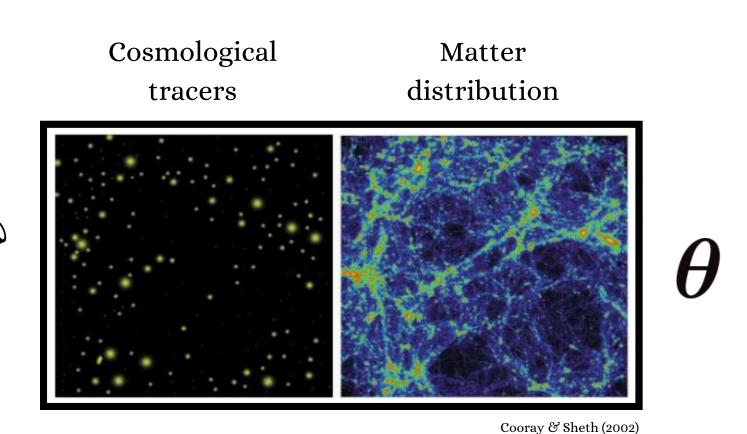
Current cosmological inference analysis

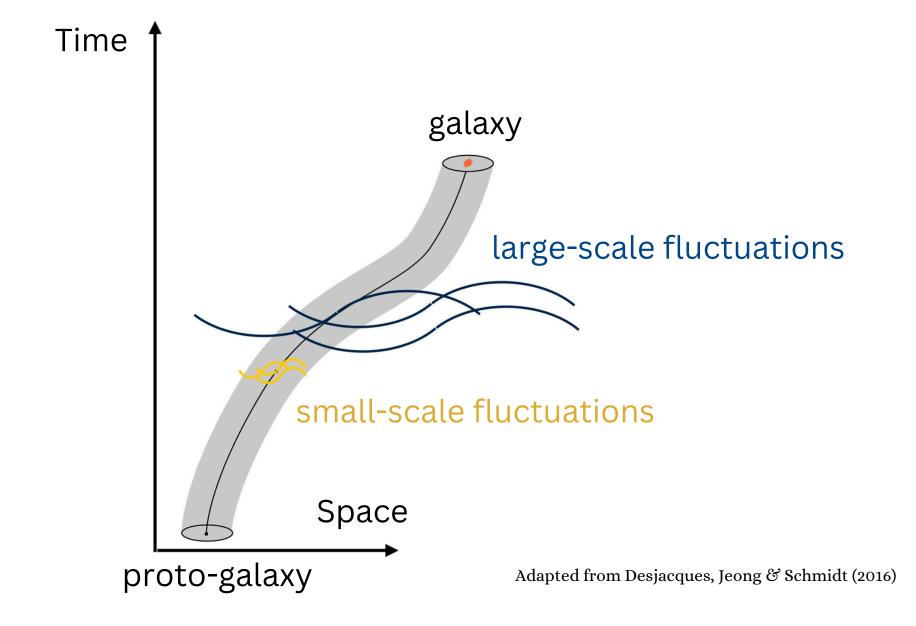


E.g., assuming that the data vector is Gaussian distributed:

$$-2\ln\mathcal{L}(\mathbf{D}|\boldsymbol{\theta}) = (\mathbf{D} - \mathbf{T}(\boldsymbol{\theta})) \cdot \mathbf{C}^{-1} \cdot (\mathbf{D} - \mathbf{T}(\boldsymbol{\theta}))$$
Covariance of the data vector of data vector of data vector

$$\delta_g(\mathbf{k}, z) = \delta_{g, \text{det}}(\mathbf{k}, z) + \delta_{g, \text{stoch}}(\mathbf{k}, z)$$

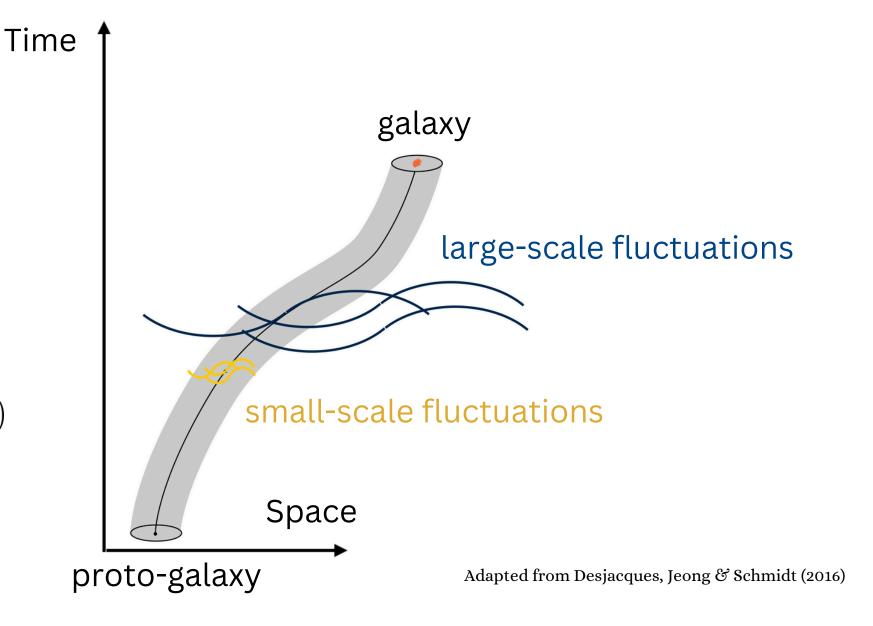




$$\delta_g(m{k},z) = \delta_{g, ext{det}}(m{k},z) + \delta_{g, ext{stoch}}(m{k},z)$$

$$= \sum_O b_O(z) O(m{k},z) + \varepsilon(m{k},z)$$
Free bias parameters

$$O[\delta](\boldsymbol{k}) = \int_{\boldsymbol{p}_1,...,\boldsymbol{p}_n} \delta_{\mathrm{D}} \left(\boldsymbol{k} - \boldsymbol{p}_{1...n}\right) S_O\left(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n\right) \delta\left(\boldsymbol{p}_1\right) \cdots \delta\left(\boldsymbol{p}_n\right)$$
operator "convolution"



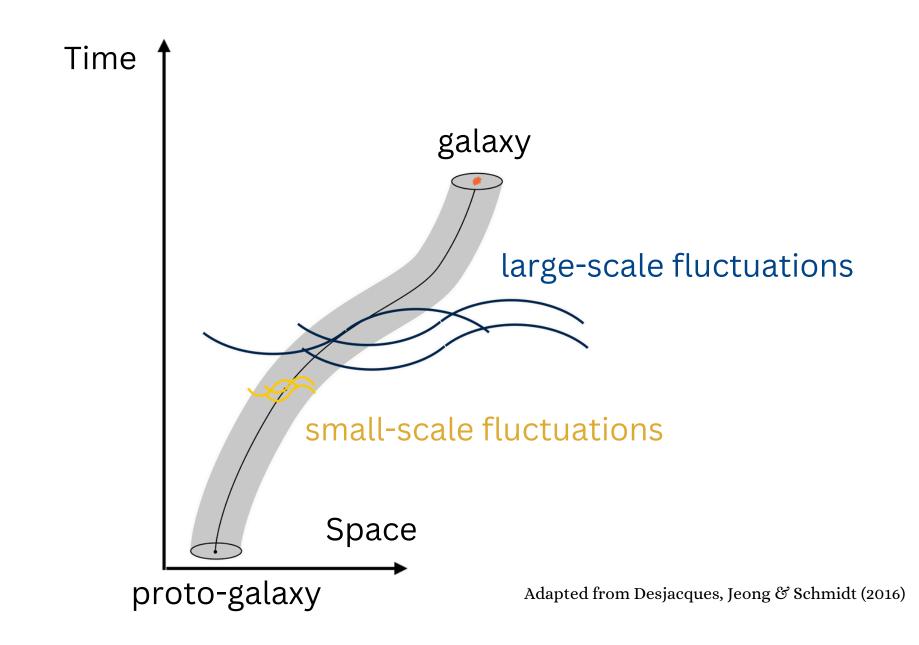
$$\delta_g(\mathbf{k}, z) = \delta_{g, \text{det}}(\mathbf{k}, z) + \delta_{g, \text{stoch}}(\mathbf{k}, z)$$
$$= \sum_O b_O(z) O(\mathbf{k}, z) + \varepsilon(\mathbf{k}, z)$$

$$\langle \varepsilon(\boldsymbol{k},z)\varepsilon(\boldsymbol{k}',z)\rangle' \propto \sigma_{\varepsilon}^2(k)$$

$$\sigma_{\varepsilon}(k) = \sigma_{\varepsilon,0} \left[1 + \sigma_{\varepsilon,k^2} k^2 \right]$$

Free stochastic parameters

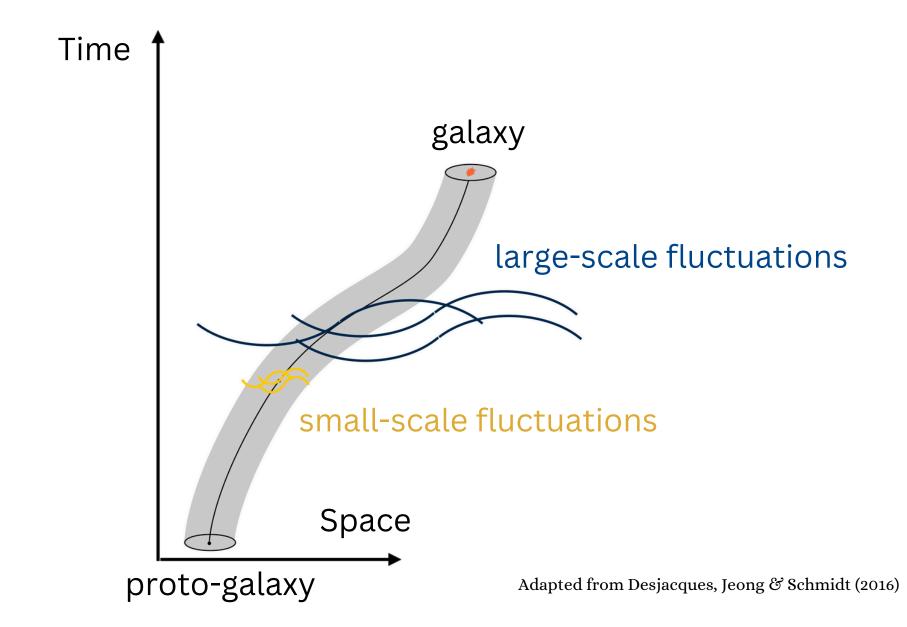
$$\{\sigma_{arepsilon}\}$$

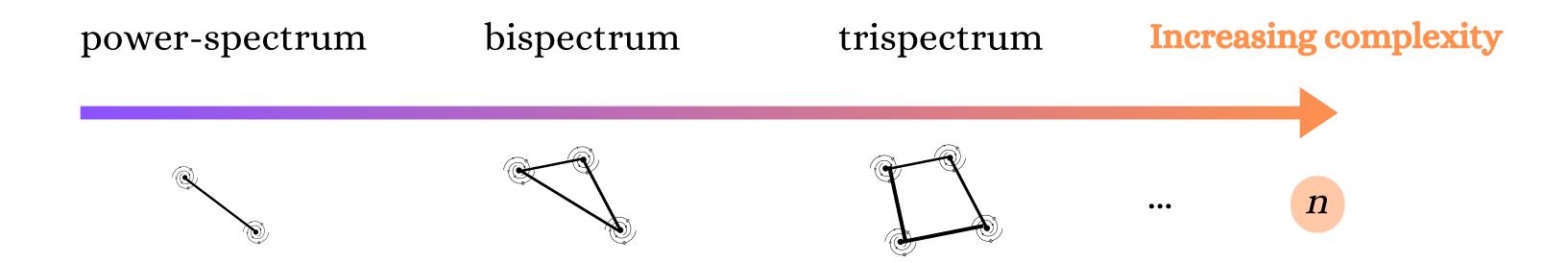


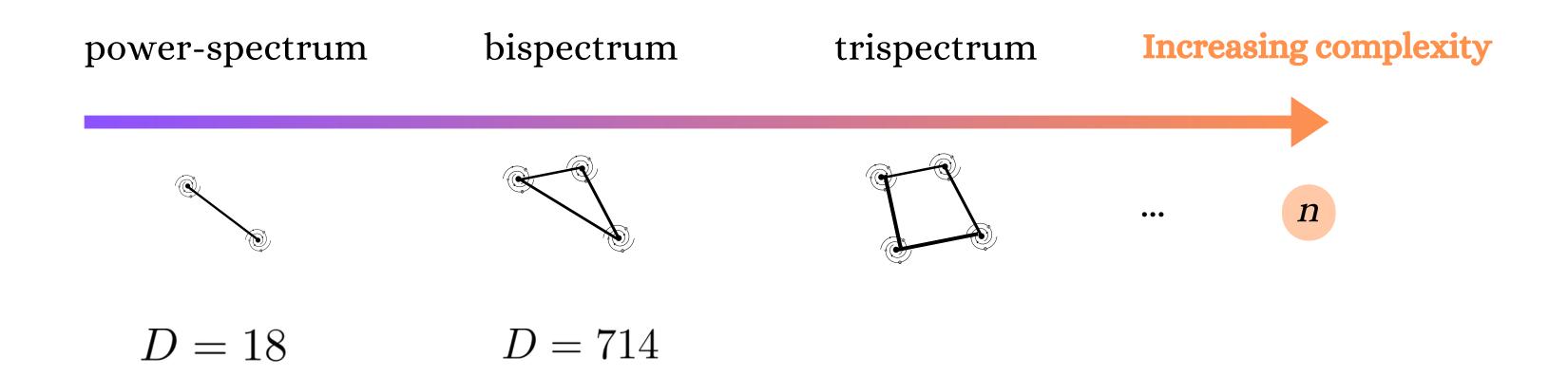
$$\delta_g(\mathbf{k}, z) = \delta_{g, \text{det}}(\mathbf{k}, z) + \delta_{g, \text{stoch}}(\mathbf{k}, z)$$

$$= \sum_O b_O(z) O(\mathbf{k}, z) + \varepsilon(\mathbf{k}, z)$$

$$\{\boldsymbol{\theta}, \{b_O\}, \{\sigma_{\varepsilon}\}\}$$





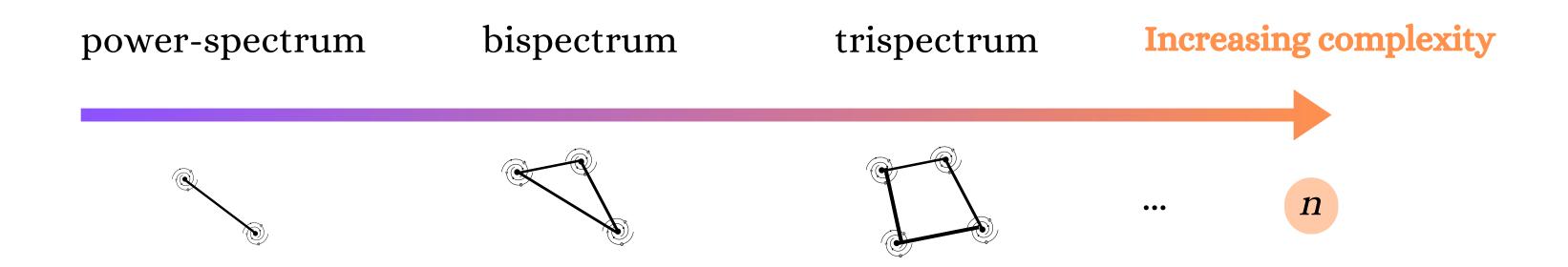


$$k_{\text{max}} = 0.12h \,\text{Mpc}^{-1}$$
$$\Delta k = 2k_f$$
$$L = 2000h^{-1} \text{Mpc}$$

power-spectrum	bispectrum	trispectrum	Increasing complexity	
			•••	n
D = 18	D = 714	D = 15093		

$$k_{\text{max}} = 0.12h \,\text{Mpc}^{-1}$$

 $\Delta k = 2k_f$
 $L = 2000h^{-1} \,\text{Mpc}$



Analytical approximations

Estimation

Modelling

$$-2\ln\mathcal{L}(\mathbf{D}|\boldsymbol{\theta}) = (\mathbf{D} - \mathbf{T}(\boldsymbol{\theta})) \cdot \mathbf{C}^{-1} \cdot (\mathbf{D} - \mathbf{T}(\boldsymbol{\theta}))$$

