How things change with scale?

or... the running bias

or... the Renormalization group for LSS

Based on: 2307.15031, 2404.16929, 2405.21002, 2507.13905, 2508.00611

Henrique Rubira
(Cambridge/LMU)

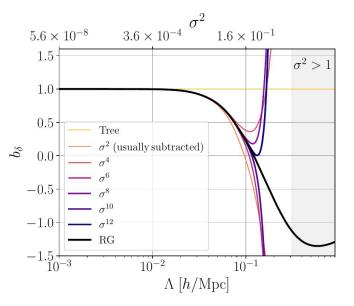
with: Fabian Schmidt, Charalampos Nikolis, Mathias Garny, Thomas Bakx, Zvonimir Vlah

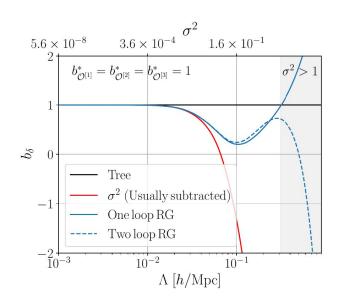
Message to take home

Callan-Symanzik equation:

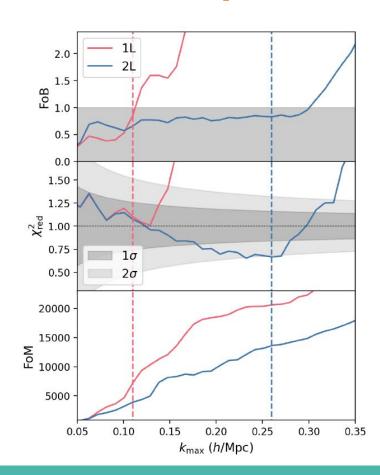
$$\frac{\partial g}{\partial \ln \Lambda} = \beta(g) \quad \blacksquare$$

$$\frac{db_a}{d\Lambda}\Big|_{1L} = -b_b s_{ba} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \,,$$

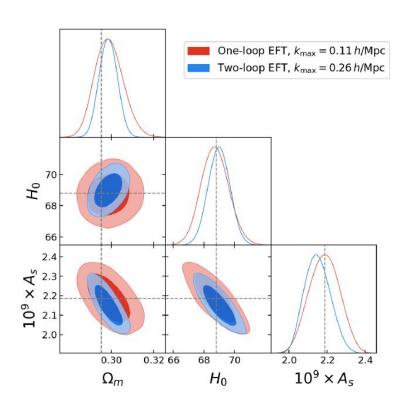




Fast two-loop evaluation



See Thomas's slides from last week



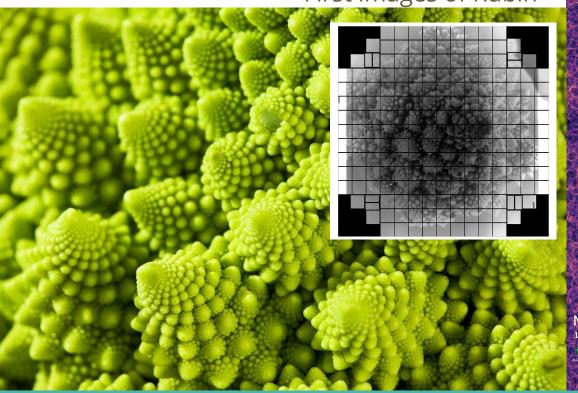
Bakx, **HR**, Chisari, Vlah 2025;

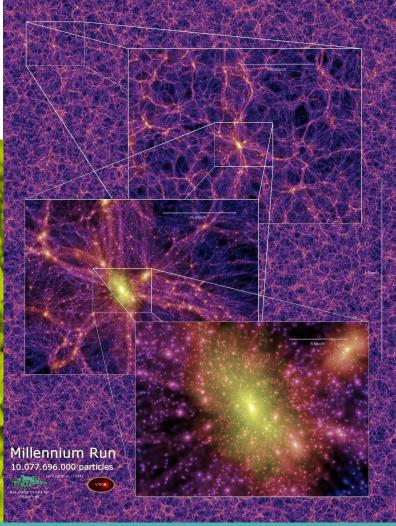
Intro

How things change with scale? (from food to galaxies)

How things change with scale? (from food to galaxies)

First images of Rubin





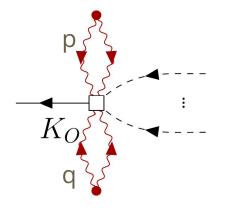
How things change with scale?

... Or on how to use a **one-loop** (renormalization group) to get **information about higher-loop** terms 'for free'

How things change with scale?

