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Gravitational Wave Detection Context

• Actual laser interferometers: first detection soon? 
Very few events expected (<1 detection/year).

• Amelioration of terrestrial antennas (2013) →
~1det./day to 1det./week.

• Exploration of a new frequency range (low 
frequency): LISA (ESA/NASA 2018).

• New type of detectors: atom 
interferometers.

• Applications: inertial sensors, 
gyrometer and absolute gravimeter (see 
the review by Miffre et al. Phys. Scr. 74, 
2006)
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MWI interest

• The interferometer frequency domain depends only on the flight time T of 
the particle in the interferometer arm

• For the same frequency domain, reducing the particle velocity → reduce the 
arm length

• Reducing the dimension of the interferometer helps to fight the different 
noises, and especially thermal noise

103 Hz10-2 Hz 1 Hz

Black hole binary coalescence
Compact binaries

Compact binaries coalescence
Stellar collapse

F

107 km 100 km Λ

Space based interferometer

LISA : Ltot ~ 5.106 km

Ground based interferometer with Fabry-Perot cavities

VIRGO (3 km) + Fabry-Pérot (Finesse = 50) : Ltot ~ 150 km

F ~ 1 / T ~ V / Ltot

Particle = atoms
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• In the Fermi frame :

Calculation of the phase difference

• Calculation of the phase difference within the eikonal and the weak-field
approximation (Linet & Tourrenc 1976).

ds2 = ηα̂β̂dX
α̂dXβ̂ + 1

2 ḧrsX
r̂X ŝdT 2 ; r, s = 1, 2

[φ]
B
A = [φo]

B
A + [δφ]

B
A

[φo]
B
A = kμx

μ
B − kμx

μ
A

• In the Einstein frame : ds2 = ημνdx
μdxν + hrsdx

rdxs ; r, s = 1, 2

xa = fa +
1

4
ḣjkX

ĵX k̂ +O(ζ4)

xr = fr +X r̂ − 1
2
h̄rsX

ŝ +O(ζ4)
Z ' z ' 0
Xı̂ ≤ ζ ¿ Λ

• Weak-field approximation gμν = ημν +Hμν , Hμν ¿ 1

[δφ]BA =
~c2
2

R tB
tA
Hμνk

μkν dtE
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Operational coordinates

∆φ = −4πL
λ

sin 2ψ

2ψ
h̃+ ∆φ = 4π

L

λ

∙
1− sin 2ψ

2ψ

¸
h̃+

ψ = ΩT/2
O

L

x

y

O

L

Y

X
Einstein FrameEinstein Frame Fermi FrameFermi Frame

WHY ?WHY ? ->        TWO DIFFERENT EXPERIMENTS->        TWO DIFFERENT EXPERIMENTS
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Operational coordinates

• By defining our atom interferometer in a non covariant way (ie. its definition 
depends on the coordinate system we use), we assume that we can 
experimentally realize this coordinate system with a certain protocol -> we 
give a physical meaning to the coordinate system -> operational coordinates

• Free experiment -> the different part of the interferometer do not move in 
the Einstein frame

• “Rigid” experiment -> the different part of the interferometer do not move 
in a Fermi frame

• By defining our atom interferometer in a non covariant way (ie. its definition 
depends on the coordinate system we use), we assume that we can 
experimentally realize this coordinate system with a certain protocol -> we 
give a physical meaning to the coordinate system -> operational coordinates

• Free experiment -> the different part of the interferometer do not move in 
the Einstein frame

• “Rigid” experiment -> the different part of the interferometer do not move 
in a Fermi frame

∆φ = 4π
L

λ

∙
1− sin 2ψ

2ψ

¸
h̃+

O

L

Y

X
Rigid Michelson in the Fermi FrameRigid Michelson in the Fermi Frame

xr = X r̂ − 1
2
h̄rsX

ŝ +O(ζ4) ∆φo

Delva et al. 06Delva et al. 06

Free Michelson in the Fermi FrameFree Michelson in the Fermi Frame
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The rigid Ramsey-Bordé interferometer

at low frequency

F0(Ω) = i sinΨ

µ
cosΨ − sinΨ

Ψ

¶

Ψ =
ΩT

2
=
ΩL

2v0∝ Ψ3

Ω =
2πc

Λ
, ΛÀ L = v0T

∆φ(Ω) = 4π
L

λ
F0(Ω) tan θ

µ
h×(Ω)−

tan θ

2
h+(Ω)

¶

θ X

Y

L

• We assume that the center of mass of the interferometer (= origin of the 
frame) is located at the center of symmetry of the atom trajectory
• We assume that the center of mass of the interferometer (= origin of the 
frame) is located at the center of symmetry of the atom trajectory

D’Ambrosio et al. 07D’Ambrosio et al. 07
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Change of the origin of the frame

θ

O

Y0

X0

D’Ambrosio et al. 07D’Ambrosio et al. 07

∆φ = φo + δφ + δφ + φo

• The center of mass follows a geodesic (doesn’t move in the Einstein frame)

• Same result as before

• As should be, the phase difference does not depend on the origin of the 
frame -> passive change of coordinates

∆Xr =
1

2
h̄rsX

s
0
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Change of the center of mass of the apparatus (1/2)