Measurements

Part I

Simulation-based inference (SBI)

SBI: the main idea

$$\mathcal{P}(\boldsymbol{\theta}|\mathbf{D}) \propto \mathcal{L}(\mathbf{D},\boldsymbol{\theta})\pi(\boldsymbol{\theta})$$

Explicit likelihood → implicit likelihood

 $\mathbf{T}(\boldsymbol{\theta}) \sim \operatorname{simulator}(\boldsymbol{\theta})$

SBI: the main idea

$$\mathcal{P}(\boldsymbol{\theta}|\mathbf{D}) \propto \mathcal{L}(\mathbf{D},\boldsymbol{\theta})\pi(\boldsymbol{\theta})$$
 $\mathbf{T}(\boldsymbol{\theta}) \sim \mathrm{simulator}(\boldsymbol{\theta})$

Explicit likelihood → implicit likelihood

- Higher-order moments of the distribution beyond the covariance
- Parameter-dependent covariance
- Use data with non-tractable likelihood

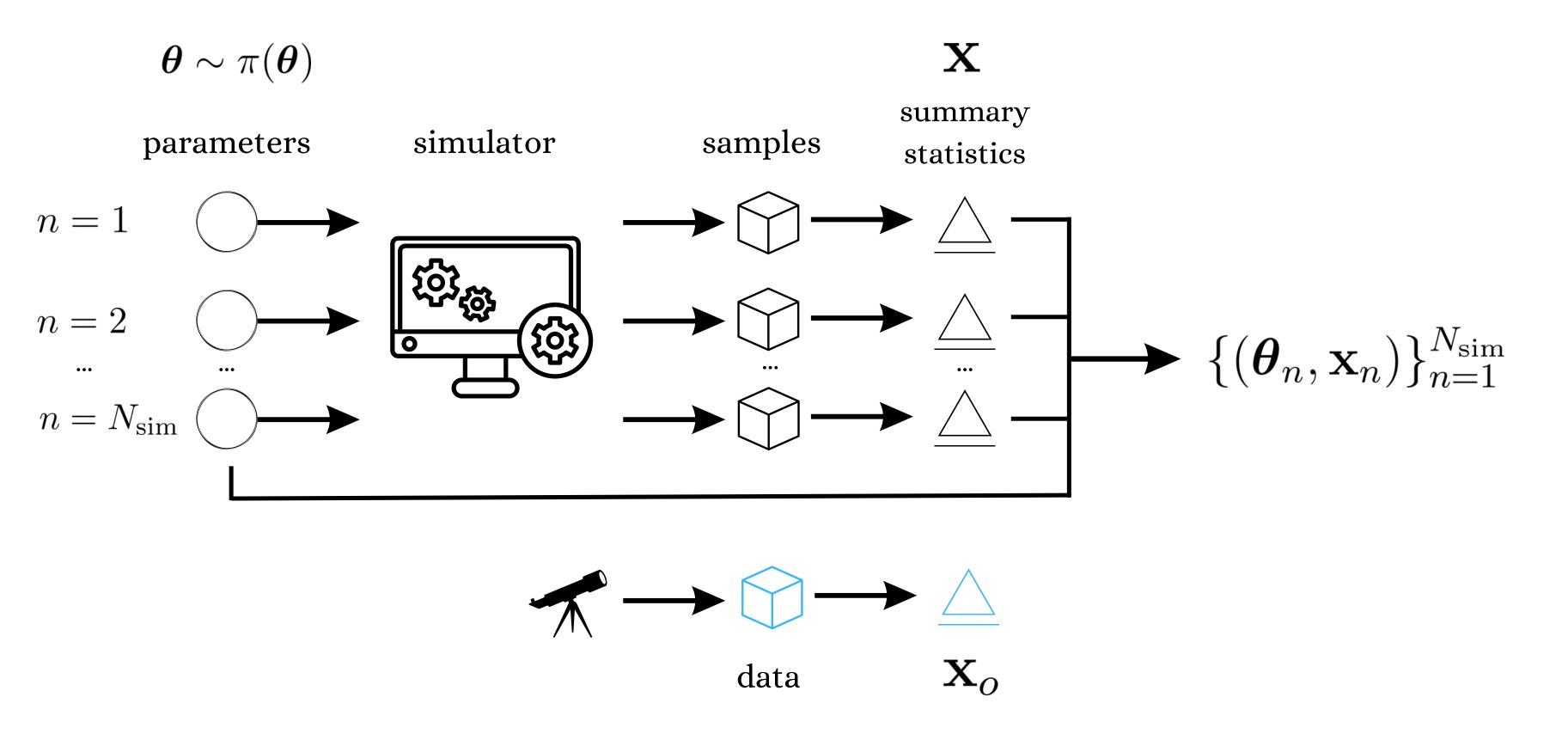
Cosmological inference with SBI

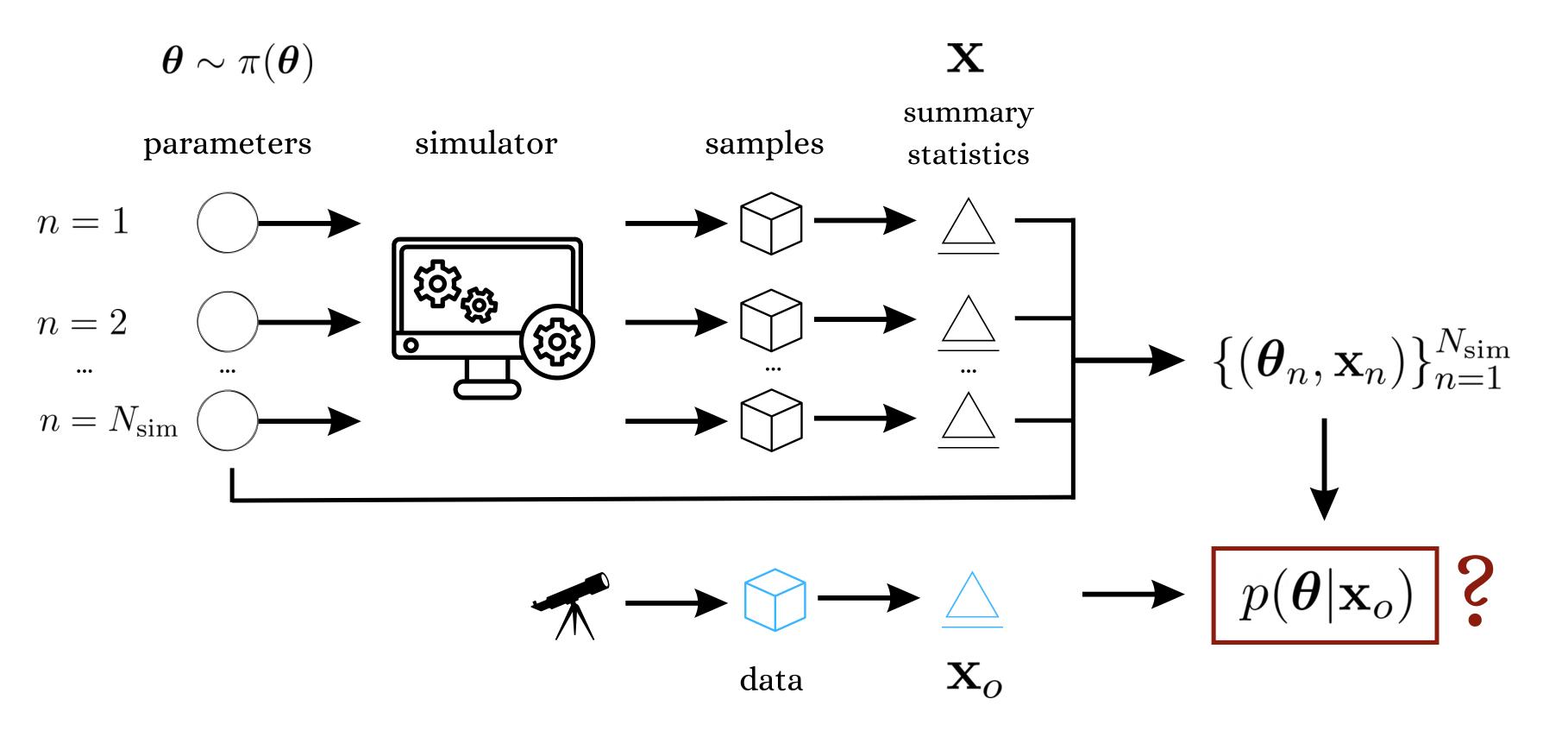
$$\mathcal{P}(\boldsymbol{\theta}|\mathbf{D}) \propto \mathcal{L}(\mathbf{D}\boldsymbol{\theta})\pi(\boldsymbol{\theta})$$

$$\mathbf{T}(\boldsymbol{\theta}) \sim \operatorname{simulator}(\boldsymbol{\theta})$$

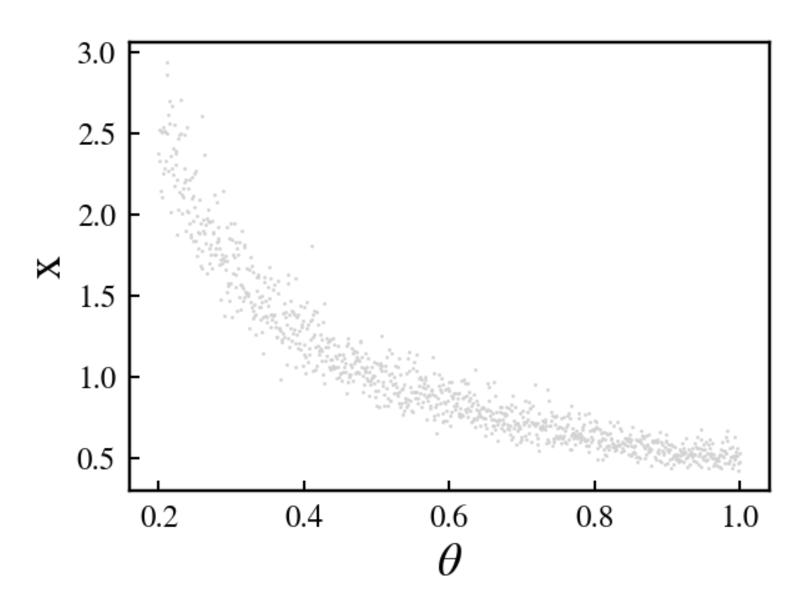
Explicit likelihood → implicit likelihood

- We are free to choose more informative summary statistics, independently of their distribution
- No need of cumbersome covariance calculations
- Modelling of observational systematics and survey mask at the simulation level

