Rotation of Linear Polarization Plane from Cosmological Pseudoscalar Fields

Matteo Galaverni

based on a work with:

Fabio Finelli

University of Ferrara
Physics Department

INAF
Italian National Institute for Astrophysics - Bologna
Overview

- Pseudoscalar – photon coupling.
- Main effects on CMB polarization.
- Modified Einstein – Boltzmann equations for a time dependent linear polarization rotation angle.
- Fixed DM (or DE) model:
 - full linear polarization angular power spectra;
 - comparison with constant rotation angle approximation.

Work based on:
Pseudoscalar – photon coupling

Pseudoscalar fields are invoked to solve the strong CP-problem of QCD [R. Peccei and H. Quinn PRL 38 (1977)]

\[\mathcal{L}_{QCD} = \mathcal{L}_{PERT} + \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi + \frac{g^2}{32\pi^2} \phi \frac{G^a_{\mu\nu}}{f_a} \tilde{G}^{\mu\nu}_a \]

They are also good candidates for cold dark matter (misalignment axion production).

Pseudoscalar particles interact with ordinary matter: photons, nucleons, [electrons].

The coupling with photons play a key role for most of the searches:

\[\mathcal{L}_{\phi \gamma} = g_\phi \mathbf{E} \cdot \mathbf{B} \phi = -\frac{g_\phi}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \phi \]

where:

\[F^{\mu\nu} \equiv \nabla^\mu A^\nu - \nabla^\nu A^\mu \quad \text{and} \quad \tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \]
Most of this searches make use of the **Primakoff effect**, by which pseudoscalars convert into photons in presence of an external electromagnetic field.

- Dichroism in laser experiments
- Solar axions (e.g. CAST)
- Birefringence in laser experiments
- Light shining through walls experiments
Current Constraints

[Battesti et al., arXiv:0705.0615]
We want to evaluate the effect on CMB polarization of a coupling of this kind between pseudoscalar field and photon, improving the estimate obtained by D. Harari and P. Sikivie in 1992 [Phys. Lett. B 289 67] for linear polarization:

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - V(\phi) - \frac{g_\phi}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \]
Pseudoscalar – photon coupling

- Assume a spatially flat Roberson-Walker universe:

\[ds^2 = -dt^2 + a^2(t)d\mathbf{x}^2 = a^2(\eta) \left[-d\eta^2 + d\mathbf{x}^2 \right] \]

- Neglect the spatial variations of the pseudoscalar field:

\[\phi = \phi(\eta) \]

For a plane wave propagating along z-axis, the equation for Fourier transform of the vector potential (in the Coulomb Gauge \(\nabla \cdot \mathbf{A} = 0 \)):

\[\tilde{A}_+''(\eta, k) + \left[k^2 + g\phi k \frac{d\phi}{d\eta} \right] \tilde{A}_+(\eta, k) = 0 \]

\[\tilde{A}_-'''(\eta, k) + \left[k^2 - g\phi k \frac{d\phi}{d\eta} \right] \tilde{A}_-(\eta, k) = 0 \]
Adiabatic solution

It is possible to search a solution in this form:

\[\tilde{A}_s = \frac{1}{\sqrt{2\omega_s}} e^{\pm i \int \omega_s d\eta} \quad \text{where:} \quad \omega_s(\eta) = k \sqrt{1 \pm \frac{g\phi}{k} \phi'} \equiv k \sqrt{1 \pm \Delta(\eta)} \]

It is a good approximation of the solution when:
\[\frac{3\omega_s'^2}{4\omega_s^4} \ll 1 \quad \text{and} \quad \frac{\omega_s''}{2\omega_s^3} \ll 1. \]

If also \(\Delta(\eta) \ll 1 \):

\[\tilde{A}_\pm \approx \frac{1}{\sqrt{2k (1 \pm \Delta/4)}} \exp \left[\pm ik \left(\eta \pm \frac{1}{2} \int \Delta(\eta) d\eta \right) \right] \]
\[= \frac{1}{\sqrt{2k (1 \pm g\phi \phi' k/4)}} \exp \left[\pm i (k\eta \pm g\phi \phi/2) \right]. \]
Adiabatic solution

The two main effects on the propagation of the wave are:

- a k-independent shift between the two polarized waves, which corresponds to rotation of the plane of linear polarization of an angle:

$$\theta(\eta) = \frac{g\phi}{2} [\phi(\eta) - \phi(\eta_{\text{rec}})]$$

- production of a certain degree of circular polarization (dependent on k):

$$\tilde{\Pi}_V(\eta) \equiv \frac{V}{T} = \frac{\left|\tilde{A}_+^\prime\right|^2 - \left|\tilde{A}_-^\prime\right|^2}{\left|\tilde{A}_+^\prime\right|^2 + \left|\tilde{A}_-^\prime\right|^2} \simeq \frac{\Delta(\eta)}{2} = \frac{g\phi'(\eta)}{2k}$$
CMB Polarization

• Linear polarization of CMB was **predicted** soon after CMB discovery in 1968 by Martin Rees [Rees, ApJ 153 1968] (Thomson scattering of anisotropic radiation at last scattering give rise to linear polarization).