... Or on how to use a **one-loop** (renormalization group) to get **information about higher-loop** terms 'for free'

Intuition: (1loop)^n ~ n-loop (for some part of the integrals domain)



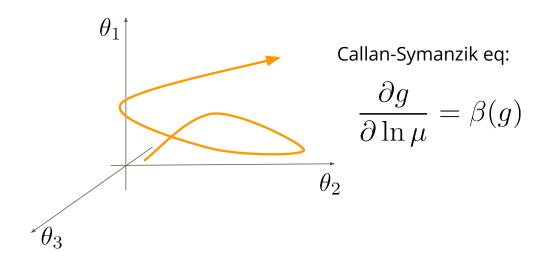
Method of regions (Beneke and Smirnov):

- p>>q (or q<<p): Absorbed by $(1loop)^2$
- p~q: Intrinsic 2-loop

QFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



Renormalizing the bias parameters

In a nutshell, it is an **Operator Product Expansion (OPE)**

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[b_O(\tau) + c_{\epsilon,O}(\tau) \epsilon(\boldsymbol{x},\tau) \right] O(\boldsymbol{x},\tau) + \epsilon(\boldsymbol{x},\tau)$$

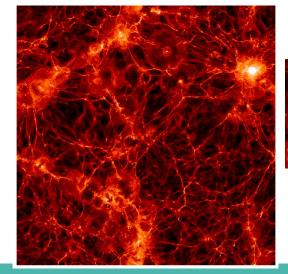
First order: δ ;
Second order: δ^2 , \mathcal{G}_2 ;
Third order: δ^3 , $\delta \mathcal{G}_2$, Γ_3 , \mathcal{G}_3 ;

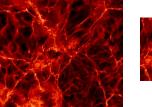
Contribution from arbitrarily small scales!

Renormalizing the bias parameters

In a nutshell, it is an Operator Product Expansion (OPE)

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[b_O^{\Lambda}(\tau) + c_{\epsilon,O}^{\Lambda}(\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \right] O(\boldsymbol{x},\tau) + \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) + c_{\epsilon,O}^{\Lambda}(\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon$$





First order: δ ;

Second order: δ^2 , \mathcal{G}_2 ; Third order: δ^3 , $\delta \mathcal{G}_2$, Γ_3 , \mathcal{G}_3 ;

Contribution from arbitrarily small scales!

Option 1: Renormalize bias

McDonald 09 Assassi, Baumann, Green, Zaldarriaga D'amico+ 22, for 4th-order

Renormalized bias: $[\mathcal{O}_a] \equiv \mathcal{O}_a + Z_{ab}\mathcal{O}_b$

RG conditions (to match n-pt functions):

$$\langle [\mathcal{O}_a] \delta_L(\boldsymbol{k}_1) \cdots \delta_L(\boldsymbol{k}_n) \rangle \big|_{\boldsymbol{k}_i \to 0} = \langle \mathcal{O}_a \delta_L(\boldsymbol{k}_1) \cdots \delta_L(\boldsymbol{k}_n) \rangle_{\text{tree}} \big|_{\boldsymbol{k}_i \to 0},$$

We find:

$$Z_{ab}^{\rm 1L} = -\sigma_{\Lambda}^2 s_{ab}^{\rm 1L} \,,$$

$$Z_{ab}^{2 \text{L}} = -Z_{ab}^{1 \text{L}} \sigma_{\Lambda}^2 s_{b}^{\text{LL}} - \frac{1}{2} \int_{p,q < \Lambda} s_{ab}^{2 \text{L}}(p/q) P^{\text{lin}}(p) P^{\text{lin}}(q) \, .$$

Order sigma^2

$$\begin{aligned} & \left[\mathcal{O}_{a} \right]_{1\mathrm{L}} = \left. \mathcal{O}_{a} - \sigma_{\Lambda}^{2} s_{ab}^{\mathrm{1L}} \mathcal{O}_{b} \,, \\ & \left[\mathcal{O}_{a} \right]_{2\mathrm{L}} = \left. \mathcal{O}_{a} - \sigma_{\Lambda}^{2} s_{ab}^{\mathrm{1L}} \left[\mathcal{O}_{b} \right]_{1\mathrm{L}} - \frac{1}{2} \left(\int_{p,q < \Lambda} s_{ab}^{2\mathrm{L}}(q/p) P^{\mathrm{lin}}(p) P^{\mathrm{lin}}(q) \right) \mathcal{O}_{b} \,. \end{aligned}$$

Bakx, Garny, HR, Vlah

5th-order bias and 2-loop

i, Baumann, Green, Zaldarriaga :o+ 22, for 4th-order

Renormalized bias:

RG conditions (to ma

$$\Big|\, \langle [\mathcal{O}_a] \delta_L(oldsymbol{k}_1) \cdots$$

 $\mathrm{tr}[\Pi^{[1]}]$

 $\frac{\mathrm{tr}\big[\big(\Pi^{[1]}\big)^2\big]}{\big(\mathrm{tr}\big[\Pi^{[1]}\big]\big)^2}$

We find:

$$Z_{ab}^{
m 1L} = -\sigma_{\Lambda}^2$$

$$\begin{aligned} \left[\mathcal{O}_a \right]_{1\mathrm{L}} &= \left. \mathcal{O}_a - \sigma_{\Lambda}^2 s_{ab}^{1\mathrm{L}} \mathcal{O}_b \right., \\ \left[\mathcal{O}_a \right]_{2\mathrm{L}} &= \left. \mathcal{O}_a - \sigma_{\Lambda}^2 s_{ab}^{1\mathrm{L}} [\mathcal{O}_b] \right|_{1\mathrm{I}} \end{aligned}$$