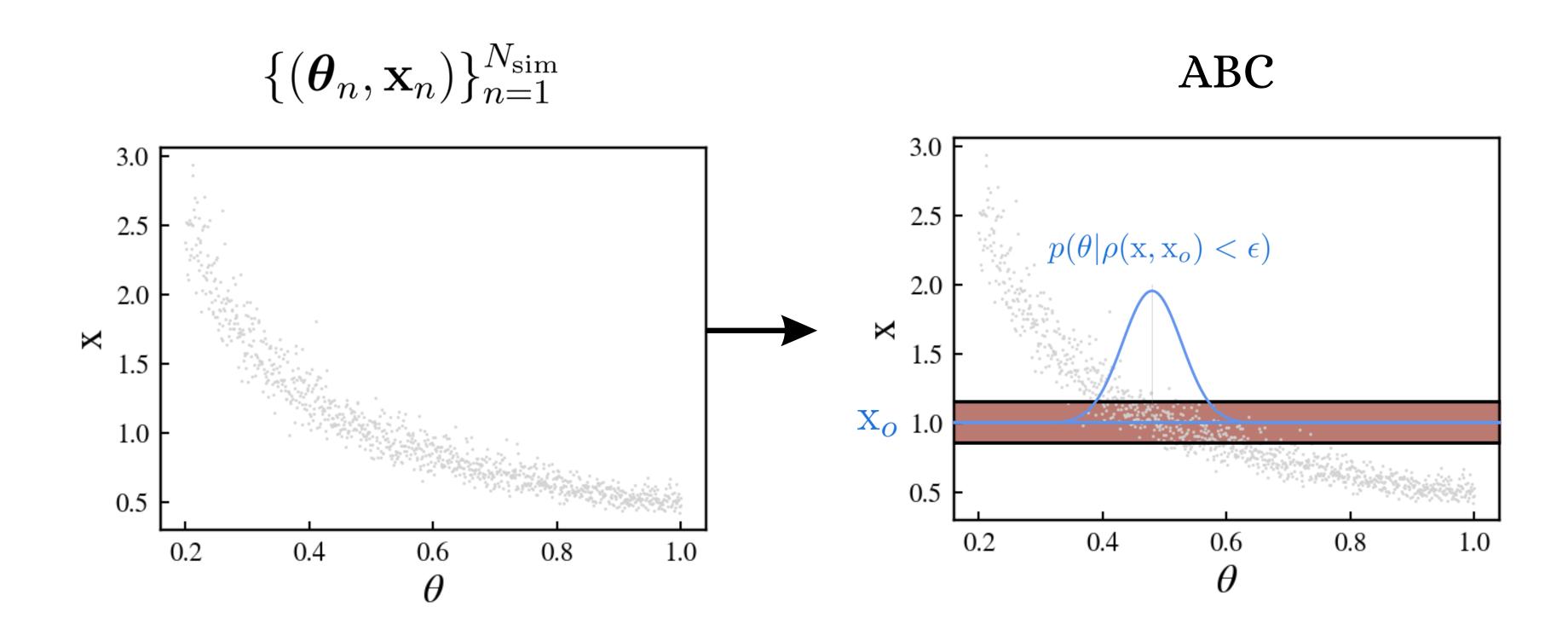




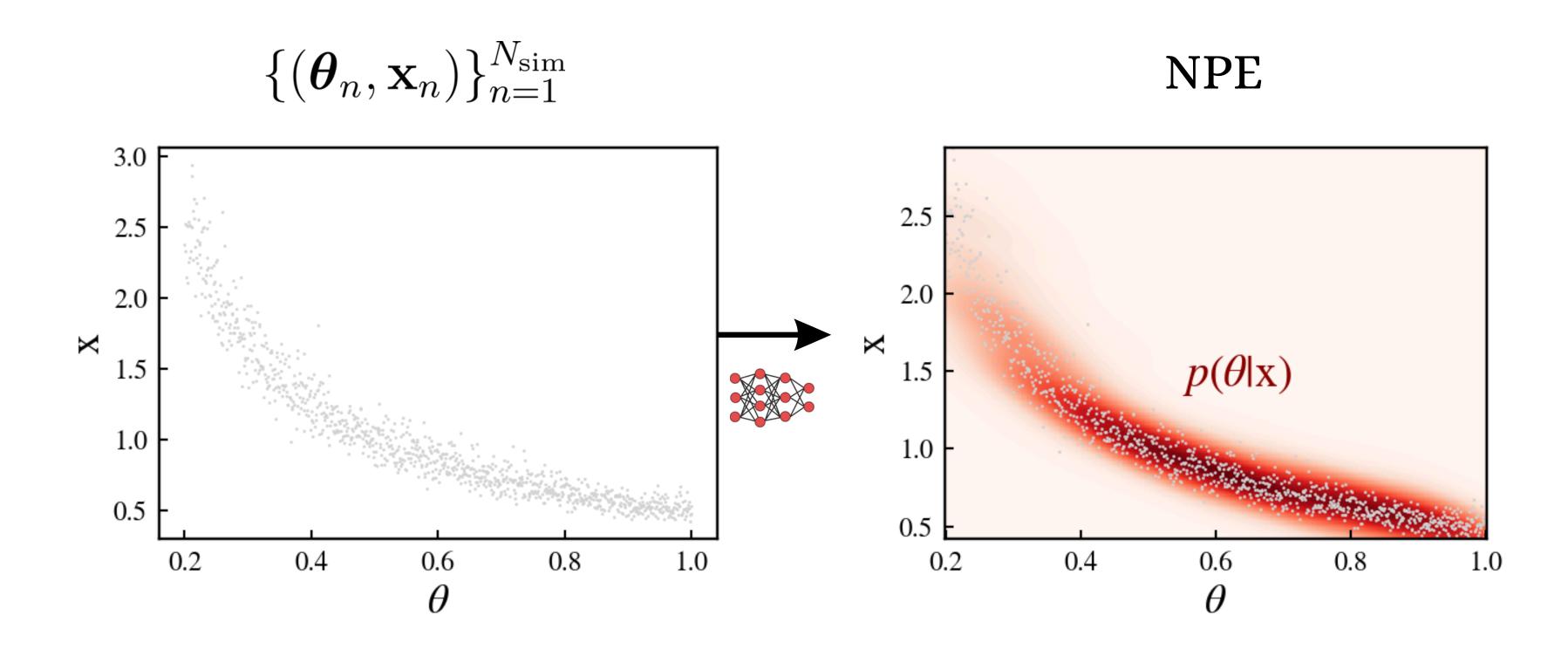




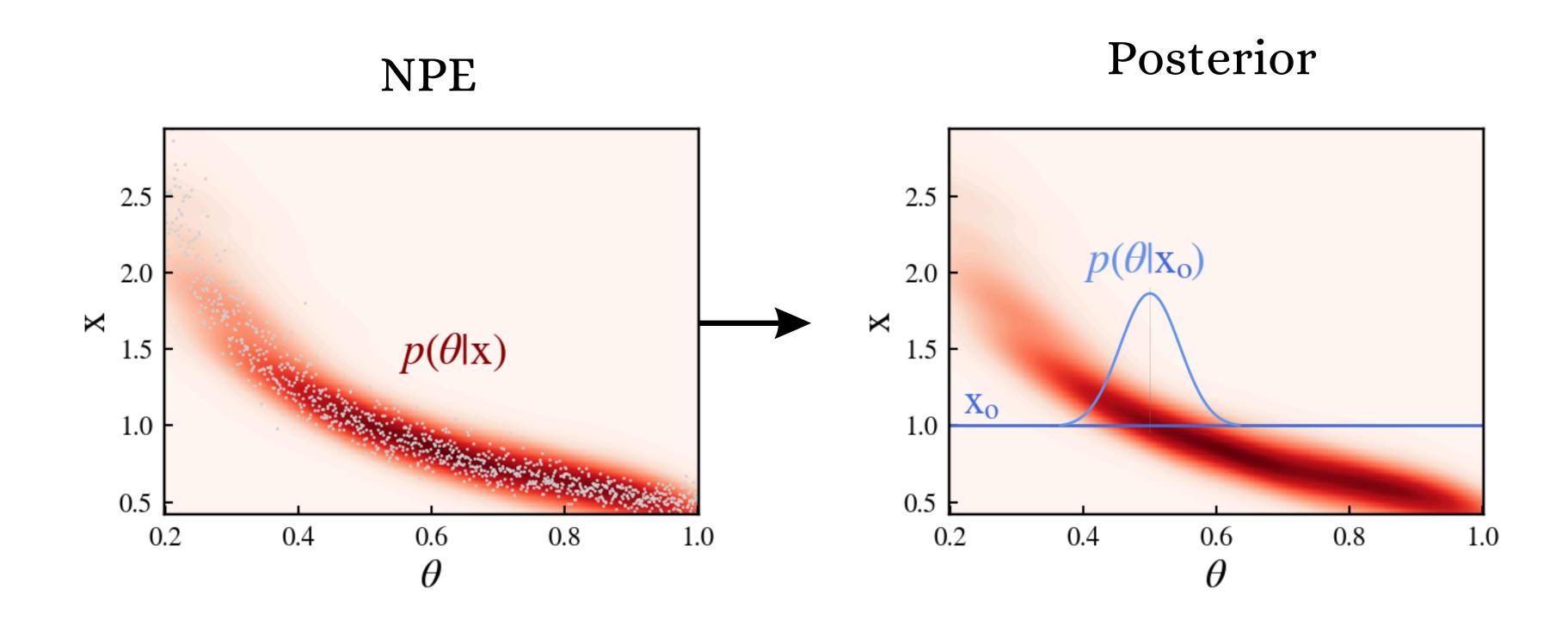
Approximate Bayesian Computation (ABC)



Neural Posterior Estimation (NPE)



Neural Posterior Estimation (NPE)



A parenthesis on emulators

Explicit likelihood inference

$$\{(\boldsymbol{\theta}_{n}, \mathbf{x}_{n})\}_{n=1}^{N_{\text{sim}}} \qquad \qquad \ln \mathcal{L} \propto \frac{(\mathbf{x}_{o} - \mathbf{x}(\boldsymbol{\theta}))}{\text{Cov}[\mathbf{x}]}$$

Summary statistics emulators

How do NDEs work in practice?

$$\{(\boldsymbol{\theta}_n, \mathbf{x}_n)\}_{n=1}^{N_{\text{sim}}}$$

Neural Posterior Estimation (NPE)
$$q_{\phi}(\boldsymbol{\theta}|\mathbf{x}) \longrightarrow \hat{p}(\boldsymbol{\theta}|\mathbf{x}_o) = q_{\phi}(\boldsymbol{\theta}|\mathbf{x}_o)$$

Neural Likelihood Estimation (NLE)

$$q_{\phi}(\mathbf{x}|\boldsymbol{\theta}) \longrightarrow \hat{p}(\boldsymbol{\theta}|\mathbf{x}_o) \propto q_{\phi}(\mathbf{x}_o|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

$$\{(\boldsymbol{\theta}_n, \mathbf{x}_n)\}_{n=1}^{N_{\text{sim}}} \blacktriangleleft$$

Neural Posterior Estimation (NPE)

$$q_{\phi}(\boldsymbol{\theta}|\mathbf{x}) \longrightarrow \hat{p}(\boldsymbol{\theta}|\mathbf{x}_o) = q_{\phi}(\boldsymbol{\theta}|\mathbf{x}_o)$$

Neural Likelihood Estimation (NLE)

$$q_{\phi}(\mathbf{x}|\boldsymbol{\theta}) \longrightarrow \hat{p}(\boldsymbol{\theta}|\mathbf{x}_o) \propto q_{\phi}(\mathbf{x}_o|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

neural network trainable parameters

How to train the model? (For example, NLE)

$$\mathcal{L}_{loss} = \mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{KL} \left[p(\mathbf{x}|\boldsymbol{\theta}) || q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right]$$

loss function

target density

neural network trainable parameters

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \mid | q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \, p(\boldsymbol{\theta}) \int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right)$$

target density

neural network trainable parameters

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \mid \mid q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \, p(\boldsymbol{\theta}) \int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right)$$
target density
neural network
trainable parameters
$$= \int d\boldsymbol{\theta} \, d\mathbf{x} \, p(\boldsymbol{\theta}, \mathbf{x}) \, \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$p(\boldsymbol{\theta}, \mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\text{KL}} \left[\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \mid | q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \, p(\boldsymbol{\theta}) \int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$= \int d\boldsymbol{\theta} \, d\mathbf{x} \, p(\boldsymbol{\theta}, \mathbf{x}) \, \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$= -\mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{x})} \left[\log q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] + \text{const.}$$

the loss function we wish to minimize is independent of the target density form!

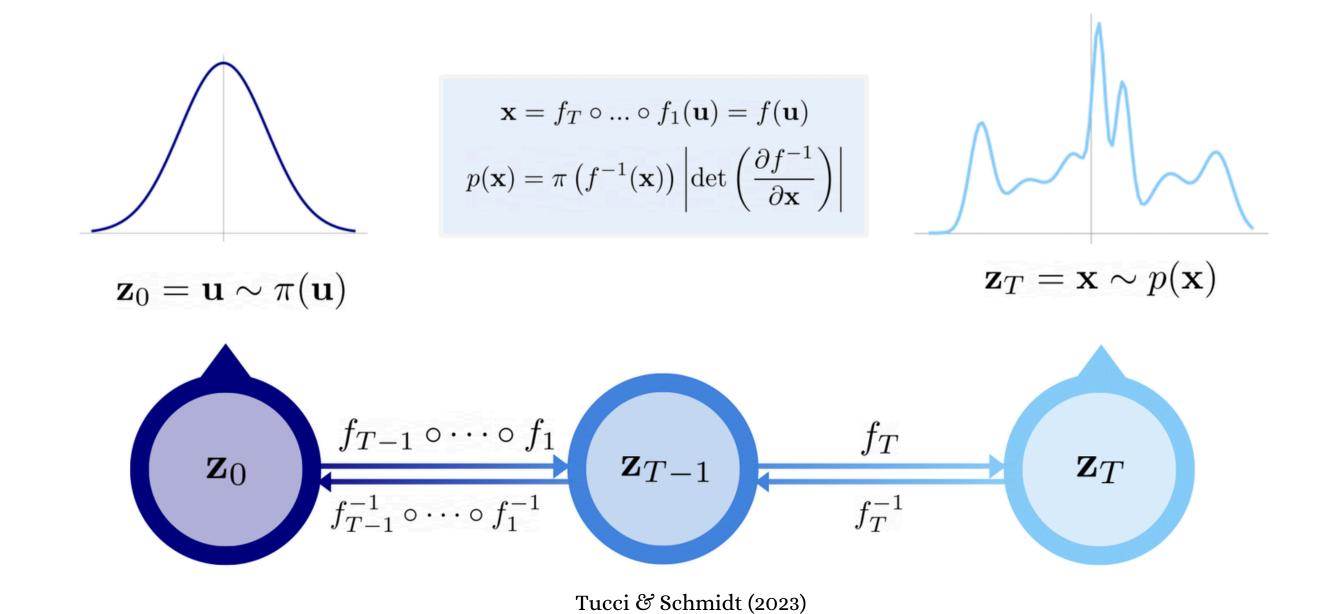
How to train the model? (For example, NLE)

$$\begin{split} \mathbb{E}_{p(\boldsymbol{\theta})} \big[D_{\mathrm{KL}} \left[\frac{p(\mathbf{x}|\boldsymbol{\theta})}{p(\mathbf{x}|\boldsymbol{\theta})} || \ q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \] \big] &= \int d\boldsymbol{\theta} \ p(\boldsymbol{\theta}) \int d\mathbf{x} \ p(\mathbf{x}|\boldsymbol{\theta}) \ \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right) \\ &\overset{\text{neural network}}{\text{trainable parameters}} &= \int d\boldsymbol{\theta} \ d\mathbf{x} \ p(\boldsymbol{\theta}, \mathbf{x}) \ \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right) \\ &= -\mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{x})} \big[\log q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \ \big] \ + \ \text{const.} \\ &\approx -\frac{1}{N_{\text{sim}}} \sum_{n=1}^{N_{\text{sim}}} \log q_{\boldsymbol{\phi}}(\mathbf{x}_n|\boldsymbol{\theta}_n) \ + \ \text{const.} \ , \\ &\left[\{ (\boldsymbol{\theta}_n, \mathbf{x}_n) \}_{n=1}^{N_{\text{sim}}} \right] \end{split}$$

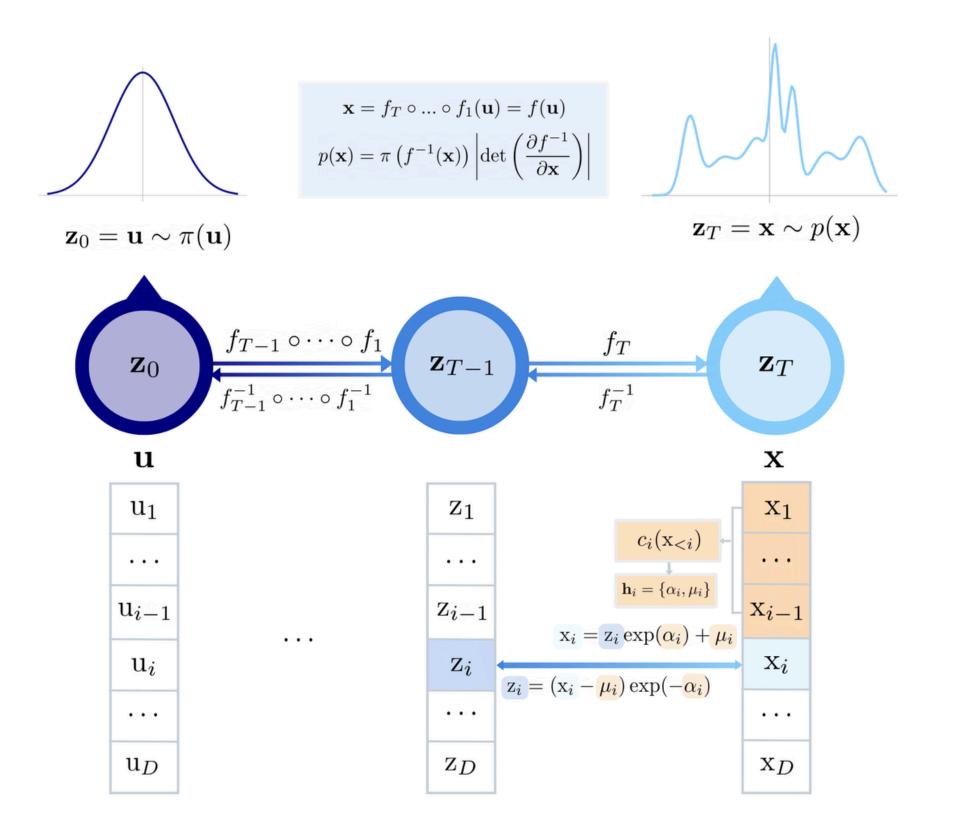
Normalizing Flows

f is a diffeomorphism:

