High-redshift Galaxy Bias for Stage-V Spectroscopic Surveys

New Physics from Galaxy Clustering at GGI

Jamie Sullivan - Brinson Prize Fellow (MIT)
(based on work w/ **Misha Ivanov**, **Carol Cuesta-Lazaro**,
& Ni, Bose, Hadzhiyska, Hernquist, Hernández-Aguayo, Kannan)

arXiv: 2505.03626

Future surveys

Future of LSS is at z > 2 (Noah's talk)

DESI-II, Spec-S5 (US), WST (EU), MUST (CN)

↑: large k_{NI} , probe new volume

 \downarrow : tyranny of D_L , galaxies not well understood

Future surveys

Future of LSS is at z > 2 (Noah's talk)

DESI-II, Spec-S5 (US), WST (EU), MUST (CN)

↑: large k_{NI} , probe new volume

 \downarrow : tyranny of D_L , galaxies not well understood

What kind of galaxies?

Lyman-alpha emitters (LAEs):

- Line selection (~ELGs)
- Lower mass, bias b₁~ 2

Lyman-break galaxies (LBGs):

- Break selection (--)
- ~Higher mass, brighter,
 higher bias b₁~ 3.5 4

Both star-forming

What are higher-order biases? What is k_{max} ?

What are higher-order biases? What is k_{max} ?

A first step to an answer:

1. Use simulated galaxies (MTNG, Astrid)*

What are higher-order biases? What is k_{max} ?

- 1. Use simulated galaxies (MTNG, Astrid)*
- 2. Look at existing (small-field) data (ODIN, CARS)

What are higher-order biases? What is k_{max} ?

- 1. Use simulated galaxies (MTNG, Astrid)*
- 2. Look at existing (small-field) data (ODIN, CARS)
- 3. Match b_1 , number density, to observed $w(\theta)$

What are higher-order biases? What is k_{max} ?

- 1. Use simulated galaxies (MTNG, Astrid)*
- 2. Look at existing (small-field) data (ODIN, CARS)
- 3. Match b_1 , number density, to observed $w(\theta)$
- 4. Measure biases, P_{err} at field-level (cancel s.v.)

Simulation Selection

No realistic colors or spectra

Do best possible w/ hydro properties

Stellar mass
Star formation rate
Metallicity

Field-level machinery

"Transfer function" tooling (Misha's talk, alt. Bea, Fabian's talks)

Redshift space, look at scale dependence in:

$$P_{\rm err}(k,\mu) = \langle |\delta^{\rm EFT}(\boldsymbol{k},\hat{\boldsymbol{z}}) - \delta_{a}^{\rm truth}(\boldsymbol{k},\hat{\boldsymbol{z}})|^2 \rangle'$$

Schmittful+18,+20, Abidi+Baldauf+16, Ivanov+24a,b,c, JMS+Chen24, Modi+19, Tucci+24, Schmidt25, Akitsu+25²

Results - k_{max}

LAEs:

$$k_{\text{max}} \gtrsim 0.3 \text{ [h/Mpc]}$$

LBGs:

$$k_{\text{max}} \gtrsim 0.2 \text{ [h/Mpc]}$$

Set by FoG

Can be significantly higher

Conclusions

Take away:

k-reach of PT similar or better than current surveys

Simulation/selection-dependent

Now what?:

More realistic simulated galaxies (e.g. ~Khoraminezhad+25)

Simulation-based priors

Cheap mock generation

Extra

EFT model - transfer functions w/ cubic

$$\delta_g^{\text{EFT}}(\boldsymbol{k}, \hat{\boldsymbol{z}}) = \delta_Z(\boldsymbol{k}, \hat{\boldsymbol{z}}) - \frac{3}{7}\mu^2 f \tilde{\mathcal{G}}_2$$

$$\beta_1(k, \mu) \tilde{\delta}_1(\boldsymbol{k}, \hat{\boldsymbol{z}}) + \beta_2(k, \mu) (\tilde{\delta}_1^2)^{\perp}(\boldsymbol{k}, \hat{\boldsymbol{z}})$$

$$+ \beta_{\mathcal{G}_2}(k, \mu) \tilde{\mathcal{G}}_2^{\perp}(\boldsymbol{k}, \hat{\boldsymbol{z}}) + \beta_3(k, \mu) (\tilde{\delta}_1^3)^{\perp}(\boldsymbol{k}, \hat{\boldsymbol{z}})$$

Simulated LBG Selection

Goal - Build a z=3 sample that matches:

- 1. Comoving number density $ar{n}$
- Linear bias b₁

Of two setups:

- 1. Existing data CARS *u*-drop galaxies Hildebrandt+09 (23 < r < 24.5, 3 deg²) ~7e-4 [Mpc/h]⁻³, b_1 ~ 4
- 2. Planned data Spec-S5-like survey
 Following spectroscopic roadmap (Schlegel+22)

Simulated Selection

Simple procedure:

- 1. Apply M_{*}- sSFR cut to hydro. sim. galaxies (sSFR = SFR/M_{*})
 - LBGs on SF MS -> restrict 10^{-10} < sSFR < 10^{-8}
- 2. Match number density using minimum M_{*}

2 simulations:

- MillenniumTNG (MTNG) -> 500 Mpc/h, 2×4230³ particles
- Astrid -> Astrid 250 Mpc/h, 2×5500³ particles

LBG HODs - MTNG

Roughly Zheng07-like Higher min. M_¬

Lower min. M_¬

LBG HODs - Astrid

A bit different...

Higher min. \mathbf{M}_{\sqcap}

Lower min. M_¬

Selection Table - MTNG

		$\bar{n} [h^{-1}\mathrm{Mpc}]^{-3}$	$\log_{10}\left(\frac{\langle M_h \rangle}{h^{-1}M_{\odot}}\right)$	$b_1^{w(heta)}$	$f_{ m sat}$	$\langle \frac{\sigma}{\mathrm{km/s}} \rangle$
LAE	ODIN	1.2×10^{-3}	11.40	2.1	30%	60
	S5	1.3×10^{-3}	11.51	2.4	15%	88
LBG	CARS	6.7×10^{-4}	12.37	3.9	12%	200
	S5	1.3×10^{-3}	12.26	3.6	10%	179

Selection Table - Astrid

		$ \bar{n} [h^{-1}\mathrm{Mpc}]^{-3}$	$\log_{10}\left(\frac{\langle M_h \rangle}{h^{-1}M_{\odot}}\right)$	$b_1^{w(\theta)}$	$f_{ m sat}$
LAE	ODIN	1.3×10^{-3}	11.98	2.0	40%
	S5	1.3×10^{-3}	11.96	2.1	33%
LBG	CARS	6.7×10^{-4}	12.63	3.8	12%
	S5	1.3×10^{-3}	12.52	3.8	13%

Nonlinear bias

Zheng07-like model & priors

$$\begin{aligned} \log_{10} M_{\text{cut}} &\in [11, 13] \,, \quad \log_{10} M_1 \in [12, 14] \,, \\ \log \sigma &\in [-3, 0] \,, \quad \alpha \in [0.5, 1.5] \,, \\ \alpha_c &\in [0, 0.5] \,, \quad \alpha_s \in [0.7, 1.3] \,, \quad \kappa \in [0.0, 1.5] \end{aligned}$$

$$\langle N_c \rangle (M) = \frac{1}{2} \left[1 + \text{Erf} \left(\frac{\log M - \log M_{\text{cut}}}{\sqrt{2}\sigma} \right) \right] ,$$

$$\langle N_s \rangle (M) = \langle N_c \rangle (M) \left(\frac{M - \kappa M_{\text{cut}}}{M_1} \right)^{\alpha} ,$$

Nonlinear bias

Param.	ODIN LAE MTNG	S5 LAE MTNG	S5 LBG MTNG	CARS LBG MTNG	ODIN LAE Astrid	S5 LAE Astrid	S5 LBG Astrid	CARS LBG Astrid
b_1	2.33	2.68	3.92	4.24	2.15	1.89	4.05	3.96
b_2	0.17	0.61	4.85	6.21	1.05	-0.052	7.76	6.02
b_3	-1.23	-2.68	8.75	13.14	6.73	-1.05	12.46	9.17
$b_{\mathcal{G}_2}$	-0.803	-0.84	-2.28	-3.03	-0.98	-0.52	-1.19	-1.44
b_{Γ_3}	1.76	1.71	4.83	7.04	4.37	-9.44	-2.62	5.38
$b_{ abla^2\delta}$	-0.84	-1.05	-1.35	-1.69	0.66	-5.49	-2.83	1.25
$lpha_0$	0.046	0.041	-0.17	-0.16	0.074	0.023	-0.307	-0.32
$lpha_1$	-0.023	-0.018	-0.0085	-0.037	-0.068	0.063	0.010	-0.047
$lpha_2$	0.18	0.32	0.73	0.48	-0.12	-0.093	0.0081	0.044
c_{μ^2}	-13.49	-24.39	-16.33	-9.22	-3.16	1.53	1.96	-1.80
b_4	-815.02	-1202.88	-692.46	-499.51	-6.09	-10.44	-43.52	-18.15

Transfers for LAEs

Thanks!