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1. The Entropy of the Universe.

As interest grows in pursuing alternatives to
the Big Bang, including cyclic cosmologies, it
becomes more pertinent to address the difficult
question of what is the present entropy of the
universe?

Entropy is particularly relevant to cyclicity be-
cause it does not naturally cycle but has the
propensity only to increase monotonically. In
one recent proposal, the entropy is jettisoned
at turnaround. In any case, for cyclicity to be
possible there must be a gigantic reduction in
entropy (presumably without violation of the
second law of thermodynamics) of the visible
universe at some time during each cycle.
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Standard treatises on cosmology address the
question of the entropy of the universe and ar-
rive at a generic formula for a thermalized gas
of the form

S =
2π2

45
g∗VUT 3 (1)

where g∗ is the number of degrees of freedom, T
is the Kelvin temperature and VU is the volume
of the visible universe. From Eq.(1) with Tγ =

2.70K and Tν = Tγ(4/11)1/3 = 1.90K we find
the entropy in CMB photons and neutrinos are
roughly equal today

Sγ(t0) ∼ Sν(t0) ∼ 1088. (2)
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Our topic here is the gravitational entropy,
Sgrav(t0). Following the same path as in Eqs.
(1,2) we obtain for a thermal gas of gravitons
Tgrav = 0.910K and then

S
(thermal)
grav (t0) ∼ 1086 (3)

This graviton gas entropy is a couple of or-
ders of magnitude below that for photons and
neutrinos.
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On the other hand, while radiation thermal-
izes at T ∼ 0.1eV for which the measurement
of the black body spectrum provides good evi-
dence and there is every reason, though no di-
rect evidence, to expect that the relic neutri-
nos were thermalized at T ∼ 1MeV , the ther-
mal equilibriation of the present gravitons is
less definite. If gravitons did thermalize, it was
at or above the Planck scale, T ∼ 1019GeV ,
when everything is uncertain because of quan-
tum gravity effects. If the gravitons are in a
non-thermalized gas their entropy will be lower
than in Eq.(3), for the same number density.

But there are larger contributions to gravita-
tional entropy from elsewhere!!!
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2. Upper Limit on the Gravitational Entropy.

We shall assume that dark energy has zero
entropy and we therefore concentrate on the
gravitational entropy associated with dark mat-
ter. The dark matter is clumped into ha-
los with typical mass M(halo) ≃ 1011M⊙

where M⊙ ≃ 1057GeV ≃ 1030kg is the so-
lar mass and radius R(halo) = 105pc ≃ 3 ×

1018km ≃ 1018rS(M⊙). There are, say, 1012

halos in the visible universe whose total mass
is ≃ 1023M⊙ and corresponding Schwarzschild
radius is rS(1023M⊙) ≃ 3× 1023km ≃ 10Gpc.
This happens to be the radius of the visible
universe corresponding to the critical density.
This has led to an upper limit for the gravita-
tional entropy is for one black hole with mass
MU = 1023M⊙.
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Using SBH(ηM⊙) ≃ 1077η2 corresponds to the
holographic principle for the upper limit on the
gravitational entropy of the visible universe:

Sgrav(t0) ≤ S
(HOLO)
grav (t0) ≃ 10123 (4)

.
which is 37 orders of magnitude greater than for
the thermalized graviton gas in Eq.(3) and leads
us to suspect (correctly) that Eq.(3) is a gross
underestimate. Nevertheless, Eq.(4) does pro-
vide a credible upper limit, an overestimate yet
to be refined downwards below, on the quantity
of interest, Sgrav(t0).
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The reason why a thermalized gas of gravi-
tons grossly underestimates the gravitational
entropy is because of the ’clumping’ effect on
entropy. Because gravity is universally attrac-
tive its entropy is increased by clumping. This
is somewhat counter-intuitive since the opposite
is true for the familiar ’ideal gas’. It is best il-
lustrated by the fact that a black hole always
has ’maximal’ entropy by virtue of the holo-
graphic principle. Although it is difficult to es-
timate gravitational entropy we will attempt to
be semi-quantitative in implementing the idea.
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Let us consider one halo with mass
M(halo) = 1011M⊙ and radius Rhalo =
1018rS(M⊙) ≃ 105pc. Applying the holo-
graphic principle with regard to the clumping
effect would give an overestimate for the halo

entropy S
(HOLO)
halo (t0) which we may correct by

a purely phenomenological clumping factor

Shalo(t0) = S
(HOLO)
halo (t0)