- f is invertible
- f and its inverse are differentiable



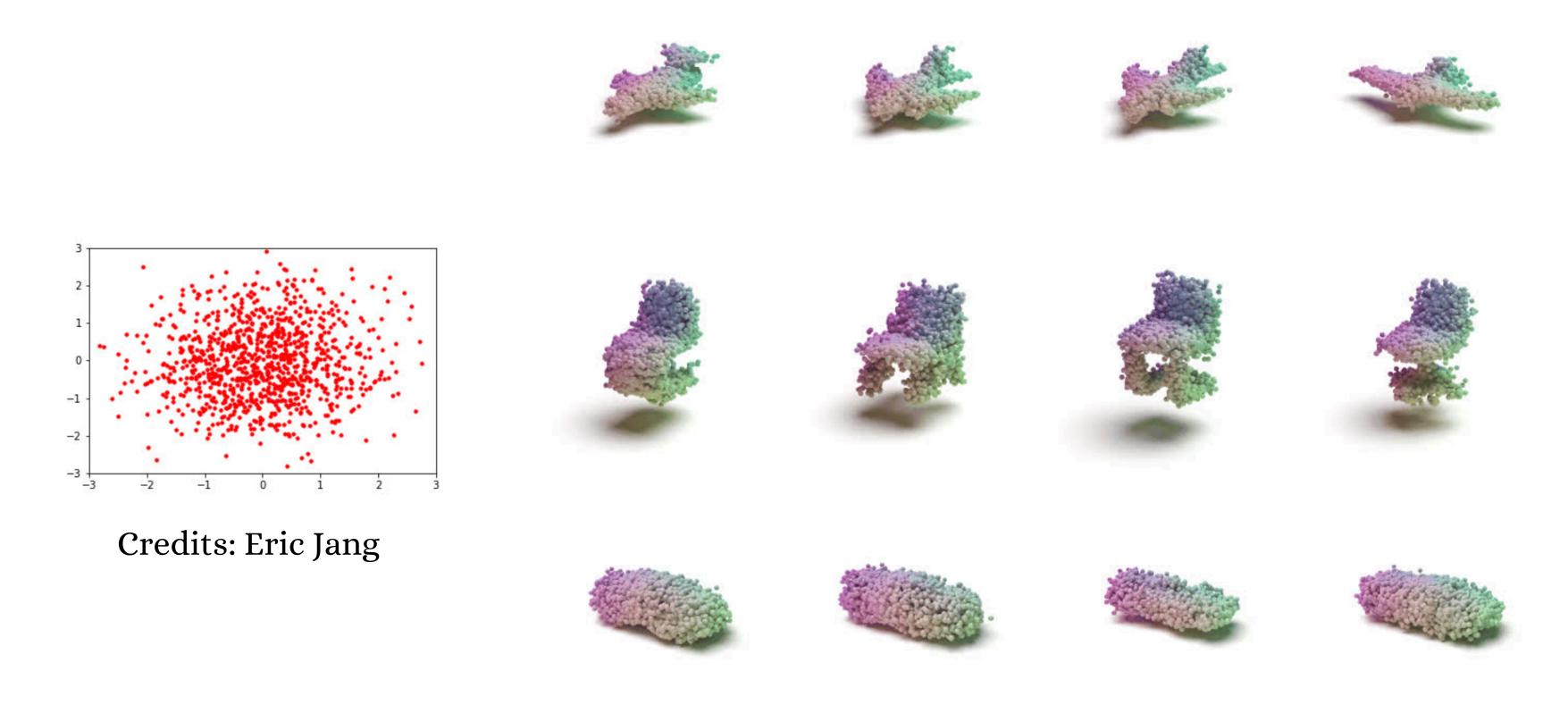
Normalizing Flows



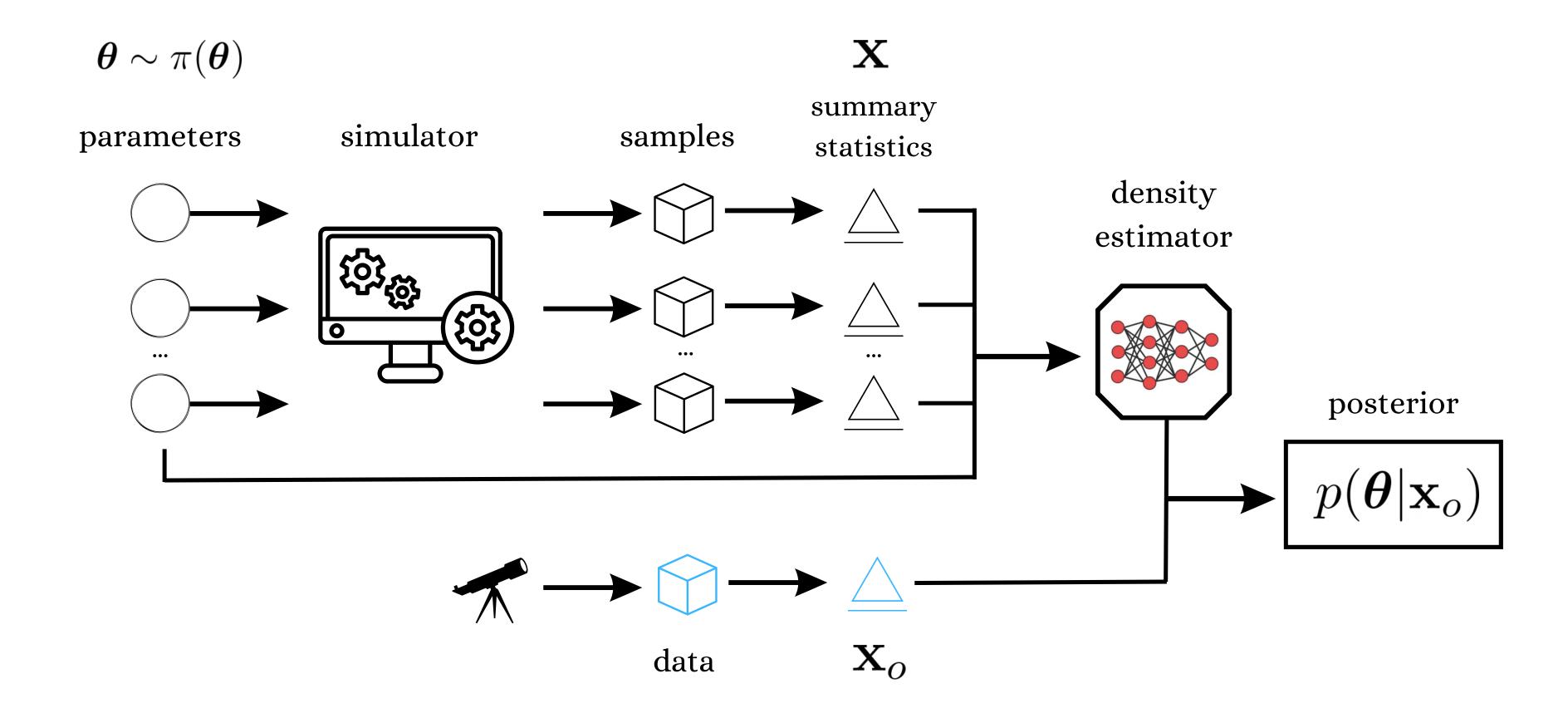
$$q_{\phi}(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}_0|\mathbf{0}, \mathbf{I}) \prod_{t=1}^{T} \left| \det \left(\frac{\partial f_t}{\partial \mathbf{z}_{t-1}} \right) \right|^{-1}$$

- Easy to evaluate: triangular Jacobian
- Expressive: composition of transforms

Normalizing Flows



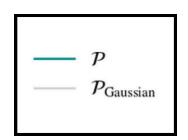
Credits: PointFlow (Yang+19)

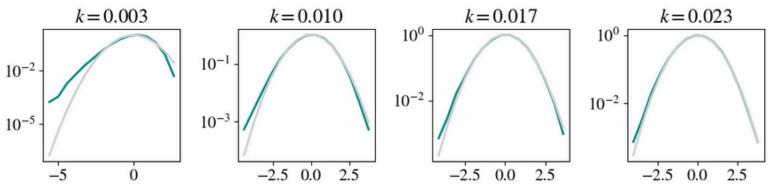


On the Gaussianity assumption of the n-point functions

large scales

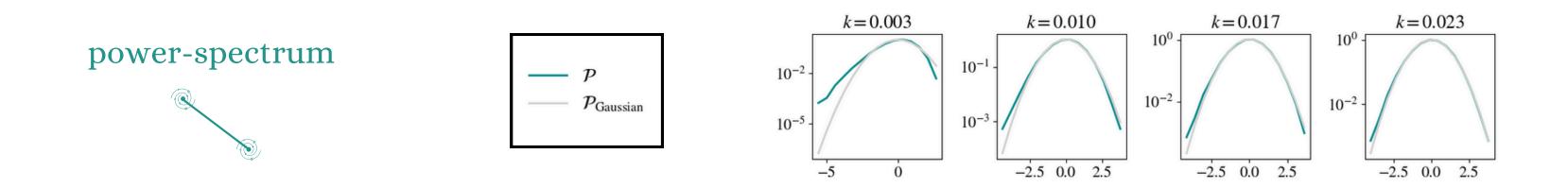
power-spectrum





On the Gaussianity assumption of the n-point functions

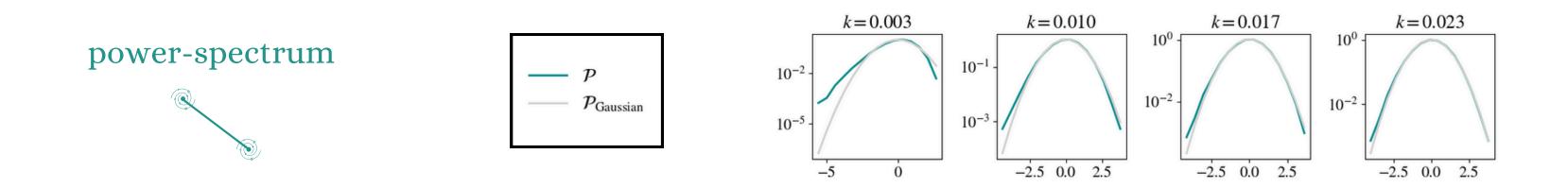
large scales



breaking of central limit theorem on large scales induces deviation from the Gaussian likelihood assumption!

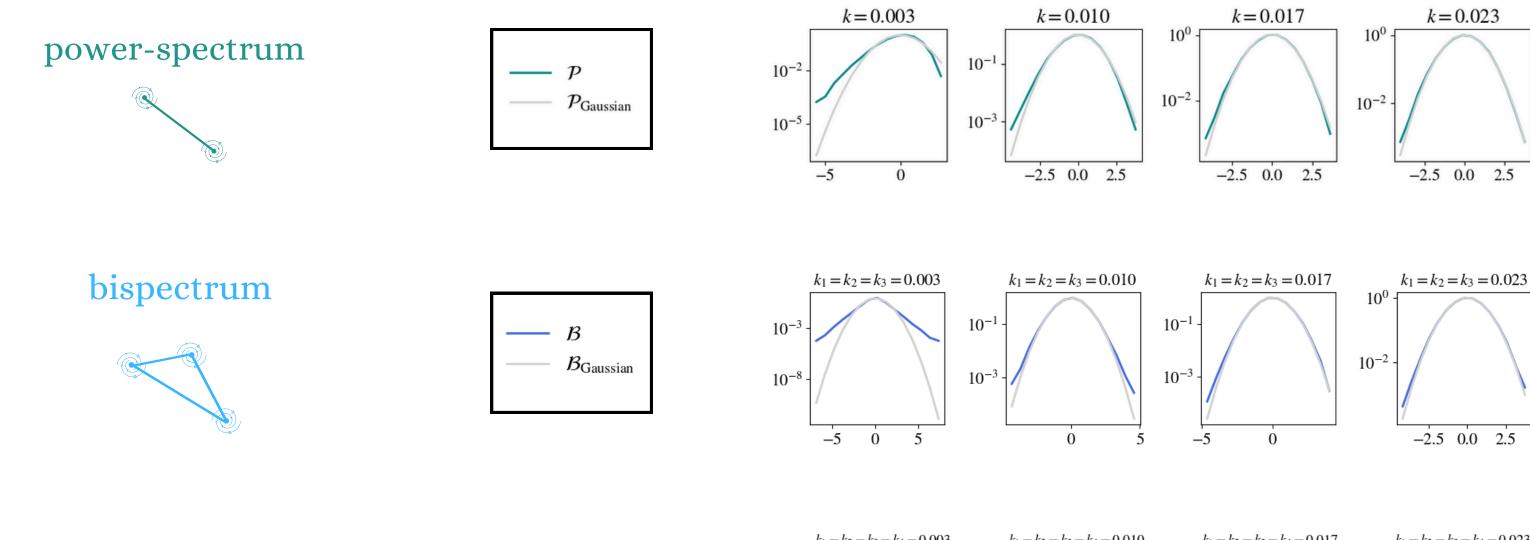
On the Gaussianity assumption of the n-point functions

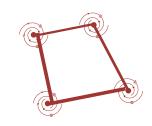
large scales

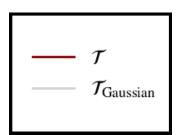


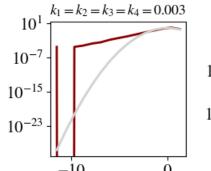
breaking of central limit theorem on large scales induces deviation from the Gaussian likelihood assumption!

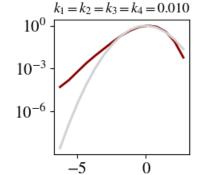
On the Gaussianity assumption of the n-point functions

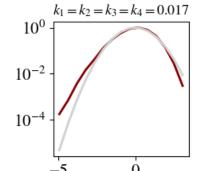


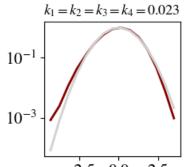










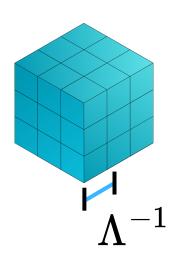


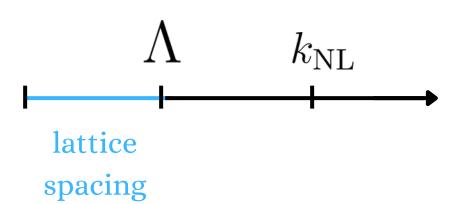
k = 0.023

-2.5 0.0 2.5

The forward model based on the EFTofLSS & the bias expansion

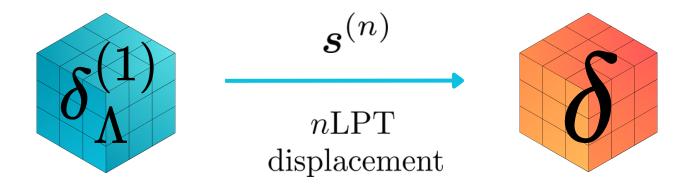
$$oldsymbol{ heta} \sim \mathcal{P}(oldsymbol{ heta}) \ \delta_{\Lambda}^{(1)} \sim \mathcal{N}(0, P_L(oldsymbol{ heta}))$$





$$oldsymbol{ heta} \sim \mathcal{P}(oldsymbol{ heta})$$

$$\delta_{\Lambda}^{(1)} \sim \mathcal{N}(0, P_L(oldsymbol{ heta}))$$



nLPT

displacement



Eulerian

bias fields

• • •

$$\delta_{\Lambda}^{(1)} \sim \mathcal{N}(0, P_L[m{ heta}])$$

$$s^{(n)} \qquad \qquad \{O[\delta]\}$$

$$\text{Eulerian bias fields}$$

$$\delta_{g, \det} = \sum_{O} b_O O \qquad b_O \sim \mathcal{P}(b_O)$$

$$\delta g_{, det} = b_1 \delta + b_{\delta^2} \delta + b_{K_2} \delta + \cdots$$

$$\delta_{\Lambda}^{(1)} \sim \mathcal{N}(0, P_L(\boldsymbol{ heta}))$$

$$S^{(n)} \longrightarrow \{O[\delta]\}$$
Eulerian bias fields
$$\delta_g = \delta_{g, \det} + \delta_{g, \mathrm{stoch}}$$

$$oldsymbol{\mathcal{G}} = oldsymbol{\mathcal{G}} oldsymbol{\mathcal{G}} oldsymbol{\mathcal{G}} = oldsymbol{\mathcal{G}} oldsymbol{\mathcal{G} oldsymbol{\mathcal{G}}$$

Testing SBI on Euclid-like mock data

Breaking degeneracy between σ_8 and bias parameters with the galaxy power-spectrum and bispectrum

Tucci & Schmidt (2024)