• The first **detection** of CMB polarization was made by the Degree Angular Scale Interferometer (DASI, Kovac et al., Nature 420, 2002).

• First **full-sky polarization map** released from WMAP in 2006.

Plot of signal for TT, TE, EE, BB for the best fit model. [Page et al., 2006]
E and B linear polarization

Potential sources of B polarization:

- *Cosmological gravitational waves* (tensor perturbation of the metric)
- *Gravitational lensing* of E-mode polarization
- *Faraday Rotation* of E-mode polarization (magnetic fields)
- Coupling of CMB photons with a *pseudoscalar field* (e.g. axion). …

[Zaldarriaga, astro-ph/0305272]
One of the main effects of coupling between photons and pseudoscalar fields is **cosmological birefringence**:

$$\theta(\eta) = \frac{g \phi}{2} \left[\phi(\eta) - \phi(\eta_{\text{rec}}) \right]$$

Including the time dependent rotation angle contribution in the Boltzmann equation for polarization [Liu et al., PRL 97, 161303 (2006)]:

$$\Delta'_{Q\pm iU}(k, \eta) + i k \mu \Delta_{Q\pm iU}(k, \eta) = -n_e \sigma_T a(\eta) \left[\Delta_{Q\pm iU}(k, \eta) \right. \right.$$

$$+ \sum_m \sqrt{\frac{6\pi}{5}} Y^m_2 S_{\text{P}}(m)(k, \eta) \left. \right]$$

$$\mp i 2\theta'(\eta) \Delta_{Q\pm iU}(k, \eta) .$$
Polarization Boltzmann equation

Following the line of sight strategy for scalar perturbations, we have an additional term in polarization sources:

\[\Delta_T(k, \eta) = \int_0^{\eta_0} d\eta \, g(\eta) \, S_T(k, \eta) \, J_\ell(k\eta_0 - k\eta), \]
\[\Delta_E(k, \eta) = \int_0^{\eta_0} d\eta \, g(\eta) \, S_P^{(0)}(k, \eta) \frac{j_\ell(k\eta_0 - k\eta)}{(k\eta_0 - k\eta)^2} \cos[2\theta(\eta)], \]
\[\Delta_B(k, \eta) = \int_0^{\eta_0} d\eta \, g(\eta) \, S_P^{(0)}(k, \eta) \frac{j_\ell(k\eta_0 - k\eta)}{(k\eta_0 - k\eta)^2} \sin[2\theta(\eta)]. \]

If \(\theta \) is constant in time the new terms exit from the time integrals and:

\[\Delta_E = \Delta_E(\theta = 0) \cos(2\bar{\theta}), \]
\[\Delta_B = \Delta_E(\theta = 0) \sin(2\bar{\theta}). \]
Constant rotation angle

In the constant rotation angle approximation new polarization power spectra are given by [A. Lue, L. Wang, M. Kamionkowski PRL 83, 1506 (1999)]:

\[
\begin{align*}
C_{\ell}^{EE,\text{obs}} &= C_{\ell}^{EE} \cos^2(2\theta), \\
C_{\ell}^{BB,\text{obs}} &= C_{\ell}^{EE} \sin^2(2\theta), \\
C_{\ell}^{EB,\text{obs}} &= \frac{1}{2} C_{\ell}^{EE} \sin(4\theta), \\
C_{\ell}^{TE,\text{obs}} &= C_{\ell}^{TE} \cos(2\theta), \\
C_{\ell}^{TB,\text{obs}} &= C_{\ell}^{TE} \sin(2\theta).
\end{align*}
\]

Where \(C_{\ell}^{XY} \) are the primordial power spectra produced by scalar fluctuations in absence of parity violation, while \(C_{\ell}^{XY,\text{obs}} \) are what we would observe in the presence of an for an isotropic, k-independent rotation \(\theta \) of the plane of linear polarization.
Constraints on the rotation angle

- analyzing a subset of WMAP3 and BOOMERANG data
 [B. Feng, et al., PRL 96 221302 (2006)]
 \[-13.7 \text{ deg} < \bar{\theta} < 1.9 \text{ deg} \ (2\sigma)\]

- analyzing WMAP three years polarization data
 [P.Cabella, et al., PRD 76 123014 (2007)]
 \[-8.5 \text{ deg} < \bar{\theta} < 3.5 \text{ deg} \ (2\sigma)\]