(

rS(halo)

R(halo)

)p

(5)

where p is a real parameter. Since rS(halo) ≤
R(halo), Eq.(5) ensures that Shalo ≤

SHOLO
halo (t0) provided that p ≥ 0. Actually

the holographic principle requires that Shalo ≤

SBH(Mhalo) and since SBH ∝ r2
S, this re-

quires that p ≥ 2 in Eq.(5).
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The value p = 2 provides a much better up-
per limit on the present gravitational entropy of
the universe Sgrav(t0) than from Eq.(4). Using
our average values for Mhalo and Rhalo and a
number 1012 of halos this gives

Sgrav(t0) < 10111 (6)

which is many orders of magnitude below the
holographic limit of Eq.(4). The physical rea-
son is that the clumping to one black hole is very
incomplete as there are a trillion disjoint ha-
los. If all the halos coalesced to one black hole,
and there is no reason to expect this given the
present expansion rate of the universe, the en-
tropy would reach the maximum value in Eq.(4)
of 10123 but at present the upper limit in given
by Eq. (6).
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3. Lower Limit on Gravitational Entropy

It is widely believed that most, if not
all, galaxies contain at their core a super-
massive black hole with mass in the range
105M⊙ to 109M⊙ with an average mass about
107m⊙. Each of these carries an entropy
SBH(supermassive) ≃ 1091. Since there are
1012 halos this provides the lower limit on the
gravitational entropy of

Sgrav(t0) ≥ 10103 (7)

which together with Eq.(6) provides an eight
order of magnitude window for Sgrav(t0).
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The lower limit in Eq.(7) from the galactic su-
permassive black holes may be largest contrib-
utor to the entropy of the present universe but
this seems to us highly unlikely because they are
so very small. Each supermassive black hole is
about the size of our solar system or smaller and
it is intuitively unlikely that essentially all of the
entropy is so concentrated.

Gravitational entropy is associated with the
clumping of matter because of the long range
unscreened nature of the gravitational force.
This is why we propose that the majority of the
entropy is associated with the largest clumps of
matter: the dark matter halos associated with
galaxies and cluster.
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4. Most Likely Value of Entropy.

In the phenomenological formula for clump-
ing, Eq.(5), the parameter p must satisfy 2 ≤

p < ∞ because for p = 2 the halo entropy is
as high as it can be, being equal to that of the
largest single black hole into which it could col-
lapse, while for p → ∞, the halo has no gravita-
tional entropy beyond that of the supermassive
black hole at its core.

Thus, our upper and lower limits are

10111
≥ Sgrav(t0) ≥ 10103 (8)

correspond to p = 2 and p → ∞ in Eq.(5)
respectively. We may include the supermas-
sive black holes in Eq.(5) by noticing that

Sgrav(t0) = 10(125−7p) and therefore, from
Eq.(8), 2 ≤ p ≤ 22/7.
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Actually, the power p in Eq.(5) must depend on
the halo radius Rhalo such that p(Rhalo) → 2
as Rhalo → rS, the Schwarzschild radius, when
the halo collapses to a black hole. For the
present non-collapsed status of the halos, p > 2
is necessary since the black hole represents the
maximum possible entropy. One would also ex-
pect p to be density and therefore radial depen-
dent, but we assume this dependence is mild
enough to allow us to obtain order of magni-
tude estimates by setting p = const.
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The truth must therefore lie somewhere in be-
tween, in the range 2 < p ≤ 22/7. In the
absence of a quantitative calculation of grav-
itational entropy, the integer value p = 3 in
Eq.(5) is one possibility. The value p = 3
gives Shalo ∼ 1092 and hence an estimate for
Sgrav(t0) of 1012 halos of

Sgrav(t0) ∼ 10104 (9)

which is somewhat nearer the lower than the up-
per limit in Eq.(8) though still 19 orders of mag-
nitude below the holographic bound in Eq.(4).
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For actual halos, Rhalo ∼ 105 pc while for
mass Mhalo ∼ 1011M⊙ the Schwarzschild ra-
dius is rS ∼ 3×1011km ≃ 0.01 pc which means
that Rhalo/rS ≫ 1, and we are indeed ap-
proaching the asymptotic regime Rhalo/rS →

∞, for which we seek the asymptotic value of
pa defined by p(Rhalo) → pa as Rhalo → ∞.
Here, we have assumed that pa = 3 as it is the
only integer satisfying 2 < p ≤ 22/7.
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It would be more compelling to possess a deriva-
tion of pa = 3 based on general principles, for
example, within the context of quantum infor-
mation theory. We can rewrite Eq.(5) for pa = 3
in the more suggestive manner