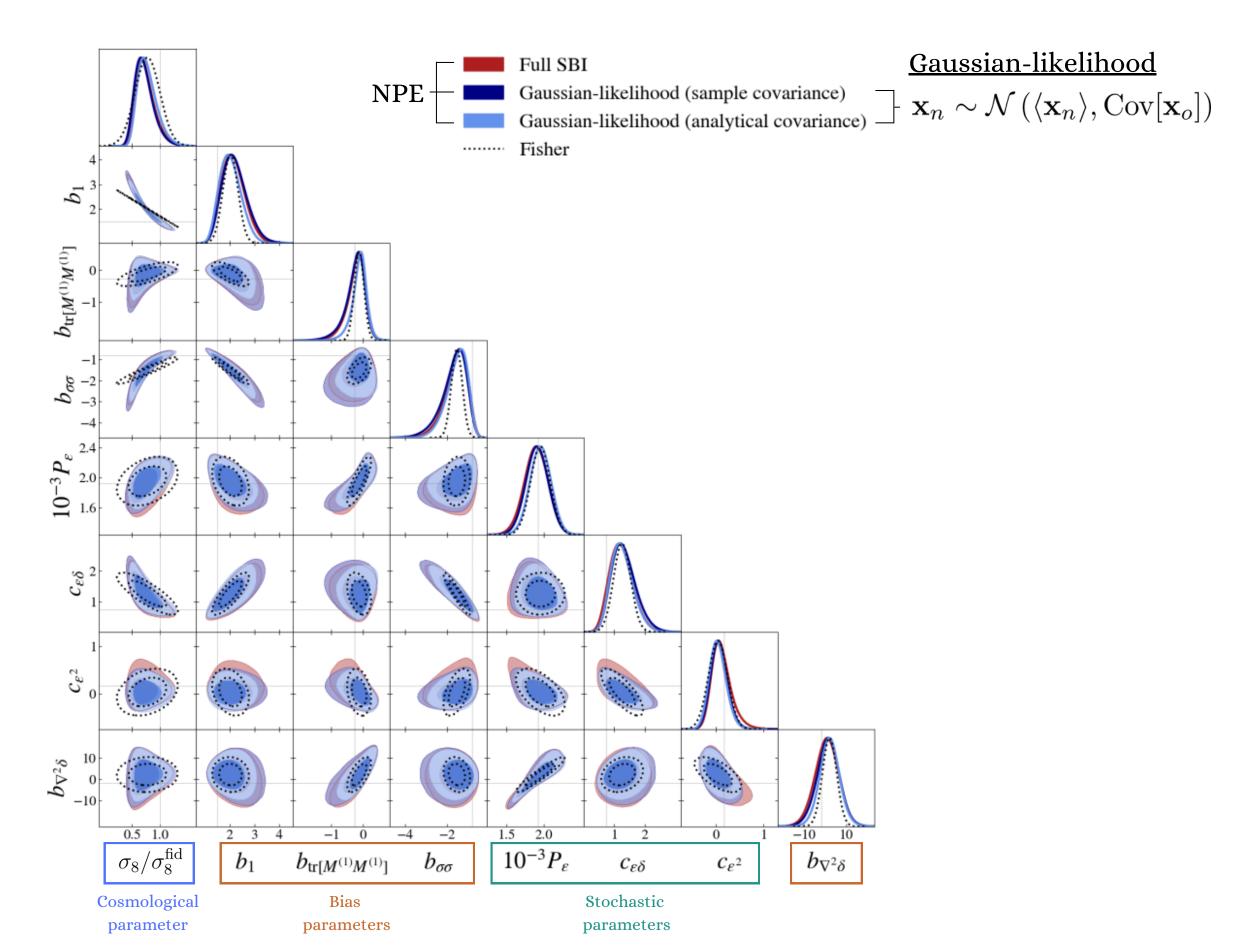
JCAP

Cosmological constraints

$$N_{\text{sim}} = 10^5$$

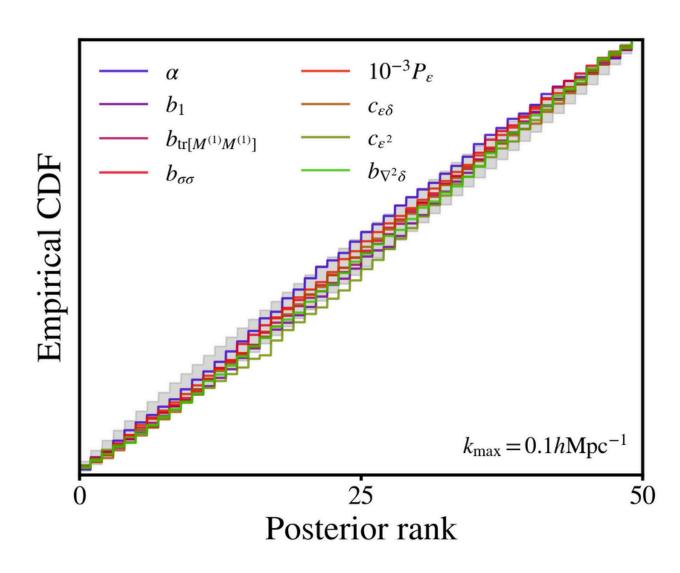
$$k_{\text{max}} = \Lambda = 0.1 h \text{Mpc}^{-1}$$

$$D = N_{\text{bin}} + N_{\text{tri}} = 33$$

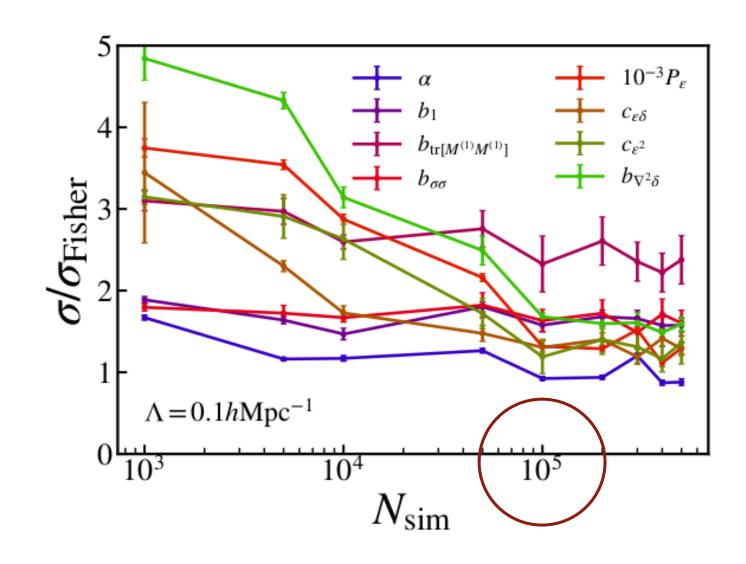


Tests of inference

Simulation-based calibration



Convergence



SBI on dark-matter halos

Breaking degeneracy between σ_8 and bias parameters with the galaxy power-spectrum and bispectrum

Nguyen, Schmidt, **Tucci** et al. (2024)

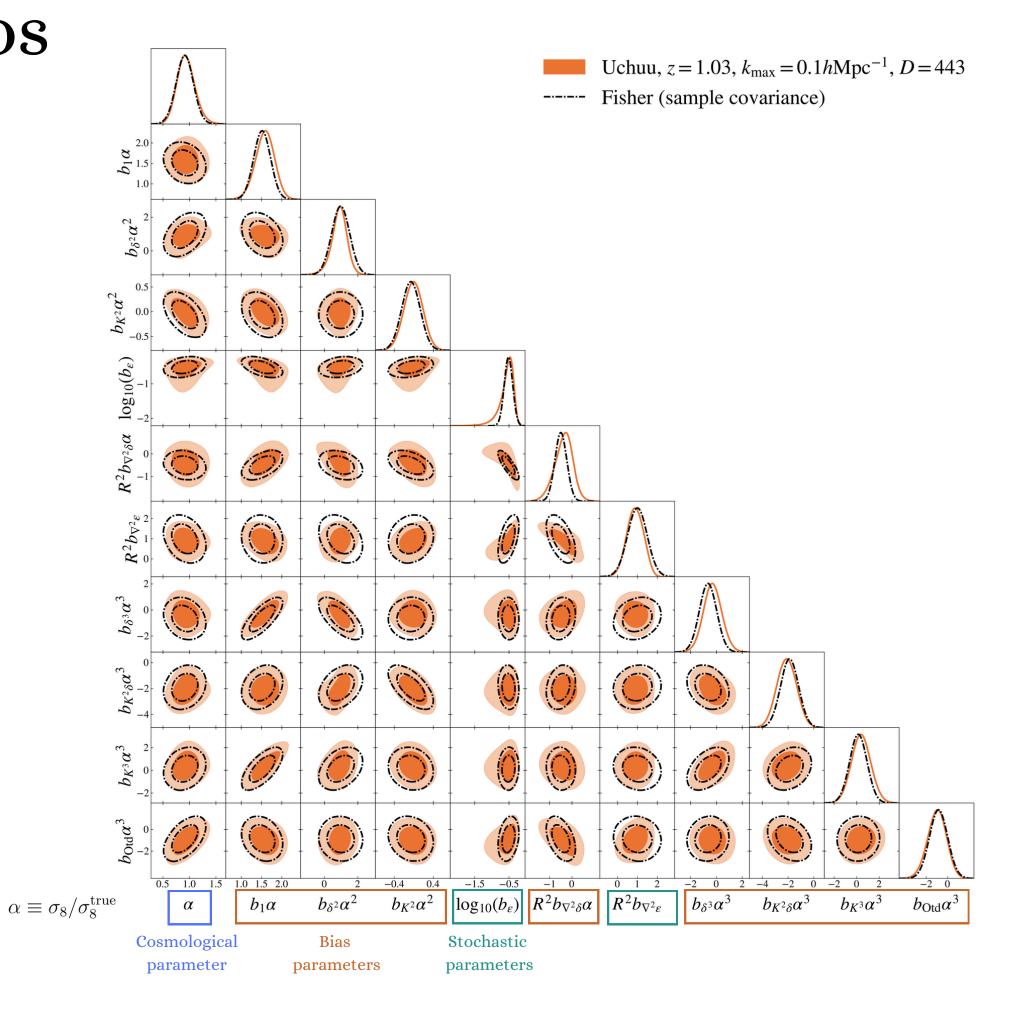
Inference setup: halo samples

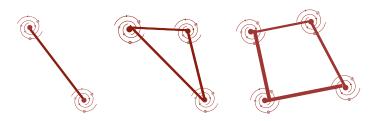
	SNG	Uchuu
Redshift	z = 0.50	z = 1.03
$V[h^{-3}\mathrm{Mpc}^3]$	2000^{3}	2000^{3}
$\bar{n}_g [h^3 \mathrm{Mpc}^{-3}]$	1.3×10^{-3}	3.6×10^{-3}

Two scale cuts:

 $k_{\text{max}} = 0.1 h \text{Mpc}^{-1} \mathcal{E} k_{\text{max}} = 0.12 h \text{Mpc}^{-1}$

SBI on halos



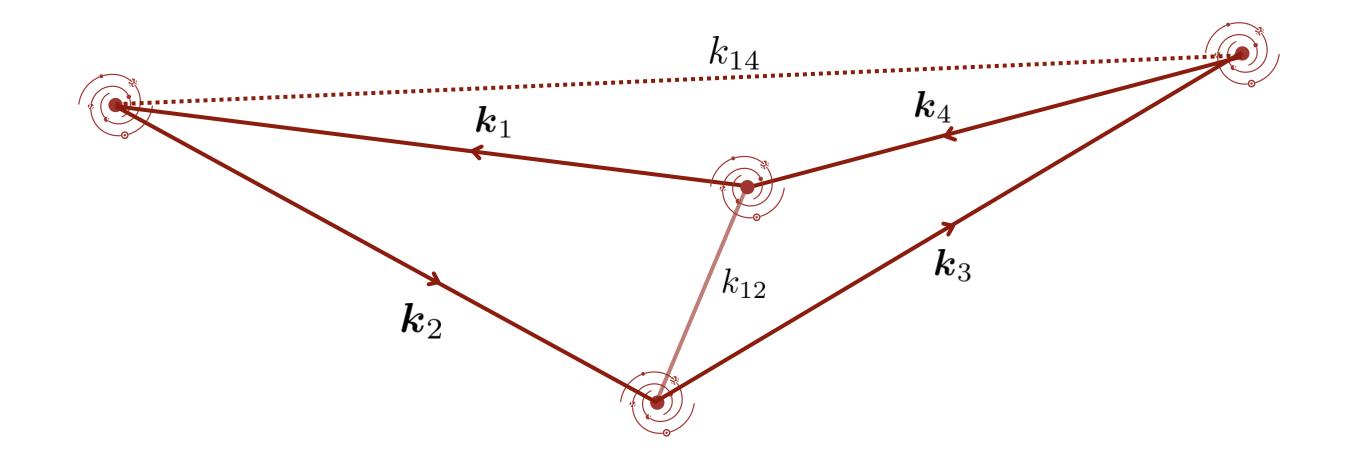


What if we add the galaxy trispectrum?

Breaking degeneracy between σ_8 and bias parameters with power-spectrum, bispectrum and trispectrum on dark-matter halos

Tucci & Schmidt (in prep.)

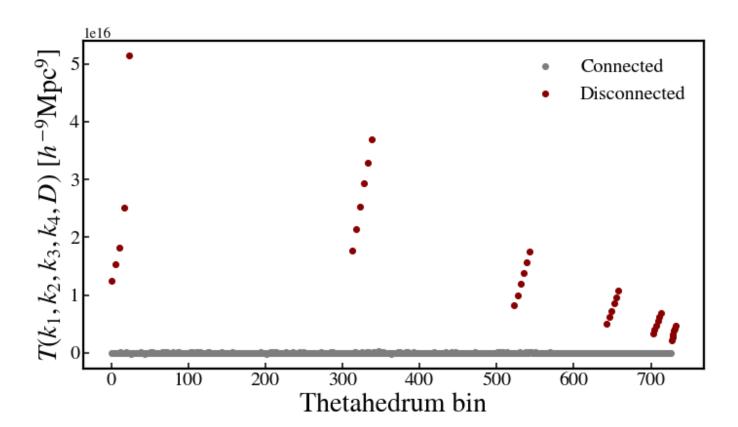
Trispectrum: the estimator



Jung+23, Coulton+23, Goldstein+24

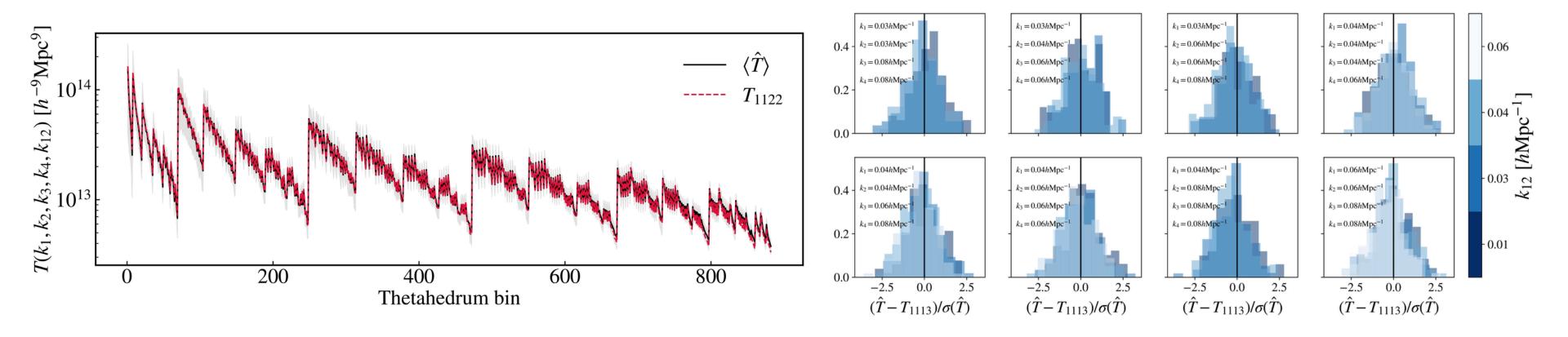
Trispectrum Validation

$$\delta_g(m{k}) = b_1 \, \delta^{(1)}(m{k})$$

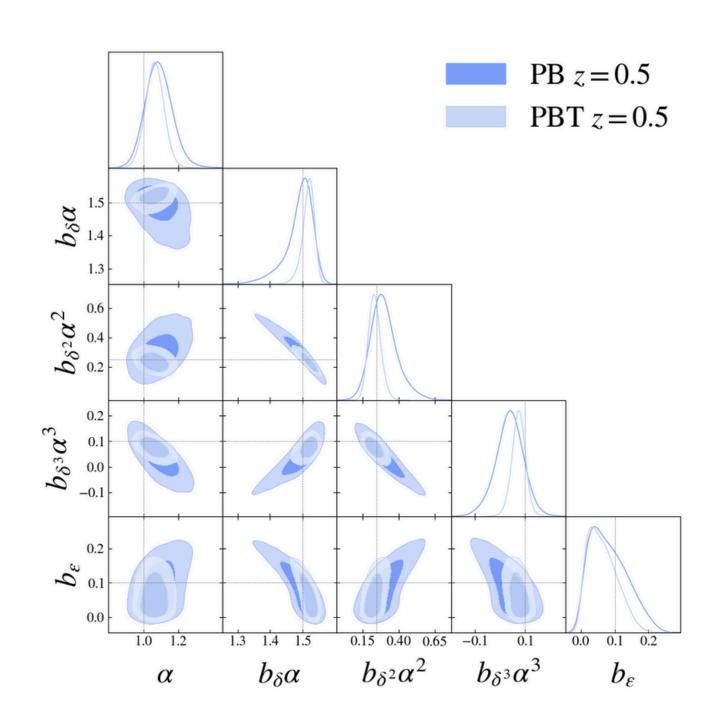


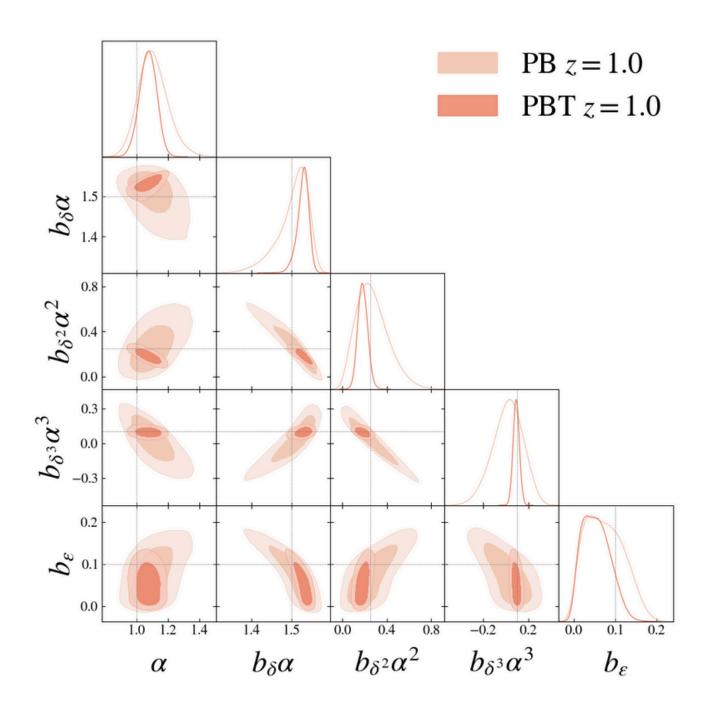
Trispectrum Validation

$$\delta_g(m{k}) = b_1 \, \delta^{(1)}(m{k}) + b_2 \, \left([\delta^{(1)}]^2(m{k}) - \langle [\delta^{(1)}]^2
angle
ight) + b_3 \, [\delta^{(1)}]^3(m{k})$$
 $T_{g}^{LO}(m{k}_1, m{k}_2, m{k}_3, m{k}_4) = b_1^2 \, b_2^2 \, T_{1122}(m{k}_1, m{k}_2, m{k}_3, m{k}_4) + b_1^3 \, b_3 \, T_{1113}(m{k}_1, m{k}_2, m{k}_3, m{k}_4)$ T_{1113}