θ

O

Y0

X0

∆φ = φo + δφ + δφ

• The center of mass follows a geodesic (doesn’t move in the Einstein frame)

• There is a supplementary term

• It can be seen also as an active change of coordinates: we define a 
DIFFERENT experiment

∆Xr =
1

2
h̄rsX

s
0

+ φo
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Change of the center of mass of the apparatus (2/2)

θ

O

Y0

X0

F0(Ω) = i sinΨ

µ
cosΨ − sinΨ

Ψ

¶

Ψ =
ΩT

2
=
ΩL

2v0

• at low frequency                :Ψ¿ 1

F0 ' −
i

3
Ψ3

∆φ(Ω) = 4π
L

λ
tan θ

∙
(F0(Ω) + FX(Ω,X0)) h̃× −

tan θ

2
(F0(Ω) + FY (Ω, Y0)) h̃+

¸

FX '
X0
L
Ψ2 FY ' −

Y0
L
Ψ2
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• The maximum phase difference is obtained for T~1/Ω. Then, if 

• For a light wave interferometer in a Michelson configuration, the maximum 
phase difference is obtained for L~c/Ω

• The shot noise ultimately limit the sensitivity

Matter Wave Interferometer vs. Light Wave Interferometer

F0(Ω) = i sinΨ

µ
cosΨ − sinΨ

Ψ

¶

Ψ =
ΩT

2
=
ΩL

2v0

∆φ(Ω) = 4π
L

λ
F0(Ω) tan θ

µ
h×(Ω)−

tan θ

2
h+(Ω)

¶

f∆φ ∼ 4π|h| · Lmwλmw

tan θ ' 1

f∆φ ∼ 4π|h| · Llwλlw
f∆φ ∼ 1

2
√
Ṅt

(Gustavson et al.)
Ṅmw ∼ 1011 s−1

Virgo Ṅlw ∼ 1023 s−1
LISA

Ṅlw ∼ 108 s−1
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MWI vs. LWI – The high frequency regime

Relativistic velocities needed to reach VIRGO sensitivities

(Matter wave acceleration, deviation of atoms, measurement frequency)

L ∼ v0/Ω
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MWI vs. LWI – The low frequency regime

Kilometric interferometer to reach the sensitivity of LISA with thermal atoms

(Matter wave cavity ?)

L ∼ v0/Ω
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Sensitivity curves
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Sensitivity curve in the high frequency range

1000 50002000 30001500

5μ 10-21

1μ 10-20

2μ 10-20

5μ 10-20

1μ 10-19

h/
√
Hz

Ω

v = 106 m.s−1

L = 1 km

Ṅ = 1018 s−1

tan θ = 10−5

T = 1 ms

Terrestrial 
configuration
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Sensitivity curve in the low frequency range

h/
√
Hz

Ω

Spatial 
configuration

v = 10 m.s−1

L = 1 km

Ṅ = 1014 s−1

tan θ = 0.5

T = 100 s
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Another configuration

• Dimopoulos et al. (2007) proposed a different configuration for the detector that takes 
advantage of the distance between the center of mass of the interferometer (lasers) 
and the center of symmetry of the atoms trajectory

XL

T

D À L

F1(Ω) = i sin
2Ψ

∆φ(Ω) = 4πh
D

λr
F1(Ω)

F 1(Ψ)

F 0(Ψ)

λr =
2π~
mvr

=
2π

keff
• The atom wavelength is fixed by the 
impulsion of the laser

• The distance in the amplitude is the 
distance between the atom 
interferometer and the laser

• The atom wavelength is fixed by the 
impulsion of the laser

• The distance in the amplitude is the 
distance between the atom 
interferometer and the laser

Ψ =
ΩT

2
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MWI vs. LWI
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hmin ∼
λ

D

• Atom interferometers have not reach their best sensitivities.

• Important difficulties remain to reach good sensitivities in order to detect 
gravitational waves: matter wave cavities, efficient splitting, collisions, flux.

• Matter wave interferometers could compete with space based 
interferometers such as LISA (low frequency range), but not with earth based 
ones (high frequency range).

• Importance of operational coordinates, difference between passive and 
active change of coordinates

• Sensitivity comparison (with same flux)

Conclusion

Atom 
interferometer

Atom 
interferometer

Atom interferometer 
with far away lasers

Atom interferometer 
with far away lasers LISALISA

∼ μm∼ nm∼ pm
hmin ∼

λr
D

THANK YOUTHANK YOU

hmin ∼
λ

L
tan θ



21http://www.esa.int/act
Pacôme DELVA - GGI, Arcetri, Florence - February 24, 2009

Appendice

∆ϕ ∼ kaT 2 ∆ϕ ∼ kΩvT 2 ∆ϕ ∼ khTTvT

Métrique :

∆φ ∼ c2

~
R
Kμνp

μpν
dt

E

Différence de phase dans 
un interféromètre :

K00 ∼
aL

c2

Accélération a

K0i ∼
ΩL

c

Rotation Ω Onde Gravitationnelle hTT

Kij ∼ hTT

A = ~kvT 2

m
A

~k

(Formule de Linet-Tourrenc)

∆φ ∼ ma
~
· A
v

∆φ ∼ mΩ
~
· A ∆φ ∼ mh

TT

~
· A
T

ds2 = (ημν +Kμν) dx
μdxν , Kμν ¿ 1
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