- analyzing WMAP five years polarization data
 [E. Komatsu, et al., arXiv:0803.0547]
 \[-5.9 \text{ deg} < \bar{\theta} < 2.4 \text{ deg} \ (2\sigma)\]

- analyzing QUaD experiment second and third season observations
 [QUaD Collaboration, arXiv:0811.0618]
 \[-1.2 \text{ deg} < \bar{\theta} < 3.9 \text{ deg} \ (2\sigma)\]
Cosine-type potential

Assuming that dark matter is given by massive pseudoscalar particles (e.g. axions), we consider the potential:

\[V(\phi) = m^2 \frac{f_a^2}{N^2} \left(1 - \cos \frac{\phi N}{f_a} \right) \simeq \frac{1}{2} m^2 \phi^2 \]

the evolution of \(\phi \) is given by the equation:

\[\ddot{\phi} + 3H \dot{\phi} + m^2(T)\phi = 0 \]

If \(m \ll 3H \) the solution simply is: \(\phi \simeq \phi_i \)

If \(m > 3H \) the field begins to oscillate and the solution, in a matter dominated universe (\(\dot{a}/a = 2/3t \)), is:

\[\phi(t) \simeq \frac{\phi_0}{mt} \sin(mt) \]
Cosine-type potential

\[\theta(\eta) = \sqrt{\frac{3}{\pi}} \frac{g\phi M_{pl}}{2m\eta_0} \left\{ \left(\frac{\eta_0}{\eta} \right)^3 \sin \left[m \frac{\eta_0}{3} \left(\frac{\eta}{\eta_0} \right)^3 \right] - \left(\frac{\eta_0}{\eta_{rec}} \right)^3 \sin \left[m \frac{\eta_0}{3} \left(\frac{\eta_{rec}}{\eta_0} \right)^3 \right] \right\} \]

\[\theta_0 \sim 0.506 \text{ rad} \]

\[m = 10^{-22} \text{ eV}, \quad g\phi = 10^{-20} \text{ eV}^{-1} \]
Cosine-type potential

\[\theta = \theta(\eta) \]

\[r = 0.1 \]

\[\theta = \theta(\eta) \]

\[\theta_0 \sim 0.506 \text{ rad} \]

BB

\[\theta = \theta_0 \]

TE

\[\theta = \theta_0 \]

\[\theta = \theta(\eta) \]
Cosine-type potential \[\textit{note vertical axis}\]

WMAP collaboration

[arXiv:0803.0593]

Cosine-type potential with:

\[m = 10^{-22} \text{ eV}, \quad g_\phi = 10^{-20} \text{ eV}^{-1}\]
Parity odd correlators

In absence of parity-violating interactions, the ensemble of fluctuations is statistically parity symmetric and therefore the parity odd correlators have to vanish. In this case photons interact with pseudoscalars:

\[\mathcal{L}_{\phi\gamma} = g_{\phi} \mathbf{E} \cdot \mathbf{B}_\phi = -\frac{g_{\phi}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \phi \]

therefore also parity-odd correlators should be considered:

\[
\begin{align*}
C_{l}^{TT} & \xrightarrow{P} C_{l}^{TT} \\
C_{l}^{TE} & \xrightarrow{P} C_{l}^{TE} \\
C_{l}^{EE} & \xrightarrow{P} C_{l}^{EE} \\
C_{l}^{TB} & \xrightarrow{P} -C_{l}^{TB} \\
C_{l}^{TV} & \xrightarrow{P} -C_{l}^{TV} \\
C_{l}^{EB} & \xrightarrow{P} -C_{l}^{EB} \\
C_{l}^{EV} & \xrightarrow{P} -C_{l}^{EV} \\
C_{l}^{BB} & \xrightarrow{P} C_{l}^{BB} \\
C_{l}^{BV} & \xrightarrow{P} C_{l}^{BV} \\
C_{l}^{VV} & \xrightarrow{P} C_{l}^{VV}
\end{align*}
\]
Cosine-type potential

\[\theta = \theta(\eta) \]

\[\theta_0 \sim 0.506 \text{ rad} \]

\[\theta = \theta_0 \]
Cosine-type potential \([\text{note vertical axis}] \)

WMAP collaboration

\[m = 10^{-22} \text{ eV}, \quad g_\phi = 10^{-20} \text{ eV}^{-1} \]
Photon coupling with pseudoscalar fields

Oscillating behaviour:

axion-like particles

\[\mathcal{L} = -\frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} \]
\[-\frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - \frac{1}{2} m^2 \phi^2 \]
\[-\frac{g_\phi}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \]
In 1995 Frieman et al. [PRL 75, 2077] proposed a quintessence model based on a pseudoscalar field.