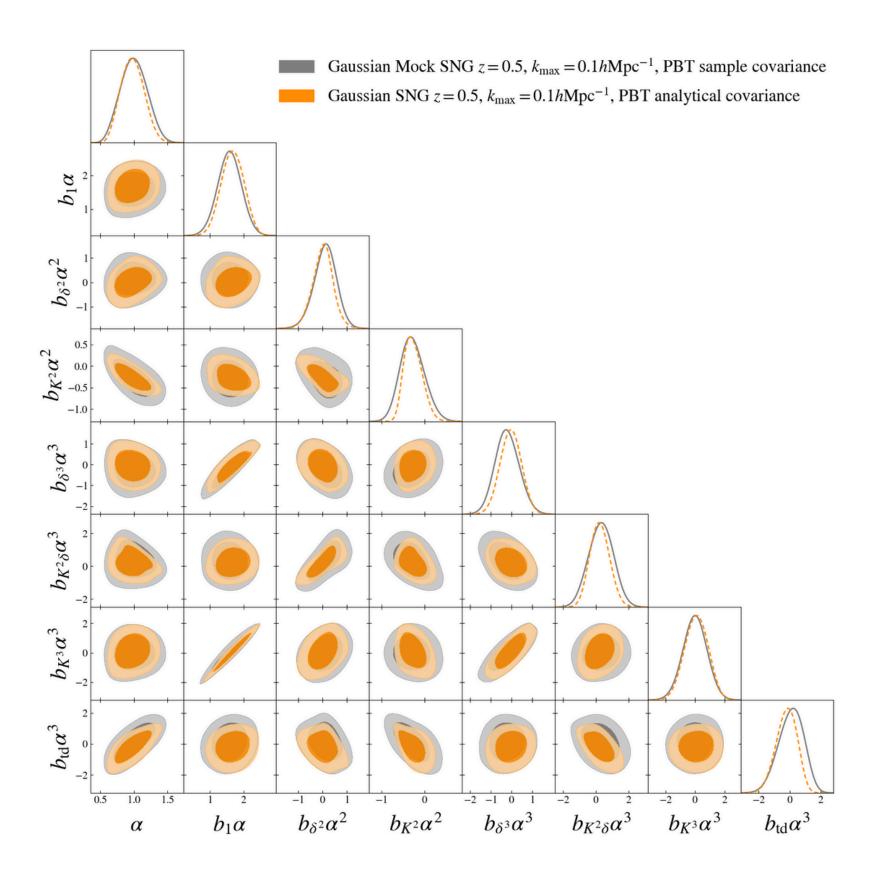


Trispectrum Information Content

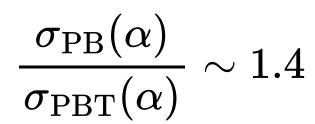


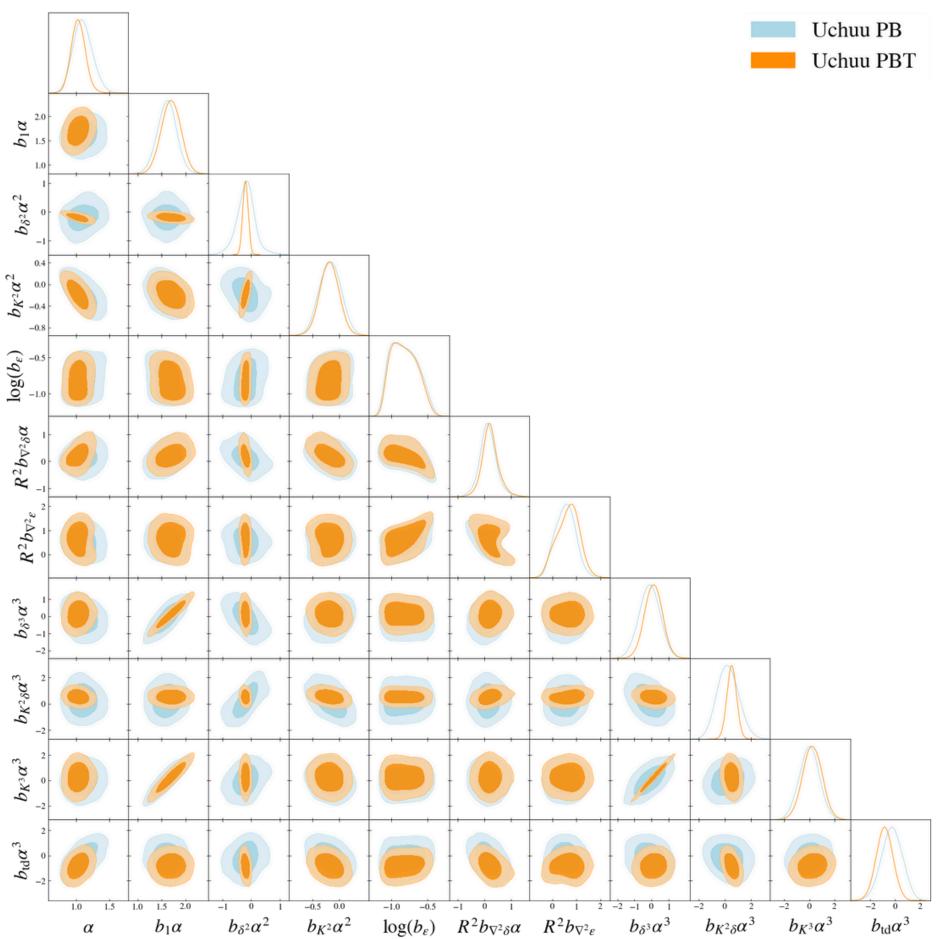


Trispectrum Information Content



Trispectrum Information Content

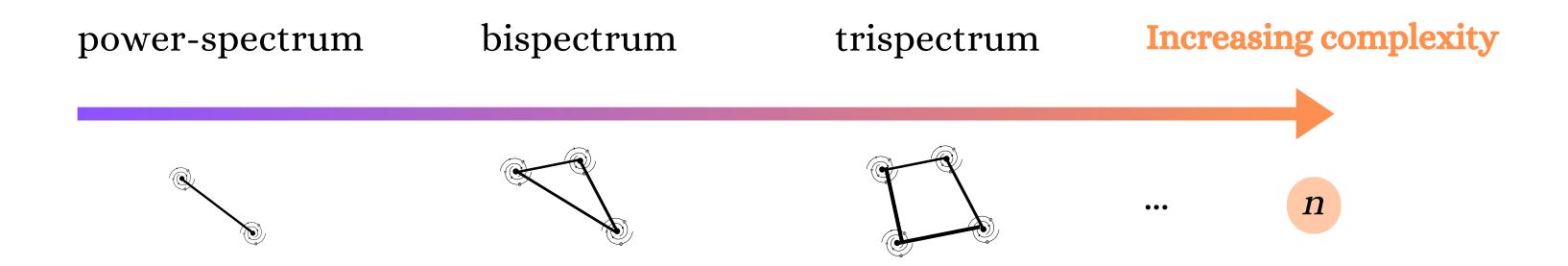




SBI with LEFTfield: Conclusions

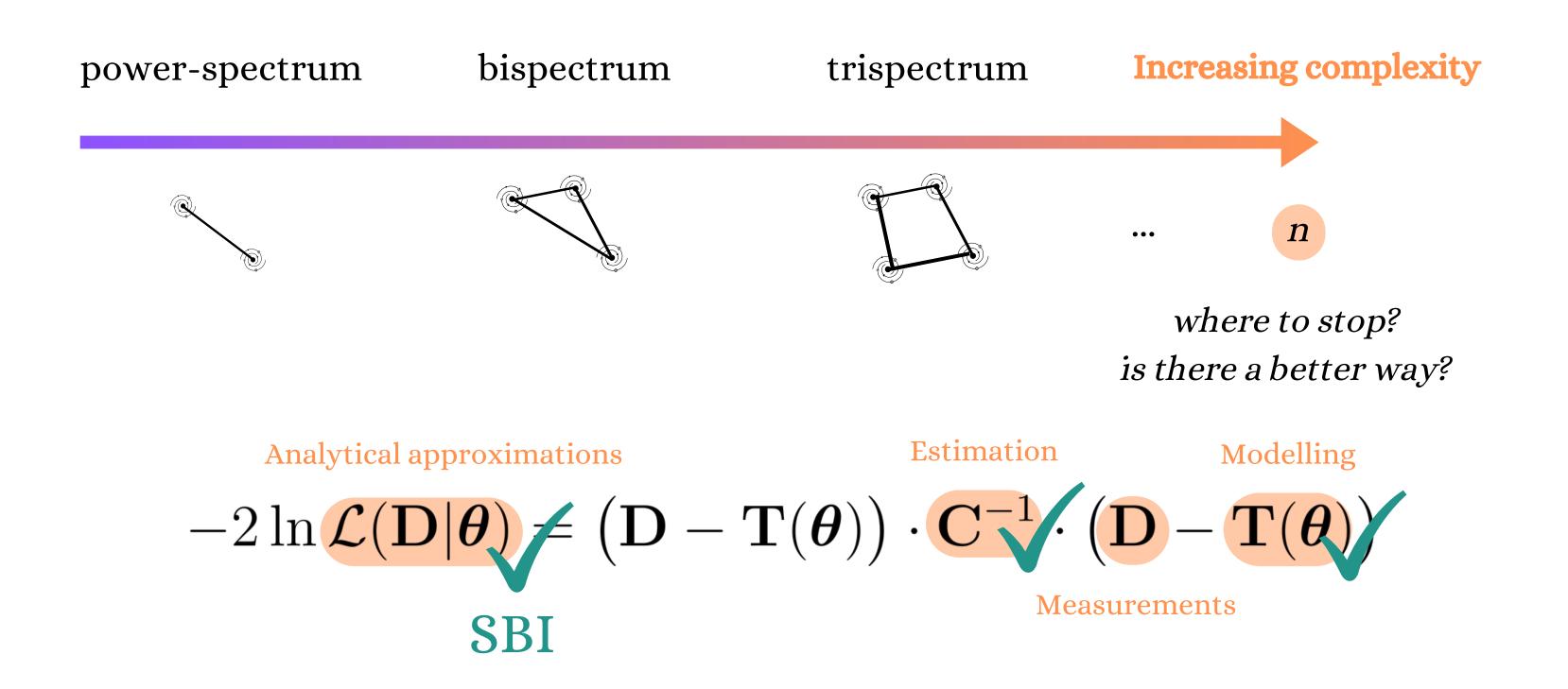
- Robust analysis with EFTofLSS and bias expansion
- LEFTfield allows for **fast** analysis in **cosmological volumes** with **convergence** and posterior **diagnostics** tests
- Need order of 10^5 simulations for convergence (investigating how we can improve that)
- SBI allows for cosmological inference using **trispectrum**, which is **unfeasible** with standard inference techniques
- No need to assume Gaussian likelihood, explicit loop or covariance calculations

Inferring the cosmological parameters: challenges



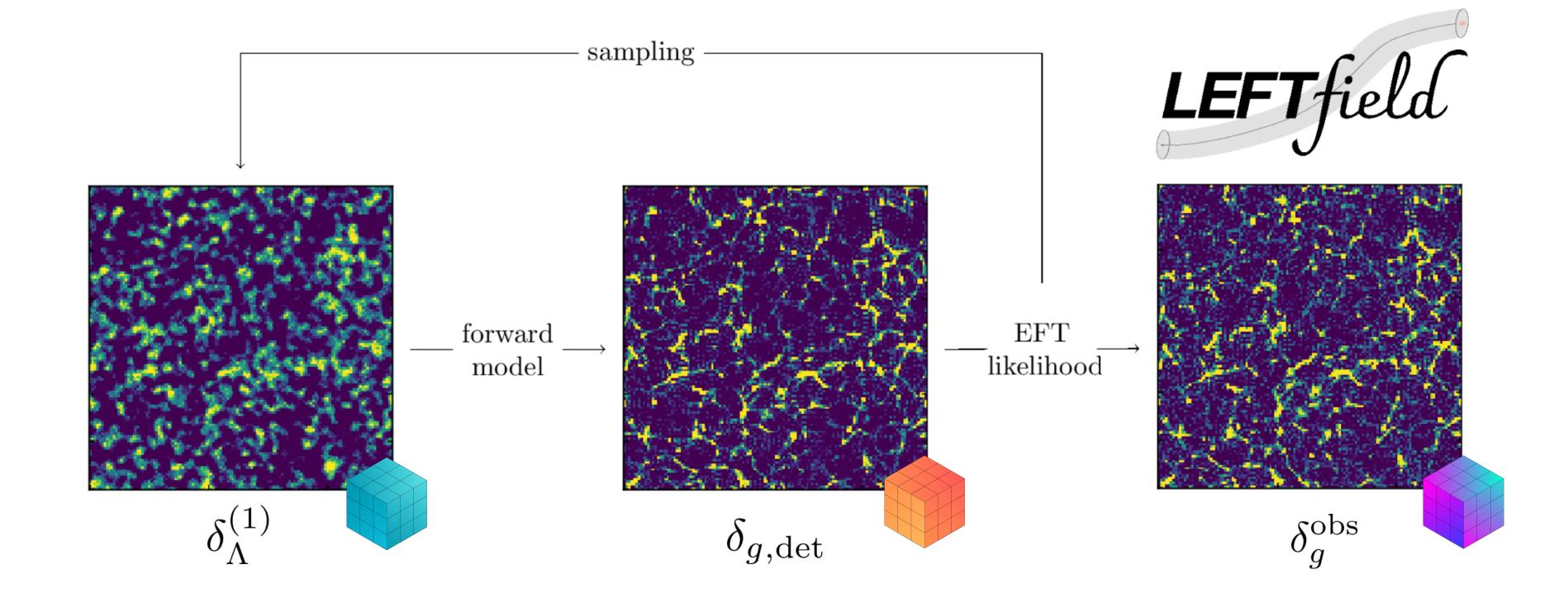
Analytical approximations Estimation Modelling
$$-2 \ln \mathcal{L}(\mathbf{D}|\boldsymbol{\theta}) \neq \left(\mathbf{D} - \mathbf{T}(\boldsymbol{\theta})\right) \cdot \mathbf{C}^{-1} \cdot \left(\mathbf{D} - \mathbf{T}(\boldsymbol{\theta})\right)$$
Measurements
$$\mathbf{SBI}$$

Inferring the cosmological parameters: challenges



Part II

Field-level Bayesian inference (FBI)



Field level Likelihood

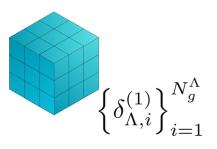
Mode by mode data and theory comparison!