Sgrav
R→∞
−→ SBH

(

ρ

ρBH

) (

R

rS

)2

(10)

which is similar to the quantum gravity holo-
graphic bound with the insertion of the rescaling
for density for a spherical mass distribution with
R ≫ rS, the Schwarschild radius. As written in
Eq.(10), this estimate of gravitational entropy
can hold for all R.
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We can relate this to the arguments about
quantum foam by generalizing the uncertainty
in a length measurement from (δl)3 = l2P l where
l is the length in question and lP is the Planck
length to the modified generalization

(δl
′

)3 = l2P l

(

l

rS

)

= l2P l

(

ρ

ρBH

)1/3

(11)

where ρ = m/l3 is the extant density and
ρBH = M/l3P is the black hole density.
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In this case, ignoring prefactors which are

O(1) the number of (δl
′
)3 cells in a volume

l3 suggests, paralleling discussions of a gravi-
tational entropy

S =

(

l3

δl′3

)

=

(

l2

l2P

)

(rS

l

)

=

(

l2

l2P

)

(

ρBH

ρ

)1/3

(12)

which agrees with Eq.(5) for p = 3. So the
uncertainties in measurement of a length l now
depend not only on the length l itself but on
the extant density relative to a ’maximal’ black-
hole density. We know that in this framework δl
represents a ’minimal’ uncertainty so necessar-

ily δl
′
≥ δl and so must increase as the extant

density decreases. While this is not a rigorous
derivation, as one can hardly expect because it
is quantum gravity whose underlying theory is
unknown, we regard it as suggestive and plau-
sible.
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At first sight, we may be concerned that
Eq.(11), or

(δl
′

) = (δl)

(

l

rS

)1/3

(13)

might imply a (δl
′
) which can grow beyond (δl)

to an obviously unacceptable value. That this
is not the case can be confirmed by considering
specific astrophysical objects with masses rang-
ing from the entire universe down to the equality
mass Me = 1021 kg in Eq.(16). Lesser masses
have negligible gravitational entropy.
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The point is that the final factor (l/rs) in
Eq.(13) is never extremely large, always ≤ 106.

For the universe it is ∼ 1 and (δl
′
) ∼ (δl) ∼ 1

fm. For smaller clumps of matter, (δl) decreases

but the correction factor does not raise (δl
′
)

above ∼ 1 fm while for smaller objects such as
the Sun it is less. For example, for the galactic
halo parameters we have used, (δl) ∼ 3× 10−3

fm and (δl
′
) ∼ 1 fm. For the Sun, (δl) ∼ 10−6

fm and (δl
′
) ∼ 10−4 fm. These are typical val-

ues,
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We believe the pursuit of better understand-
ing of gravitational entropy in clumps of matter
with mass above Me = 1021 kg. (see Eq. (16)
below) may provide a very fruitful approach to-
wards a satisfactory theory of quantum grav-
ity. We remind the reader of our conventions
h̄ = c = k = 1: restoration of units reveals
the h̄ in Eq.(12), in lP ∝ h̄1/2, and the gravita-
tional entropy we are discussing is, if it exists, a
quantum mechanical phenomenon.

We can apply the same considerations based
on Eq.(5) to gravitation within a single star like
the Sun. The Sun has (R⊙/rS) ∼ 105 and with

pa = 3 we find S
(grav)
⊙ ∼ 1072, far above the

standard S⊙ ∼ 1057, suggesting a contribution
from stars to the gravitational entropy of about
∼ 1095.
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As the gravitating object we consider becomes
smaller the relative importance of gravitational
entropy to non-gravitational entropy changes.
Let us obtain a rough estimate of the mass Me

at which the two contribution are comparable.