Э	$\begin{array}{c} \left(\mathrm{tr}[\Pi^{[1]}]\right)^{3} \\ \mathrm{tr}[\left(\Pi^{[1]}\right)^{2}]\mathrm{tr}[\Pi^{[1]}] \\ \mathrm{tr}[\left(\Pi^{[1]}\right)^{3}] \\ \mathrm{tr}[\Pi^{[1]}\Pi^{[2]}] \end{array}$	$\frac{3}{10}$ $\frac{1}{6}$ $\frac{1}{10}$ $\frac{41}{210}$	0 58 525 29 175 38 315	34 35 88 175 47 133 245	1312 1225 877 1715 3971 2489609 5093550	127 3675 23129 77175 2224 5145 30616 94325	892 8575 1338 8575 1631026 12733875	$0\\ -\frac{5}{63}\\ -\frac{5}{42}\\ -\frac{19231}{173250}$
•	$\begin{array}{c} \left(\mathrm{tr}[\Pi^{[1]}]^4\right. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 0 0 0 0 0	0 1 10 10 19 75 103 1050 2 3 134 1575 1545	3 5 1 1 10 7 7 30 2 75 177 150 9 9 177 1084 3675	68 33 47 175 358 525 64334 241525 64334 241525 761525 761525 761525 761525 761525 761525 761525	0 76 175 286 525 3092 3675 10862 25725 5416 5416 56014 3087	0 29 175 0 464 3675 40009 211525 103736 115735 4244623 46305	0 0 0 0 11 1525 197 78507 - 8307 - 85925 11025
2	$\begin{array}{c} \left({\rm tr} [\Pi^{[1]}] \right)^5 \\ {\rm tr} [(\Pi^{[1]})^3] \left({\rm tr} [\Pi^{[1]}] \right)^2 \\ {\rm tr} [(\Pi^{[1]})^2] \left({\rm tr} [\Pi^{[1]}] \right)^3 \\ {\rm tr} [(\Pi^{[1]})^3] {\rm tr} [(\Pi^{[1]})^2] \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [(\Pi^{[1]})^2] \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [\Pi^{[1]}]^2 \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [\Pi^{[2]}]^2 \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [\Pi^{[2]}]^3 \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [\Pi^{[1]}] \\ {\rm tr} [\Pi^{[1]}] {\rm tr} [\Pi^{[1]}] \end{array}$	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 10 3 10 0 2 75 75 75 75 75 75 75 75 75 75 75 75 75	0 1 5 3 10 7 50 7 50 1819 7 64 1819 7 7 1819 1819	0 11 0 9 50 0 116 34675 27 127 127 127 127 127 127 127	0 0 0 0 0 1 10 15 15 15 15 15 15 15 15 15 15 15 15 15
	$\operatorname{tr}igl[\Pi^{[1]}\Pi^{[4]}igr]$	0	0	0	231525 261944 2546775	77175 98489 1131900	92610 1332383 50935500	3150 373 28875

 $\operatorname{tr}[\Pi^{[1]}] \operatorname{tr}[(\Pi^{[1]})^2] \left(\operatorname{tr}[\Pi^{[1]}]\right)^2 \left(\operatorname{tr}[\Pi^{[1]}]\right)^3 \operatorname{tr}[(\Pi^{[1]})^2] \operatorname{tr}[\Pi^{[1]}] \operatorname{tr}[(\Pi^{[1]})^3] \operatorname{tr}[\Pi^{[1]}\Pi^{[2]}]$

$$\langle ({m k}_n)
angle_{
m tree} ig|_{{m k}_i o 0} \, ,$$

$$\sup_{q<\Lambda} s_{ab}^{\rm 2L}(p/q) P^{\rm lin}(p) P^{\rm lin}(q) .$$

akx, Garny, HR, Vlah

h-order bias and 2-loop

Option 2 (this talk): live well with the Lambda-dep

RENORMALIZATION AND EFFECTIVE LAGRANGIANS

Joseph POLCHINSKI*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Received 27 April 1983

1. Introduction

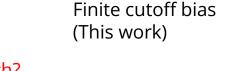
The understanding of renormalization has advanced greatly in the past two decades. Originally it was just a means of removing infinities from perturbative calculations. The question of why nature should be described by a renormalizable theory was not addressed. These were simply the only theories in which calculations could be done.

A great improvement comes when one takes seriously the idea of a physical cutoff at a very large energy scale Λ . The theory at energies above Λ could be another field

How to relate the renormalization schemes?

N-point function renormalized bias (McDonald and Assassi, Baumann, Green, Zaldarriaga)

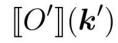
$$\llbracket O' \rrbracket (oldsymbol{k}')$$

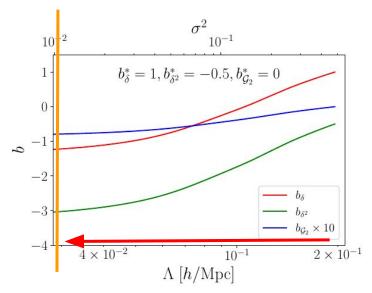


How to relate the renormalization schemes?

N-point function renormalized bias (McDonald and Assassi, Baumann, Green, Zaldarriaga)

Separate Universe





Solution: Run the bias towards

$$\Lambda \to 0$$

HR, Schmidt 23

The equations

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda} \Big|_{1L} + \frac{db_a}{d\Lambda} \Big|_{2L} + \dots$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

one-loop:
$$\left| \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \right|$$
 HR, Schmidt, 23

$\mathcal{S}^2_O(a)$
50

$s_{O'}^O$	δ	δ^2	\mathcal{G}_2	δ^3	\mathcal{G}_3	Γ_3	$\delta \mathcal{G}_2$
1	-	-	-	-	-	-	-
δ	-	68/21	-	3	-	-	-4/3
δ^2	-	8126/2205	-	68/7	-	-	-376/105
$ \mathcal{G}_2 $	-	254/2205	-	-	-	-	116/105