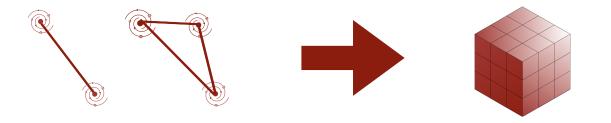
$$\ln \mathcal{L}\left(\delta_{g}^{\text{obs}} \middle| \delta_{g, \text{det}}[\boldsymbol{\theta}, \delta_{\Lambda}^{(1)}, \{b_{O}\}], \{\sigma_{\varepsilon}\}\right) = -\frac{1}{2} \sum_{k < k_{\text{max}}} \left[\frac{1}{\sigma_{\varepsilon}^{2}(k)} \middle| \delta_{g}^{\text{obs}}(\boldsymbol{k}) - \delta_{g, \text{det}}[\boldsymbol{\theta}, \delta_{\Lambda}^{(1)}, \{b_{O}\}](\boldsymbol{k}) \middle|^{2} + \ln[2\pi\sigma_{\varepsilon}^{2}(k)] \right]$$

$$\downarrow \quad \text{HMC}$$

$$\mathcal{P}\left(oldsymbol{ heta}, \delta_{\Lambda}^{(1)}, \{b_O\}, \{\sigma_{arepsilon}\} \middle| \delta_g^{ ext{obs}}
ight)$$

Full posterior including initial conditions!





How much information is retained at the galaxy density field?

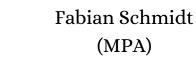
Breaking degeneracy between σ_8 and bias parameters on dark-matter halos

Nguyen, Schmidt, **Tucci** et al. (2024)

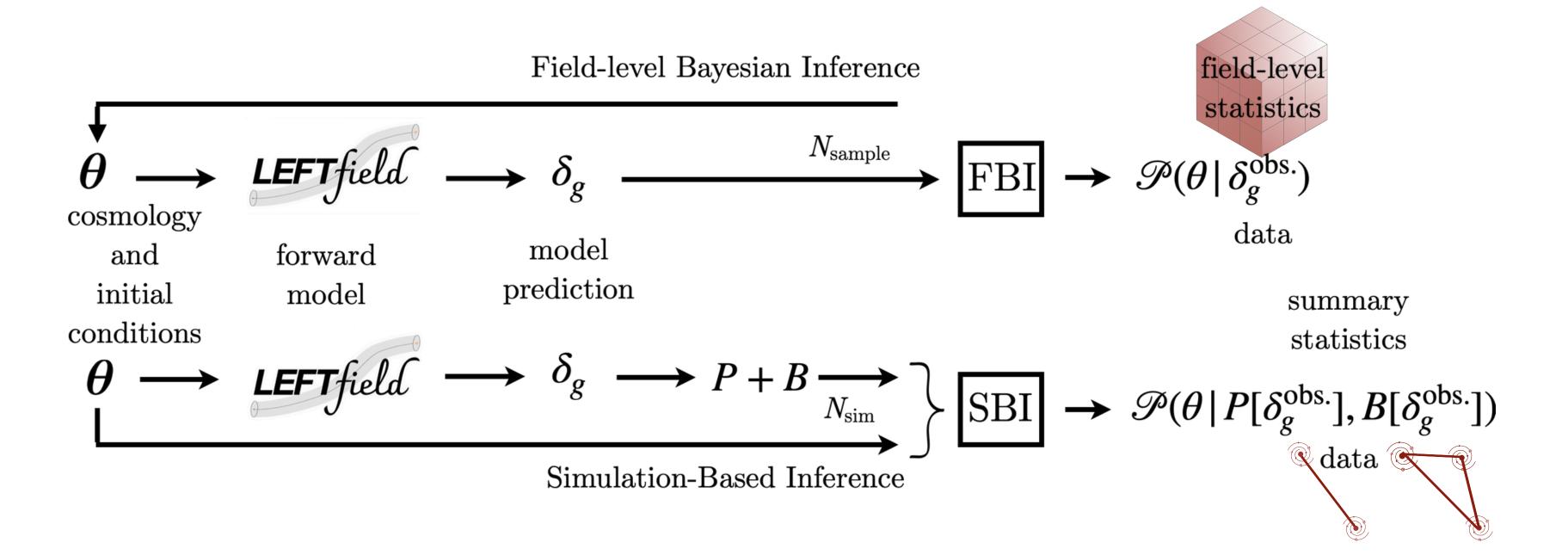
3rd order bias expansion

$$O_{\mathrm{det}} \in \left[\delta, \delta^2, K^2, \delta^3, K^3, \delta K^2, O_{\mathrm{td}}, \nabla^2 \delta\right]$$

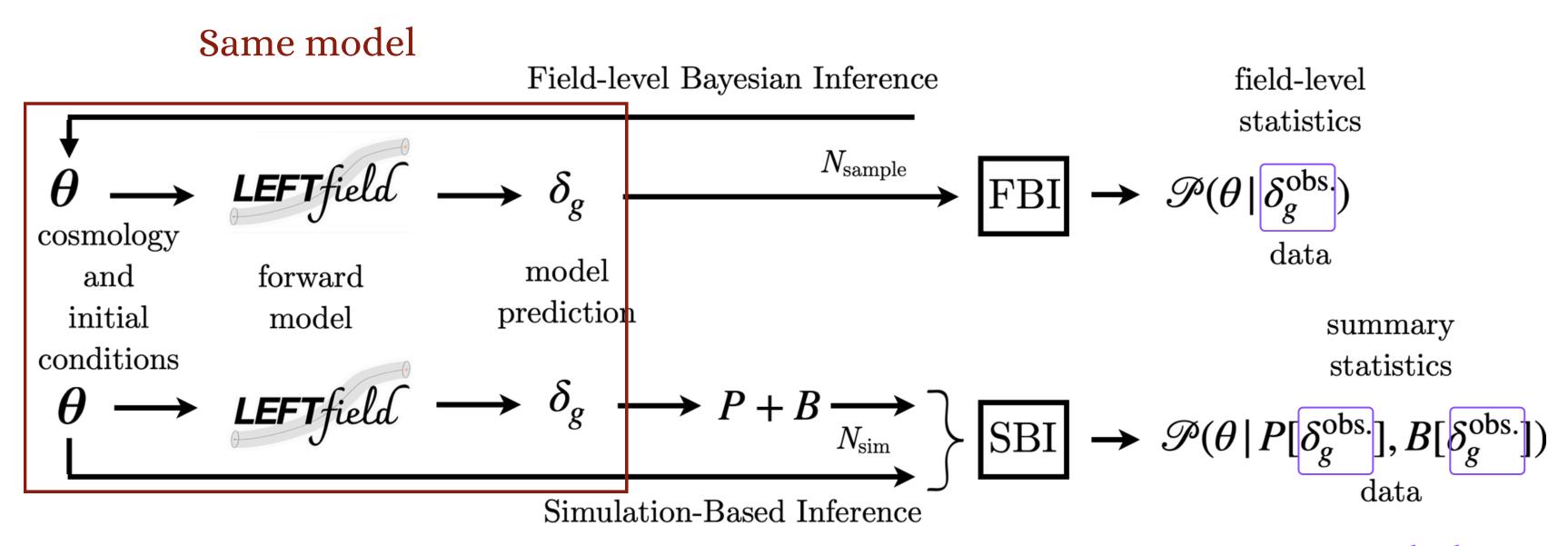
$$O_{\mathrm{stoch}} \in \left[\varepsilon, \nabla^2 \varepsilon\right]$$



(IPMU)



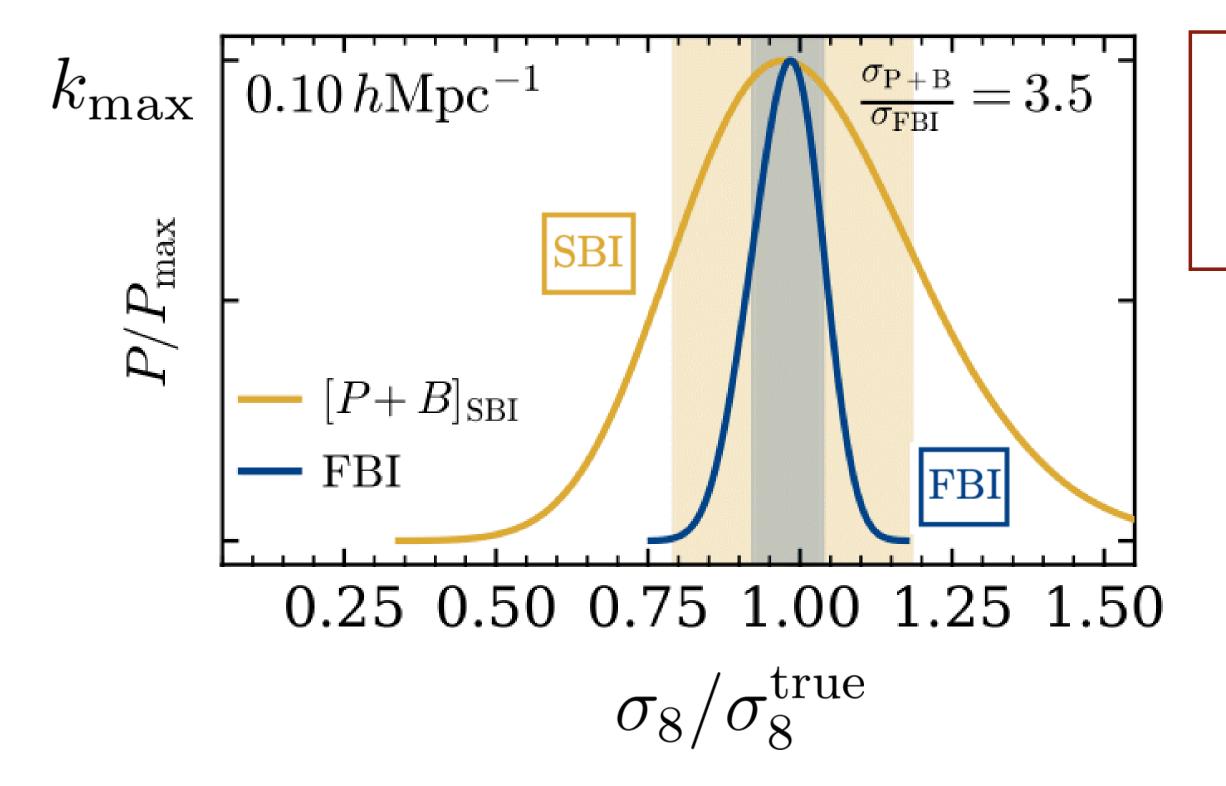
Apples-to-apples comparison



Same halos
Same scale cuts

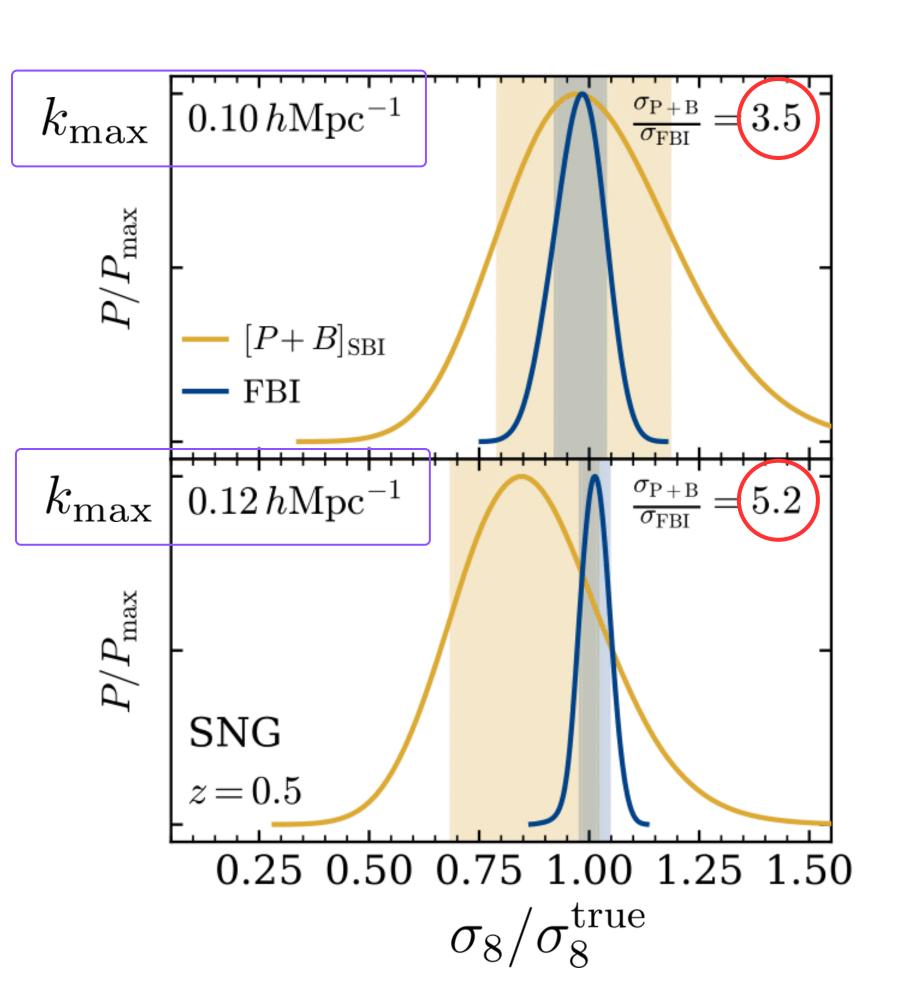
A lot of reliable information at the field-level!

SNG halos

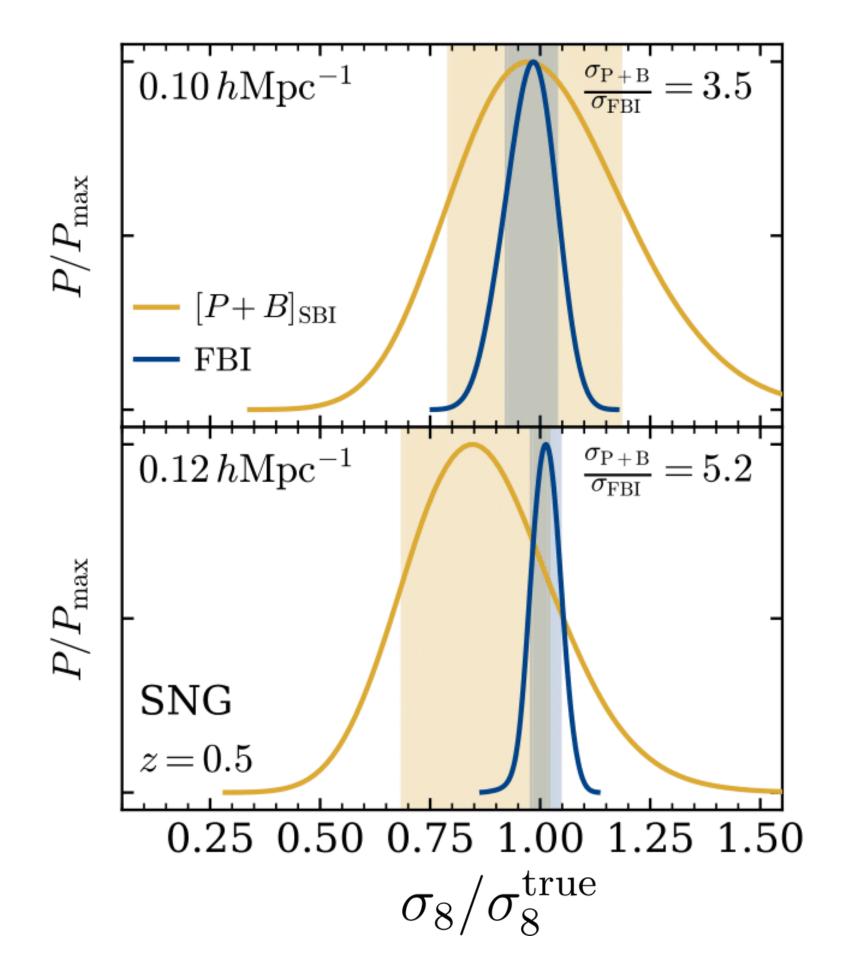


3.5 improvement factor!