Suppose Me = ηM⊙ ≃ 1030η kg. and so
we wish to determine η. We can estimate η
by the fact that the gravitational entropy in
Eq.(5) is not linear in η but has a quite dif-
ferent dependence. Let us take the typical den-
sity of the putative object to be ρ = 5ρH20 =

5× 1012kg/(km)3. The radius of a sphere with

mass Me is then R ≃ 4 × 105η1/3 km. Thus
the gravitational entropy from Eq.(5) is

Sgrav = (1077η2)

(

3η

4 × 105η1/3

)

≃ 1072η8/3

(14)
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The non-gravitational entropy may be esti-
mated by counting baryons to give the usual
form linear in η

Snon−grav ≃ 1057η. (15)

The two contributions, Sgrav of Eq.( 14 ) and
Snon−grav of Eq. ( 15 ) become comparable

when η−5/3 ∼ 1015 or η ∼ 10−9. This ’equality’
mass Me is about

Me ≃ 0.1%M⊕ ≃ 1021kg. (16)

If we consider much smaller masses such as a
baseball (∼ 1 kg) or a primordial black hole
with lifetime comparable to the age of the uni-
verse (∼ 1012 kg), the gravitational entropy be-
comes negligible.
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According to our phenomenological clumping
ansatz, Eq.(5), the entropy of solar system ob-
jects can be larger than conventionally assumed,
the Sun by 1015, the Earth by 105. We have
no derivation of this new gravitational entropy
component and publish this idea only to prompt
more mathematically rigorous arguments to es-
timate the contribution of gravitational clump-
ing to entropy.

An intuitive reason to suspect a large gravita-
tional entropy outside of black holes comes from
considering the gravitational collapse of an ob-
ject of mass, say, M = 10M⊙ which contains
∼ 1058 nucleons and hence non-gravitational
entropy S ∼ 1058. Under gravitational col-
lapse, it is conventionally believed that the en-
tropy gradually increases, though not by orders
of magnitude, as the radius decreases to a few
times the Schwarzschild radius.
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When the trapped surface of a black hole ap-
pears the entropy becomes ∼ 1079, an increase
of some twenty orders of magnitude! While not
excluded, this is intuitively implausible. On the
other hand, with the clumping factor of Eq.(5)
and the starting density we have employed of
ρ = 5ρH2O, the starting entropy from Eq.(14)

is already ∼ 1072+8/3 ∼ 5× 1074, and less dra-
matic entropy increase is needed.
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There is a second consideration which pro-
vides circumstantial evidence for new gravita-
tional entropy. If, as in Eq.(7), the cosmolog-
ical entropy is dominated by the supermassive
black holes, it implies that almost all the en-
tropy is confined to a trillion objects each of ra-
dius ∼ 10−6 pc occupying ∼ 10−33 of the halo
volume. Altogether they compose only ∼ 10−36

of the total volume of the visible universe. Al-
though not excluded by any deep principle, this
just seems intuitively unlikely.

Let us attempt to make a somewhat more
quantitative argument out of idea of how en-
tropy grows with gravitational clumping. At
last scattering density perturbations in the dark

matter were small, δρ
ρ ∼ 10−5, but today there

are regions where δρ
ρ ∼ 1 where we expect the

gravitational entropy has increased enormously
even though the entropy in photons has re-
mained constant.
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The non-clumped component of the universe ex-
pands adiabatically. How do we get the entropy
of a clump? Assume the dark matter is in the
form of very light particles. For a clump of size
Lgal = 105 pc, the lightest particles that can

clump are of mass m ∼ 10−26 eV. Otherwise
their wavelength is larger than Lgal.

Recall the galactic mass is Mgal ∼

1012Msolar ∼ 1069 GeV . If this is all in
dark matter (ignore baryons, etc.), then there

can be at most N ∼
Mgal
m ∼ 10104 dark matter

particles in a halo, or about NU ∼ 10115 dark
matter particles in the universe that are now
clumped.
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If the dark matter particles start off at rest (sim-
ilarly to nonthermal axions) but then start to
fall into clumps, we can argue that their de-
grees of freedom get excited, i.e., as the particles
fall into the potential well they gain kinetic en-
ergy. So these gravitational d.o.f.s give approx-
imately zero contribution to the total entropy
before density perturbations start to grow, but
they now contribute ∼ 10115. If the masses of
the dark matter are larger, the contribution to
the entropy will be proportionally smaller. The
mass m ∼ 10−26 eV provides an approximate
upper bound on the gravitational entropy. The
lower bound for the entropy in this particulate
approach is very small if thedark matter parti-
cles are far heavier such as WIMPs at the TeV
scale.
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5. Intermediate comments

Entropy is always a subtle concept, nowhere
more so than for gravity. This is why we are
bold enough to make such approximate esti-
mates of the present gravitational entropy of the
visible universe. Our results are concerned only
with orders of magnitude and we hope our upper
and lower limits 10111 and 10103 are credible.