Cosmology with Ultralight Pseudo Nambu-Goldstone Bosons

Joshua A. Frieman,1,2 Christopher T. Hill,3 Albert Stebbins,1 and Ioav Waga1,4
1NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637
3Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
4Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21943, Brazil
(Received 17 May 1995)

We explore the cosmological implications of an ultralight pseudo Nambu-Goldstone boson. With
global spontaneous symmetry breaking scale \(f \approx 10^{18} \) GeV and explicit breaking scale comparable to
Mikheyev-Smirnov-Wolfenstein neutrino masses, \(M \approx 10^{-3} \) eV, such a field, which acquires a mass
\(m_\phi \sim M^2/f \sim H_0 \), would currently dominate the energy density of the Universe. The field acts as
an effective cosmological constant before relaxing into a condensate of nonrelativistic bosons. Such
a model can reconcile dynamical estimates of the density parameter, \(\Omega_m \sim 0.2 \), with a spatially flat
universe, yielding \(H_0 t_0 = 1 \) consistent with limits from gravitational lens statistics.
Ultralight pseudo Nambu-Goldstone bosons

In 1995 Frieman et al. [PRL 75, 2077] proposed a quintessence model based on a pseudoscalar field.

This model is still in agreement with observations and can be probed by future experiment reaching stage 4 of DETF methodology (Planck CMB measurements, future SNIa surveys, baryon acoustic oscillations, and weak gravitational lensing). This analysis can be improved considering also birefringence of CMB polarization:

\[
\mathcal{L}_\phi = -\frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - M^4 \left(1 + \cos \frac{\phi}{f} \right)
\]

\[
\mathcal{L}_{\phi \gamma} = -\frac{1}{4f} \phi F^{\mu \nu} \tilde{F}_{\mu \nu}
\]

where: \(M \sim 10^{-3} \text{ eV} \) and \(f \lesssim \frac{M_{\text{pl}}}{\sqrt{8\pi}} \)
Ultralight pseudo Nambu-Goldstone bosons

Fixed \(M = 8.8 \times 10^{-4} \text{ eV} \), \(f = 0.3 \frac{M_{\text{pl}}}{\sqrt{8\pi}} \), \(\Theta_i \equiv \frac{\phi}{f} = 0.25 \), \(\dot{\Theta}_i = 0 \)

the pseudoscalar field mimes the behaviour of the cosmological constant:

\[
\Omega_{\text{RAD}} \quad \Omega_{\text{MAT}}
\]

\[
\Omega_\phi
\]

\[
\omega_\phi
\]

\[
\log a
\]

\[
\Theta(a) = \Theta_{\text{TOT}}
\]

\[
\Theta(a)
\]

\[
\log a
\]
Ultralight pseudo Nambu-Goldstone bosons

\[\theta = \theta(\eta) \]

\[\theta = \theta(\eta) \]

\(\theta_0 \sim 0.54 \text{ rad} \)

\[\theta = \theta(\eta) \]

\[\theta = \theta_0 \]

\[\theta = \theta(\eta) \]

\[\theta = \theta_0 \]
Ultralight pseudo Nambu-Goldstone bosons [note vertical axis]

\[M = 8.8 \times 10^{-4} \text{ eV}, \quad f = 0.3 \frac{M_{\text{Pl}}}{\sqrt{8\pi}}, \]

\[\Theta_i \equiv \frac{\phi}{f} = 0.25, \quad \dot{\Theta}_i = 0 \]
Ultralight pseudo Nambu-Goldstone bosons

\[\theta = \theta(\eta) \]

\[\theta_0 \sim 0.54 \text{ rad} \]

\[r = 0.1 \]

\[\theta = \theta_0 \]

\[\theta = \theta(\eta) \]

\[\theta = \theta_0 \]

\[\theta = \theta(\eta) \]
Ultralight pseudo Nambu-Goldstone bosons [note vertical axis]

Fixed:

\[M = 8.8 \times 10^{-4} \text{ eV}, \quad f = 0.3 \frac{M_{\text{Pl}}}{\sqrt{8\pi}}, \]

\[\Theta_i \equiv \frac{\phi}{f} = 0.25, \quad \dot{\Theta}_i = 0 \]
Ultralight pseudo Nambu-Goldstone bosons

\[\theta = \theta(\eta) \]

\[\theta_0 \sim 0.54 \text{ rad} \]
Conclusions & Developments

We discuss the effects of coupling between pseudoscalar fields and photons on Cosmic Microwave Background Polarization:

• how the public code CAMB can be modified in order to take into account the rotation of the linear polarization plane by a cosmological pseudoscalar field acting as dark matter from last scattering surface to nowadays.

• Polarization power spectra strongly depend on the kinematics of the pseudoscalar field.

CMB birefringence constraints are complementary to experiments and astroparticle observations.