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

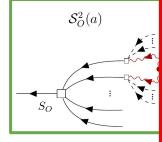
Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda} \Big|_{1L} + \frac{db_a}{d\Lambda} \Big|_{2L}$$

one-loop:

$$\left. \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

HR, Schmidt, 23



a	c _{aδ}	a_a	a_a
$\mathrm{tr}\big[\Pi^{[1]}\big]$	0	0	0
$\frac{\mathrm{tr}\big[\big(\Pi^{[1]}\big)^2\big]}{\left(\mathrm{tr}\big[\Pi^{[1]}\big]\right)^2}$	68 63 68 63	862 1575 862 1575	376 6615 376 6615
$\begin{array}{c} \left(\mathrm{tr} \big[\Pi^{[1]} \big] \right)^3 \\ \mathrm{tr} \big[\left(\Pi^{[1]} \right)^2 \big] \mathrm{tr} \big[\Pi^{[1]} \big] \\ \mathrm{tr} \big[\left(\Pi^{[1]} \right)^3 \big] \\ \mathrm{tr} \big[\Pi^{[1]} \Pi^{[2]} \big] \end{array}$	1 5 1 3 41 63	70739 33075 2917 2205 30263 33075 134957 99225	4 105 716 1323 1748 2205 148 441
$\begin{array}{c} \left(\mathrm{tr} \left[\Pi^{[1]} \right]^4 \\ \mathrm{tr} \left[\left(\Pi^{[1]} \right)^3 \right] \mathrm{tr} \left[\Pi^{[1]} \right] \\ \mathrm{r} \left[\left(\Pi^{[1]} \right)^2 \right] \left(\mathrm{tr} \left[\Pi^{[1]} \right] \right)^2 \\ \left(\mathrm{tr} \left[\Pi^{[1]} \right] \Pi^{[1]} \right) \\ \mathrm{tr} \left[\Pi^{[1]} \Pi^{[1]} \Pi^{[2]} \right] \\ \mathrm{tr} \left[\Pi^{[1]} \right] \mathrm{tr} \left[\Pi^{[1]} \Pi^{[2]} \right] \\ \mathrm{tr} \left[\Pi^{[2]} \Pi^{[2]} \right] \end{array}$	0 0 0 0 0 0 0	272 105 82 105 6352 4725 592 675 16112 19845 12814 11025 24784 19845	0 5 21 4 21 8 8 3706 6615 373 735 401 2285 3315
$(tr[\Pi^{[1]}])^5$ $r[(\Pi^{[1]})^3] (tr[\Pi^{[1]}])^2$ $r[(\Pi^{[1]})^3] (tr[\Pi^{[1]}])^3$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^3]$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^3]$ $r[\Pi^{[1]}] tr[\Pi^{[1]}] tr[\Pi^{[1]}]$ $r[\Pi^{[1]}] tr[\Pi^{[1]}] tr[\Pi^{[1]}]$ $tr[\Pi^{[1]}] tr[\Pi^{[1]}] tr[\Pi^{[1]}]$ $tr[\Pi^{[1]}] tr[\Pi^{[1]}]$ $tr[\Pi^{[1]}] tr[\Pi^{[1]}]$ $tr[\Pi^{[2]}]$ $tr[\Pi^{[2]}]$ $tr[\Pi^{[2]}]$ $tr[\Pi^{[2]}]$	0 0 0 0 0 0 0 0 0 0 0 0 0	1 11 45 7 15 31 225 675 47 103 675 47 103 675 103 103 103 103 103 103 103 103 103 103	0 0 0 0 252255 5 5 5 5 5 5 5 5 5 5 5 5 5

$s_{O'}^O$	δ	δ^2	\mathcal{G}_2	δ^3	\mathcal{G}_3	Γ_3	$\delta \mathcal{G}_2$
1	-	-	-	-	-	-	-
δ	-	68/21	-	3	-	-	-4/3
δ^2	-	8126/2205	-	68/7	-	-	-376/105
\mathcal{G}_2	-	254/2205	-	-	-	-	116/105

two-loop:

$$\left| \frac{db_{\delta}}{d\Lambda} \right|_{2L} = -30b_b \tilde{d}_b^{(5)} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \int_0^{\Lambda} dq \frac{q^2 P^{\text{lin}}(q)}{2\pi^2} g(q/\Lambda) ,$$

Bakx, Garny, **HR**, Vlah

Single-hard and double-hard limits

For the 1-loop:
$$K_b^{(n+2)}(\boldsymbol{k}_1,\ldots,\boldsymbol{k}_n,\boldsymbol{p},-\boldsymbol{p})_{\mathrm{av}_{\hat{\mathbf{p}}}}^{p o\infty}=c_{ba}^{(n+2)}K_a^{(n)}(\boldsymbol{k}_1,\ldots,\boldsymbol{k}_n)$$

Single-hard and double-hard limits

For the 1-loop:
$$K_b^{(n+2)}(\boldsymbol{k}_1,\dots,\boldsymbol{k}_n,\boldsymbol{p},-\boldsymbol{p})_{\mathrm{av}_{\hat{\mathbf{p}}}}^{p\to\infty}=c_{ba}^{(n+2)}K_a^{(n)}(\boldsymbol{k}_1,\dots,\boldsymbol{k}_n)$$