These already show that the universe’s en-
tropy is dominated by gravity, being at least 13
orders of magnitude above the known entropies,
each ≃ 1088, for photons and relic neutrinos.
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Using the clumping idea and an heuristic
clumping factor dependent on a parameter pa

suggests that the gravitational entropy is domi-
nated not by the well known galactic supermas-
sive black holes which contribute ≃ 10103 but
by a larger, possibly much larger, contribution
from the dark matter halos which can provide
(for pa = 3) about 10104, though not more than
(for pa → 2) about 10111 which is still many or-
ders of magnitude below the holographic bound
≃ 10123.
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It is reasonable to expect the gravitational en-
tropy to be non-classical and an effect of quan-
tum gravity like the holographic bound and the
black hole entropy. Since string theory has had
some success in those two cases, it may help
in deciding whether our speculations are idle.
More optimistically, the study of gravitational
entropy will lead to a better theory of quantum
gravity, hopefully the correct one.

THREE APPROACHES TO
QUANTUM GRAVITY

1. String theory

2. Quantum loop gravity

3. The correct theory
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If our speculations are correct: the contribu-
tion of radiation to the entropy is less than 1
part in 1016 of the total; supermassive black
holes at galactic cores contribute less, possi-
bly much less, than ten per cent; the gravita-
tional entropy contained only in stars is already
greater than the entropy of electromagnetic ra-
diation; and the gravitational entropy contained
in dark matter halos is the biggest contributor
to the entropy of the universe.
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6. Dark Matter Black Holes

If we consider normal baryonic matter, other
than black holes, contributions to the entropy
are far smaller. The background radiation and
relic neutrinos each provide ∼ 1088. We have
learned in the last decade about the dark side
of the universe. WMAP suggests that the pie
slices for the overall energy are 4% baryonic
matter, 24% dark matter and 72% dark energy.
Dark energy has no known microstructure, and
especially if it is characterized only by a cosmo-
logical constant, may be assumed to have zero
entropy. As already mentioned, the baryonic
matter other than the SMBHs contributes far
less than (SU )min.

This leaves the dark matter which is concen-
trated in halos of galaxies and clusters.
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It is counter to the second law of thermodynam-
ics when higher entropy states are available that
essentially all the entropy of the universe is con-
centrated in SMBHs. The Schwarzschild radius
for a 107M⊙ SMBH is ∼ 3×107 km and so 1012

of them occupy only ∼ 10−36 of the volume of
the visible universe.

Several years ago important work by Xu and
Ostriker showed by numerical simulations that
DMBHs with masses above 106M⊙ would have
the property of disrupting the dynamics of a
galactic halo leading to runaway spiral into
the center. This provides an upper limit
(MDMBH)max ∼ 106M⊙.
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Gravitational lensing observations are amongst
the most useful for determining the mass dis-
tributions of dark matter. Weak lensing by, for
example, the HST shows the strong distortion
of radiation from more distant galaxies by the
mass of the dark matter and leads to astonish-
ing three-dimensional maps of the dark matter
trapped within clusters. At the scales we con-
sider ∼ 3 × 107 km, however, weak lensing has
no realistic possibility of detecting DMBHs in
the forseeable future.
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Gravitational microlensing presents a much
more optimistic possibility. This technique
which exploits the amplification of a distant
source was first emphasized in modern times
(Einstein considered it in 1912 unpublished
work) by Paczynski. Subsequent observations
found many examples of MACHOs, yet insuffi-
cient to account for all of the halo by an order of
magnitude. These MACHO searches looked for
masses in the range 10−6M⊙ ≤ M ≤ 102M⊙.
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The time t0 of a microlensing event is given by

t0 ≡
rE

v
(17)

where rE is the Einstein radius and v is the lens
velocity usually taken as v = 200 km/s. The
radius rE is proportional to the square root of
the lens mass and numerically one finds

t0 ≃ 0.2y

(

M

M⊙

)1/2

(18)

so that, for the MACHO masses considered,
2h ≤ t0 ≤ 2y.
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Although some of the already observed MA-
CHOs may be DMBHs, they do not saturate the
possible mass or entropy for dark matter so let
us set as definition (MDMBH)min ∼ 102M⊙.
This provides the range for DMBH mass

2 ≤ log10 η = log10(MDMBH/M⊙) ≤ 6 (19)

which, after Eq.(20), provides a second window
of interest. It corresponds to 2y ≤ t0 ≤ 200y.
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7. Cosmological Entropy Considerations.

The cosmological entropy range

102 ≤ log10 SU ≤ 112 (20)

is the first of two interesting windows which
are the subject. Conventional wisdom is SU ∼

(SU )min = 10102.