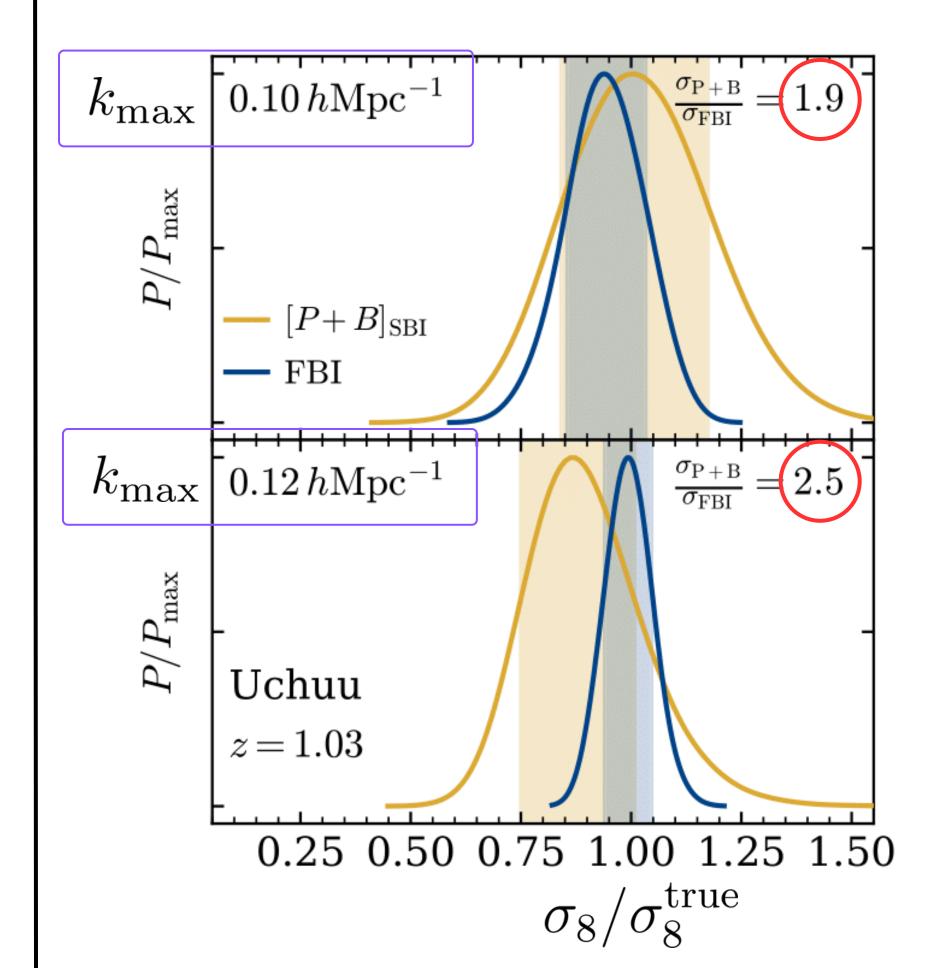
SNG

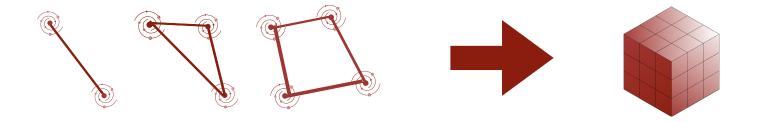


SNG



Uchuu

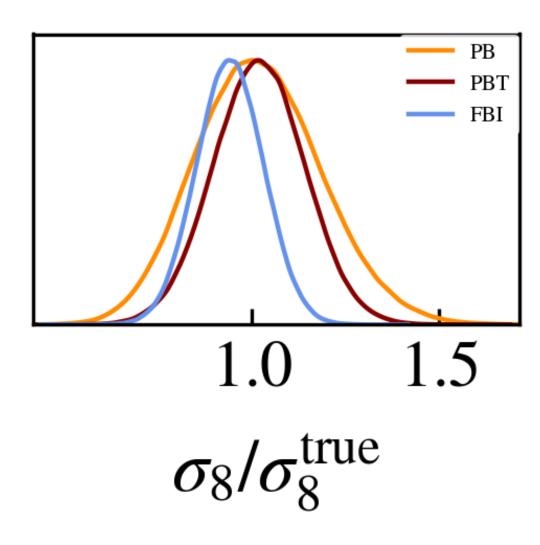




What if we add the trispectrum?

Tucci & Schmidt (in prep.)

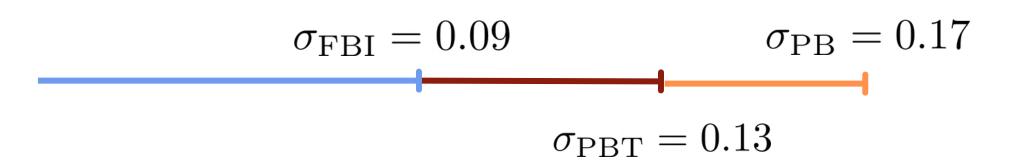
Trispectrum: preliminary results



$$k_{\rm max} = 0.1 h\,{\rm Mpc}^{-1}$$

Uchuu halos at z=1

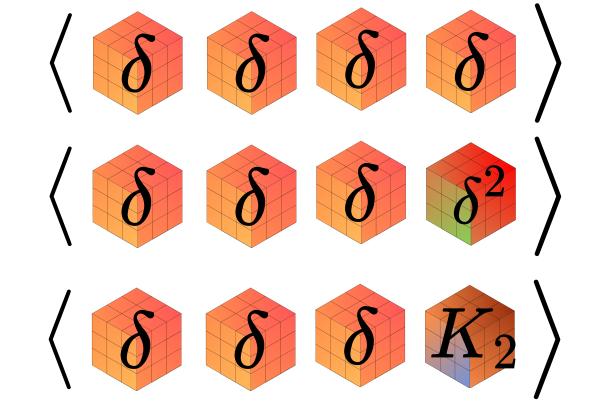
Brute force approach: 10^6 simulations



SBI with LEFTfield: final thoughts

MCMC

$$\langle O(\boldsymbol{k}) \dots O'(\boldsymbol{k'}) \rangle (\boldsymbol{\theta})$$



• • •

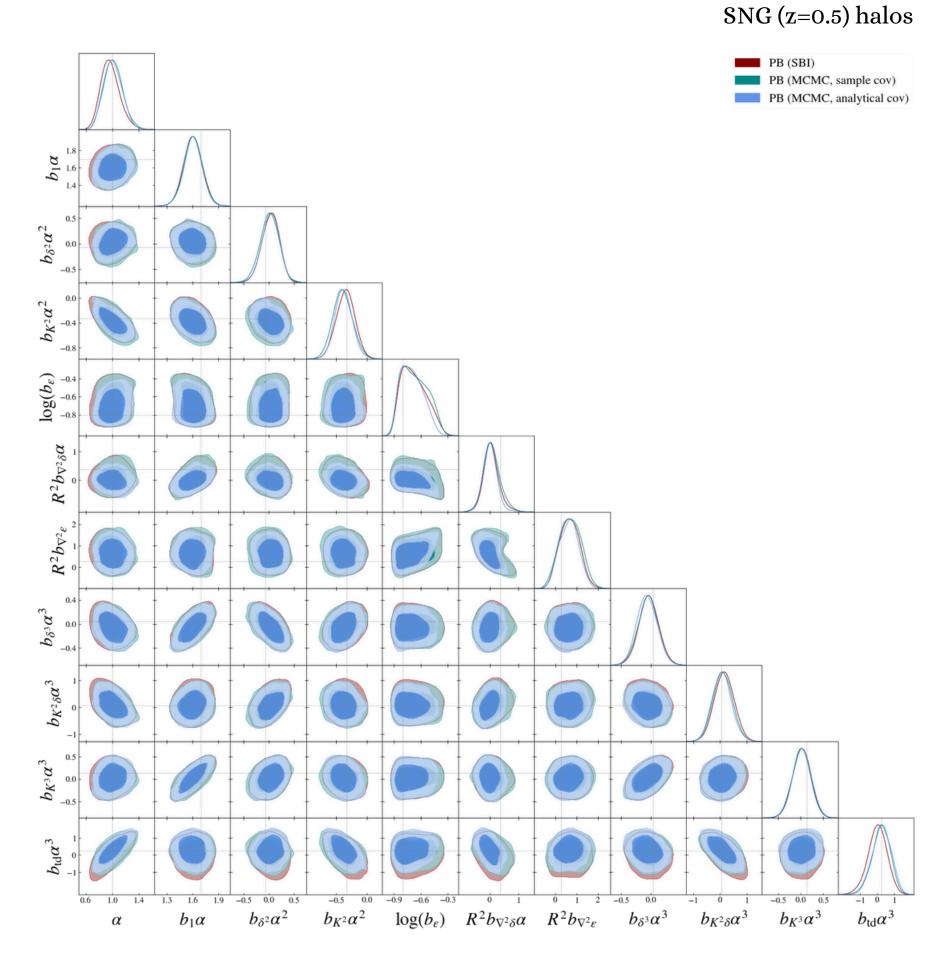
 $P_g(k) = \sum_{O_lpha,O_eta} b_{O_lpha} b_{O_eta} \langle O_lpha(k) O_eta(k)
angle$

 $B_g(k_1,k_2,k_3) = \sum_{O_lpha,O_eta,O_\gamma} b_{O_lpha} b_{O_eta} b_{O_\gamma} \langle O_lpha(k_1) O_eta(k_2) O_\gamma(k_3)
angle$

 $T_g(k_1,k_2,k_3,k_4,k_D) = \sum_{O_lpha,O_eta,O_\gamma,O_\sigma} b_{O_lpha} b_{O_eta} b_{O_\gamma} b_{O_\sigma} \langle O_lpha(k_1) O_eta(k_2) O_\gamma(k_3) O_\sigma(k_4)
angle |_{k_D}$

Comparison to MCMC

SBI and MCMC do match

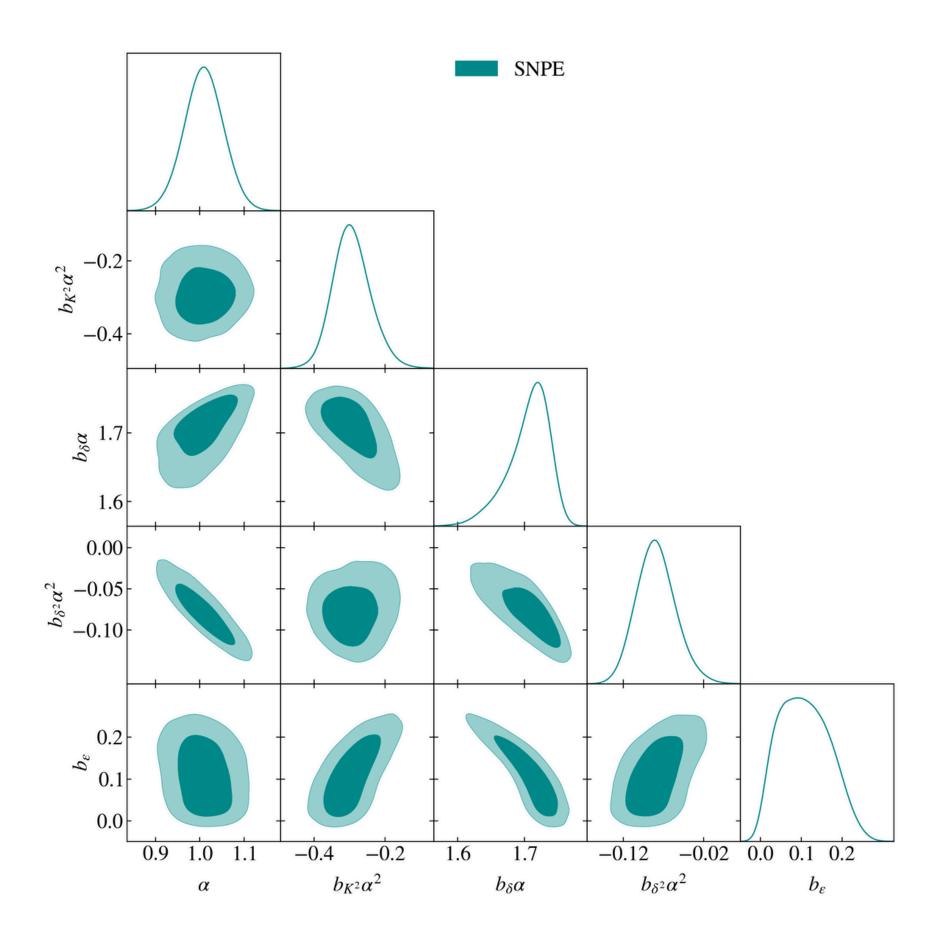


Comparison to Spezzati, Marinucci, Simonović (2025)

$$\sigma(lpha)=0.2$$
 $\sigma(lpha)=0.06$

Nguyen et al.	Spezzati et al.	
PB (tree + parts of loops)	P (tree + 1loop) + B (tree)	
SBI on halos	Fisher	
Third order bias	Second order bias + bg3	
Non-Gaussian likelihood	Gaussian likelihood	
Full covariance	Analytical, diagonal cov.	
•••	•••	

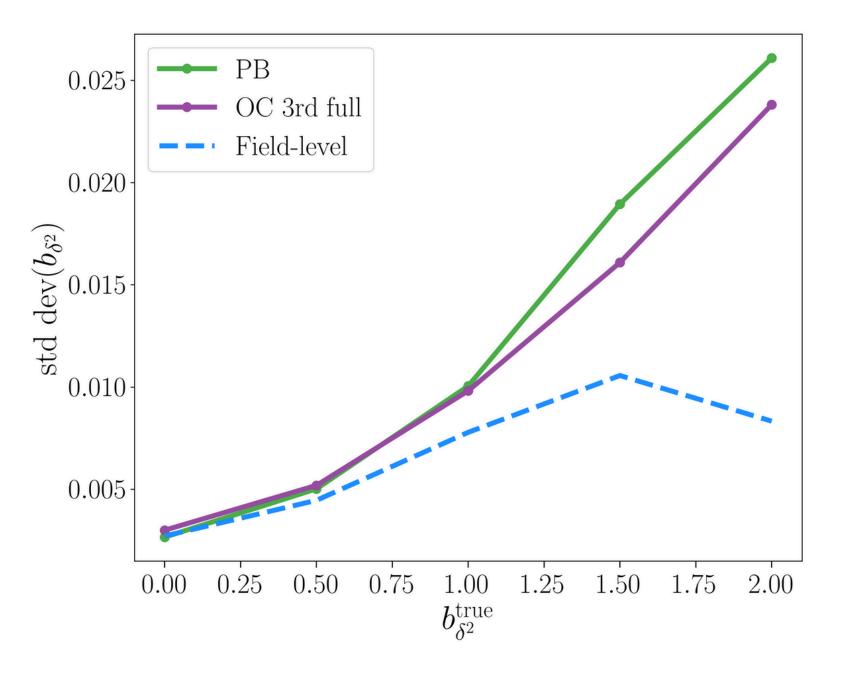
Comparison to Spezzati, Marinucci, Simonović (2025)



PB on SNG (z=0.5)-like mock data

$$\sigma(lpha)=0.05$$

Fiducial values of bias parameters matter



Nikolac, Schmidt, Tucci (in prep.)

Talk by Ivana Nikolac next week

Conclusion & Next Steps

- We demonstrated to have **unbiased** and **accurate** results from halo catalogs using LEFTfield for SBI and FBI
- **Apple-to-apple comparison** of field-level inference and SBI shows that there is a lot of **reliable** information beyond 2+3(+4)-point functions in the 3D maps of galaxies

Next steps to connect with observations:

- Include more observational effects
- Expand the cosmological parameter space
- Explore summaries in SBI

Beatriz Tucci

tucci@mpa-garching.mpg.de