For the 2-loop:

$$\left| K_b^{(n+4)}(\boldsymbol{k}_1, \dots, \boldsymbol{k}_n, \boldsymbol{q}, -\boldsymbol{q}, \boldsymbol{p}, -\boldsymbol{p})_{\text{av}_{\hat{\mathbf{p}}, \hat{\mathbf{q}}}}^{p, q \to \infty} \right|_{r \equiv p/q = \text{fixed}} = d_{ba}^{(n+4)}(r) K_a^{(n)}(\boldsymbol{k}_1, \dots, \boldsymbol{k}_n)$$

Single-hard and double-hard limits

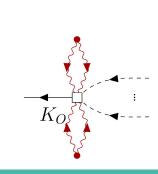
For the 1-loop:

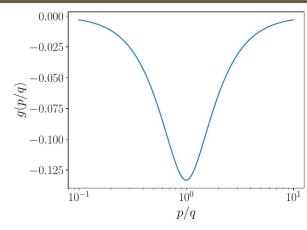
$$K_b^{(n+2)}(\boldsymbol{k}_1,\ldots,\boldsymbol{k}_n,\boldsymbol{p},-\boldsymbol{p})_{\mathrm{av}_{\hat{\mathbf{p}}}}^{p\to\infty}=c_{ba}^{(n+2)}K_a^{(n)}(\boldsymbol{k}_1,\ldots,\boldsymbol{k}_n)$$

For the 2-loop:

$$\left| K_b^{(n+4)}(\boldsymbol{k}_1, \dots, \boldsymbol{k}_n, \boldsymbol{q}, -\boldsymbol{q}, \boldsymbol{p}, -\boldsymbol{p})_{\text{av}_{\hat{\mathbf{p}}, \hat{\mathbf{q}}}}^{p, q \to \infty} \right|_{r \equiv p/q = \text{fixed}} = d_{ba}^{(n+4)}(r) K_a^{(n)}(\boldsymbol{k}_1, \dots, \boldsymbol{k}_n)$$

'one-loop squared' $d_{b\delta}^{(5)}(p/q) = d_b^{(5)} + \tilde{d}_b^{(5)} \times g(p/q)$ 'Intrinsic' two-loop q Bakx, Garny, **HR**, Vlah





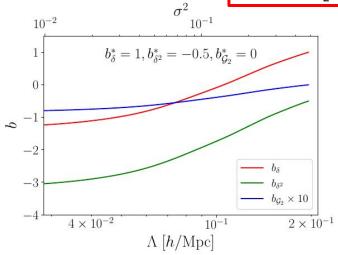
The (one-loop) solutions

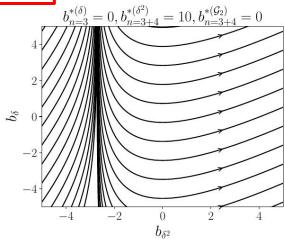
Solutions (one-loop)

Wilson-Polchinski RG-equations

$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^{2}} + 3b_{\delta^{3}}^{*} - \frac{4}{3}b_{\mathcal{G}_{2}\delta}^{*}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda},
\frac{db_{\delta^{2}}}{d\Lambda} = -\left[\frac{8126}{2205}b_{\delta^{2}} + \frac{17}{7}b_{\delta^{3}}^{*} - \frac{376}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\delta^{2})}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda},
\frac{db_{\mathcal{G}_{2}}}{d\Lambda} = -\left[\frac{254}{2205}b_{\delta^{2}} + \frac{116}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\mathcal{G}_{2})}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda}.$$

HR, Schmidt 23





Why should you care?

What do the solutions of the RG tell us?

Bakx, Garny, **HR**, Vlah

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

What do the solutions of the RG tell us?

Bakx, Garny, HR, Vlah

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

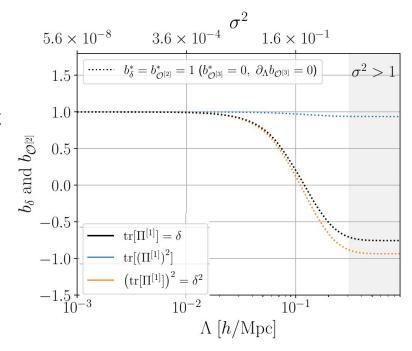
$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

Marginal Relevan

Relevant



What do the solutions of the RG tell us?

Bakx, Garny, **HR**, Vlah

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

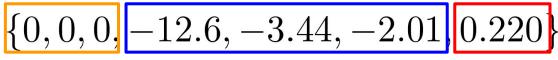
$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

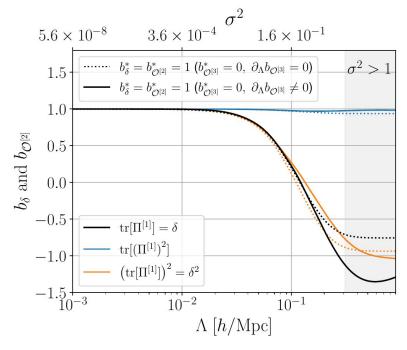
Marginal

Relevant

Extending to third-order:

Irrelevant





What I want to say vs. what I can say

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

Marginal

Relevant

Extending to third-order:

Irrelevant

$$\{0,0,0,-12.6,-3.44,-2.01,0.220\}$$

What I want to say vs. what I can say

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

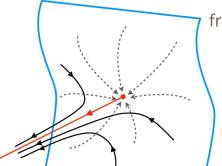
Marginal

Relevant

Extending to third-order:

12.6, -3.44, -2.01, 0.220

Irrelevant



from Skinner notes

What happens when going to higher order?