As mentioned already, the key guide will be
the holographic principle which informs us that
the cosmological entropy is in the window (20).
It cannot be at the absolute maximum value
because that is possible only if every halo has
already completely collpsed into a single black
hole.

Also, the absolute minimum although not ex-
cluded seems intuitively implausible because all
the entropy is compressed into 10−36VU .

42



The natural suggestion is that there exist
DMBHs in the mass region (19). The number is
limited by the total halo mass 1012M⊙. The to-
tal entropy is higher for higher DMBH mass be-
cause S ∝ M2. Let n be the number of DMBHs
per halo, η be the ratio (MDMBH/M⊙), SU be
the total entropy for 1012 halos and t0 be the
microlensing longevity. The table below shows
five possibilities

Dark Matter Black Holes and
Microlensing Longevity

log10 nmax log10 η log10 Shalo log10 SU t0 (years)

8 2 88 100 2
7 3 89 101 6
6 4 90 102 20
5 5 91 103 60
4 6 92 104 200

(Assumes ρDMBH ∼ 1%ρDM )
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8. Observation of DMBHs

Since microlensing observations already im-
pinge on the lower end of the range (19) and the
Table, it is likely that observations which look
at longer time periods, have higher statistics or
sensitivity to the period of maximum amplifi-
cation can detect heavier mass DMBHs in the
halo. If this can be achieved, and it seems a
worthwhile enterprise, then the known entropy
of the universe could be increased by more than
two orders of magnitude.

There exists interesting other analyses perti-
nent to existence of massive halo objects:

J. Yoo, J, Chanamé and A. Gould, Astrophys.
J. 601, 311 (2004). astro-ph/0307437.

C. Murali, P. Arras and I. Wasserman.
astro-ph/9902028.

B. Moore, Atrophys. J. 415, L93 (1993).
astro-ph/9306004.

I shall return to Yoo et al.’s article.
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The previous analyses have assigned upper lim-
its on the fraction (f ) of the halo mass that can
be constituted by DMBHs.

We have no reason to suggest that all of the
dark matter halo mass is from DMBHs so the
fraction f could indeed be very small. Yet
DMBHs can still provide a very large fraction
of the entropy of the universe. For example,
taking f = 0.01 and 106M⊙ as mass allows up
to ∼ 104 DMBHs per halo, a total of ∼ 1016

Mega-M⊙ black holes in the universe and the
fraction of the total entropy of the universe pro-
vided by ∼ 1% of dark matter can be ∼ 99%!!
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According to G. Bertone (private communica-
tion, 2009) the best upper limits (from Disk Sta-
bility and Wide Binaries) appear in Fig. 7 on
page 317 of

J. Yoo, J, Chanamé and A. Gould, Astrophys.
J. 601, 311 (2004). astro-ph/0307437.

which permits 10 percent of dark matter for the
range of IMBH from 20M⊙ to 106M⊙.

*** astro-ph/0307437
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It is this entropy argument based on holog-
raphy and the second law of thermodynamics
which is the most compelling supportive argu-
ment for DMBHs. If each galaxy halo asymp-
totes to a black hole the final entropy of the
universe will be ∼ 10112 as in Eq.(20) and the
universe will contain just ∼ 1012 supergigan-
tic black holes. Conventional wisdom is that
the present entropy due entirely to SMBHs is
only ∼ 10−10 of this asymptopic value. DMBHs
can increase the fraction up to ∼ 10−8, closer
to asymptopia and therefore more probable ac-
cording to the second law of thermodynamics.
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There are several previous arguments about
the existence of DMBHs and they have put up-
per limits on their fraction of the halo mass. The
entropy arguments are new and provide addi-
tional motivation to tighten these upper bounds
or discover the halo black holes. One obser-
vational method is high longevity microlensing
events. It is up to the ingenuity of observers to
identify other, possibly more fruitful, methods
some of which have already been explored in a
preliminary way.
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SUMMARY

The best summary is to repeat this table and
discuss.

Dark Matter Black Holes (DMBHs)
and Microlensing Longevity

Maximum no. Mass of Entropy of Microlensing
DMBH/halo DMBH Universe longevity

108 100M⊙ 10100 2y

107 1, 000M⊙ 10101 6y

106 104M⊙ 10102 20y

105 105M⊙ 10103 60y

104 106M⊙ 10104 200y

(Assumes ρDMBH ∼ 1%ρDM )

Thank you for your attention
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