Some parameters are more important than others

Reduce dimensionality of the problem

Some parameters are supersensitive to the UV

Why should you care II?

Resumming terms with the RG equations Bakx, Garny, HR, Vlah

1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution

$$b_{a}(\sigma^{2}) =$$

$$= b_{a}^{*} - (\sigma^{2} - \sigma_{*}^{2})\bar{s}_{ac}^{1L}b_{c}^{*} + \frac{1}{2}(\sigma^{2} - \sigma_{*}^{2})^{2}\bar{s}_{ab}^{1L}\bar{s}_{bc}^{1L}b_{c}^{*} - \frac{1}{6}(\sigma^{2} - \sigma_{*}^{2})^{3}\bar{s}_{ab}^{1L}\bar{s}_{bd}^{1L}\bar{s}_{dc}^{1L}b_{c}^{*} + \dots$$
1-loop (1-loop)^2 (1-loop)^3

Resumming terms with the RG equations Bakx, Garny, HR, Vlah

1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution

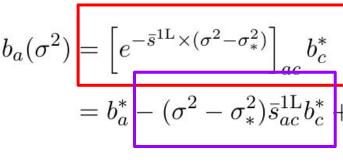
$$b_{a}(\sigma^{2}) = \left[e^{-\bar{s}^{1L}\times(\sigma^{2}-\sigma_{*}^{2})}\right]_{ac}b_{c}^{*}$$
 RG resums the series!
$$= b_{a}^{*} - (\sigma^{2} - \sigma_{*}^{2})\bar{s}_{ac}^{1L}b_{c}^{*} + \frac{1}{2}(\sigma^{2} - \sigma_{*}^{2})^{2}\bar{s}_{ab}^{1L}\bar{s}_{bc}^{1L}b_{c}^{*} - \frac{1}{6}(\sigma^{2} - \sigma_{*}^{2})^{3}\bar{s}_{ab}^{1L}\bar{s}_{bd}^{1L}\bar{s}_{dc}^{1L}b_{c}^{*} + \dots$$
 1-loop (1-loop)^2 (1-loop)^3

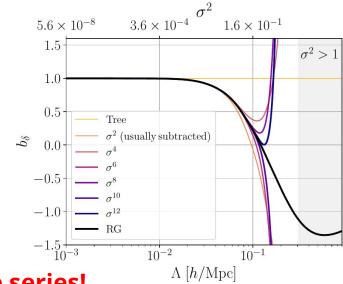
Resumming terms with the RG equations Bakx, Garny, HR, Vlah

1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution



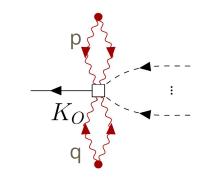


RG resums the series!

$$-\frac{1}{2}(\sigma^2 - \sigma_*^2)\bar{s}_{ac}^{1L}b_c^* + \frac{1}{2}(\sigma^2 - \sigma_*^2)^2\bar{s}_{ab}^{1L}\bar{s}_{bc}^{1L}b_c^* - \frac{1}{6}(\sigma^2 - \sigma_*^2)^3\bar{s}_{ab}^{1L}\bar{s}_{bd}^{1L}\bar{s}_{dc}^{1L}b_c^* + \dots$$

 $(1-loop)^3$

Partial conclusion



Method of regions (Beneke, Smirnov):

- p>>q (or q<<p): Absorbed by (1loop)^
- p~q: Intrinsic 2-loop

1-loop RG resums part of higher-loop contributions (p>>q or q<<p regions)

...But is the other part ('intrinsic 2-loop', p~q region) small?

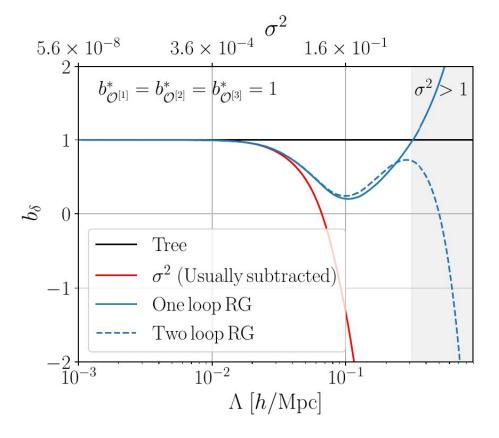
If YES: amaaaazing, 1-loop RG is doing something

If NO: out, I have to calculate the loops anyway to get most of info

The (two-loop) solutions

Solutions (two-loop)

Bakx, Garny, **HR**, Vlah

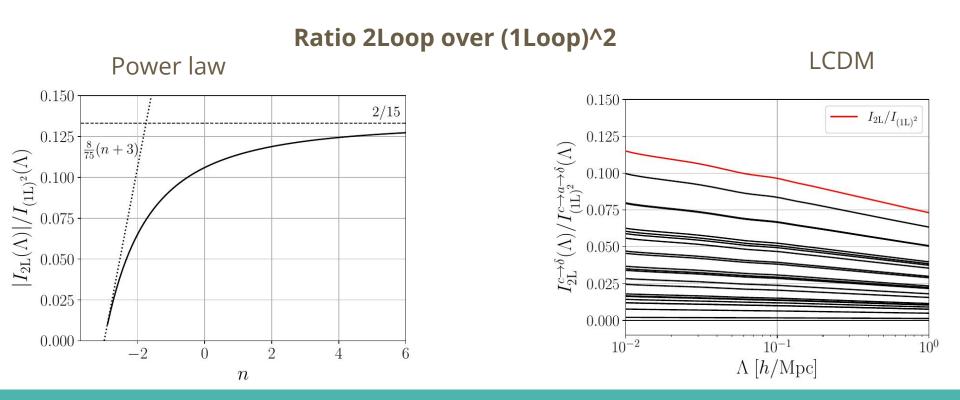


'Intrinsic' two-loop part is small!

Not just small, it is PARAMETRICALLY small

Bakx, Garny, **HR**, Vlah

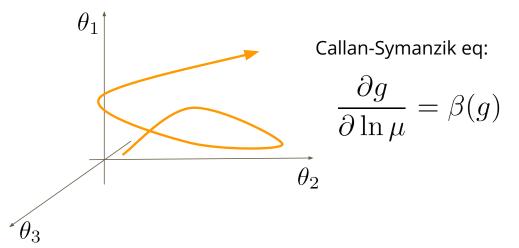
Good news: 1Loop RG takes care of most of the information



QFT101

Coupling constants evolve "flow" with the cutoff

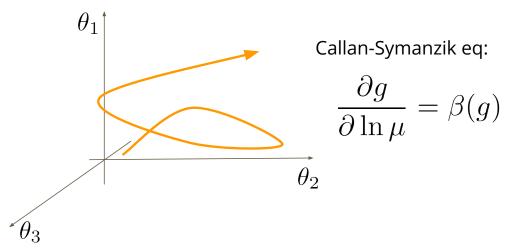
Observables don't depend on the cutoff!



OFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



 $\beta_{1L} = 2/(3\pi)$

 $\beta_{2L} = 1/(4\pi^2)$

For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

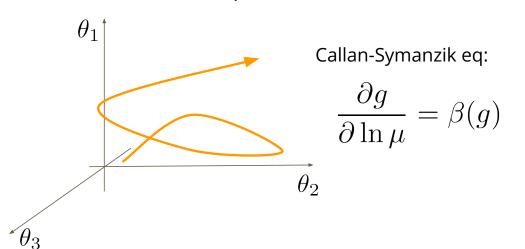
$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

QFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\boxed{\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)}$$

$$\beta_{1L} = 2/(3\pi)$$

$$\beta_{2L} = 1/(4\pi^2)$$

Solution to the RG

$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

Suppose you have an amplitude

$$\frac{\sigma_{\ell L}}{\sigma_{\text{tree}}} = \alpha^{\ell} \left[c^{(\ell,\ell)} \ln^{\ell}(\mu/\mu_*) + c^{(\ell,\ell-1)} \ln^{\ell-1}(\mu/\mu_*) + \dots \right]$$

$$\frac{\sigma_{\text{tree}}}{\sigma_{\text{tree}}} = \alpha^{0} [c^{(0,0)} \ln^{0}]$$

$$\frac{\sigma_{1L}}{\sigma_{\text{tree}}} = \alpha^{1} [c^{(1,1)} \ln^{1} + c^{(1,0)} \ln^{0}]$$

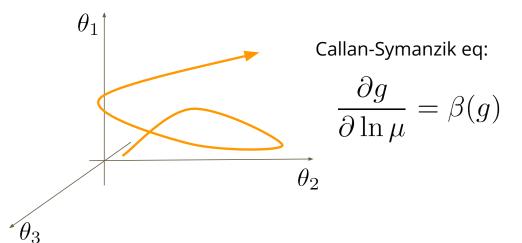
$$\frac{\sigma_{2L}}{\sigma_{\text{tree}}} = \alpha^{2} [c^{(2,2)} \ln^{2} + c^{(2,1)} \ln^{1} + c^{(2,0)} \ln^{0}]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

QFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

$$\beta_{\rm 2L} = 1/(4\pi^2)$$

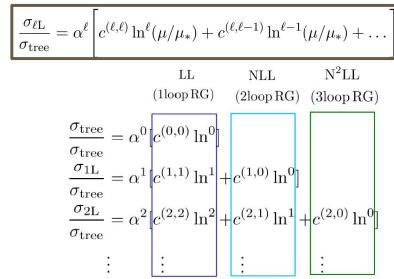
 $\beta_{1L} = 2/(3\pi)$

Solution to the RG

$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

Suppose you have an amplitude



What for galaxies?

Where are the large logs?

$$\ln(\mu/\mu_*) \mapsto \frac{1}{n+3} \, .$$

$$\ln(\mu/\mu_*) \mapsto \frac{1}{3} \ln(\Lambda/k_{\rm eq}),$$



What I want to say vs. what I can say

RG allows for resummation of part of the information from higher loops

In High-Energy, RG is powerful: resumming information from integrating in between different scales

We still have to better understand which scales can the RG for LSS help

PNG and stochasticity

Finally:

PNGs

Free term

$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^2}(\Lambda) + b_{n=3}^{*\{\delta\}_G}\right]\frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

New interaction

$$-a_0 f_{\rm NL} \left[-\frac{13}{21} b_{\Psi} + \frac{13}{21} b_{\Psi \delta} + b_{n=3}^{*\{\delta\}_{\rm NG}} \right] \left(\frac{H_0}{\Lambda} \right)^2 \frac{3 \Omega_m}{2 T(\Lambda)} \frac{d\sigma_{\Lambda}^2}{d\Lambda};$$

Now a coupled set of ODEs

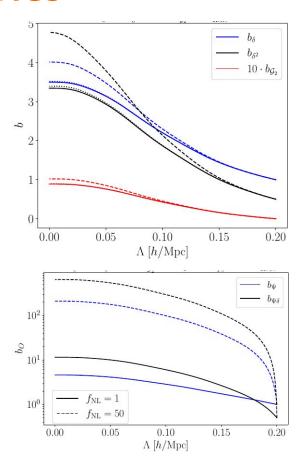
$$\frac{db_{\Psi}}{d\Lambda} = -a_0 f_{\rm NL} b_{n=3}^{*\{\Psi\}_{\rm NG}} \frac{d\sigma_{\Lambda}^2}{d\Lambda} - 4a_0 f_{\rm NL} b_{\delta^2} \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,
\frac{db_{\Psi\delta}}{d\Lambda} = -a_0 f_{\rm NL} \left[\frac{272}{21} b_{\delta^2} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm G}} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm NG}} \right] \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,$$

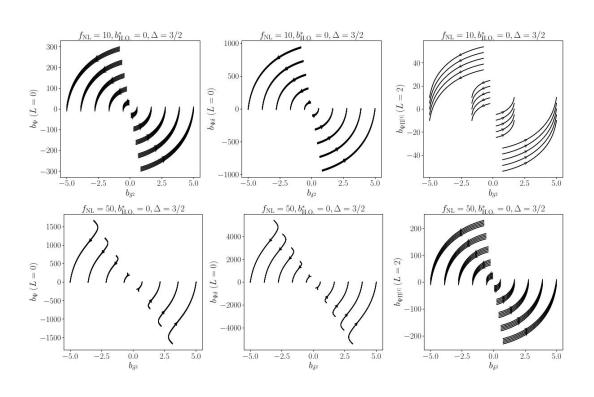
Rederivation of Dalal+ 07 (in an elegant way)

$s_{O'}^O$	δ^2	δ^3	$\delta \mathcal{G}_2$	Ψ	$\Psi\delta$	$\Psi \delta^2$	$\Psi \mathcal{G}_2$	${ m Tr}\Psi\Pi^{[1]}$	$\delta \operatorname{Tr} \Psi \Pi^{[1]}$	$\text{Tr }\Psi\Pi^{[2]}$
δ	68/21	3	-4/3	-13/21	13/21	2	-4/3	34/21	1	34/21
δ^2	8126/2205	68/7	-376/105	43/135	478/135	47/21	-31/21	124/315	178/105	14347/6027
\mathcal{G}_2	254/2205	-	116/105	-1699/13230	79/2205	=	-1/21	-661/4410	4/35	-241/735
Ψ	4	-	-	-		1	-	-	-	-
$\delta\Psi$	272/21	12	-8/3	-	-	68/21	-	-	-	=0
$\text{Tr }\Psi\Pi^{[1]}$	64/105	-0	16/15	=	-	-	-	1-0	8/105	58/305

Nikolis, HR, Schmidt

PNGs





Stochasticity
$$\delta_g({m x}, au) \equiv rac{n_g({m x}, au)}{ar{n}_g(au)} - 1 = \sum_O \left[b_O(au) + c_{\epsilon,O}(au)\,{m \epsilon}({m x}, au)
ight] O({m x}, au) + {m \epsilon}({m x}, au)$$

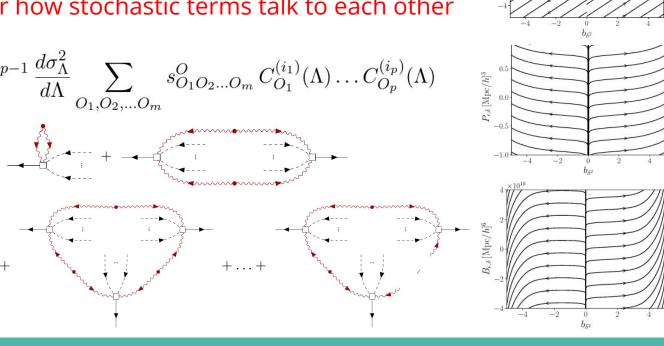
$$\langle \epsilon(\boldsymbol{k}_1) \dots \epsilon(\boldsymbol{k}_m) O(\boldsymbol{k}_{m+1}) \rangle = \hat{\delta}_{\mathrm{D}}(\boldsymbol{k}_{1...m}) C_{\epsilon,O}^{(m)} O(\boldsymbol{k}_{m+1})$$

Simple expression for how stochastic terms talk to each other

$$\frac{d}{d\Lambda} C_O^{(m)}(\Lambda) \propto - [P_{\mathcal{L}}(\Lambda)]^{p-1} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \sum_{O_1, O_2, \dots O_m} s_{O_1 O_2 \dots O_m}^O C_{O_1}^{(i_1)}(\Lambda) \dots C_{O_p}^{(i_p)}(\Lambda)$$

Simple diagrammatic interpretation

HR, Schmidt, 24



Conclusions

- Cross-check for EFT inference;
- Systematic renormalization (+ stochastic +PNG);
- More information from resummation? TBD!
- Still to be understood:
 - 1) RG stability when going to higher-order
 - 2) scales in between which RG can operate

First images of Rubin

