

The Galileo Galilei Institute for Theoretical Physics

Rovibrational Quantum Interferometers and Gravitational Waves

D. Lorek, A. Wicht, C. Lämmerzahl, H. Dittus

Motivation

Molecular Interferometry

- basic features of Atom Interferometry
- coherent manipulation of internal molecular quantum states
- molecules can distinguish between different directions
- molecular states are sensibel to non-isotropic effects
- ullet \to Gravitational Wave Detectors

Motivation

2 Quantum Interferometry

- A Molecule in the Field of a Gravitational Wave
 Gravitational Waves and Charged Point Masses
 Gravitational Waves and the HD⁺ Molecule
 - 4 Gravitational Wave Detection

5 Conclusion

Quantum Interferometers

Atom and Molecular Interferometry

- applications: fine structure constant, gravitational acceleration, gravity gradients, inertial sensors, test of GR, ...
- frequency measurement \leftrightarrow second
- phase sensitive frequency measurement \rightarrow sensitivity increases $\sim T \pmod{\sqrt{T}}$
- truly differential phase (frequency) measurement cancellation of common mode phase evolution (common frequency)
- Stanford atom interferometer: relative shift of 10^{-19}

Quantum Interferometers

Atom Interferometric "Lever Arm"

- energy difference between paths: E_{IF}
- assumption: effect causes a shift, that scales with optical frequency E_s : $\Delta E = \Delta E_2 - \Delta E_1 = h \cdot E_s$

• sensitivity
$$\Delta E/E > \epsilon_{
m ref} \sim 10^{-15}$$

Quantum Interferometers

Atom Interferometric "Lever Arm"

- energy difference between paths: E_{IF}
- assumption: effect causes a shift, that scales with optical frequency E_s : $\Delta E = \Delta E_2 - \Delta E_1 = h \cdot E_s$

• sensitivity
$$\Delta E/E > \epsilon_{
m ref} \sim 10^{-15}$$

- laser spectroscopy: $h \cdot E_{\rm s}/E_{\rm s} > \epsilon_{\rm ref}$
- atom interferometry: $h \cdot E_{\rm s}/E_{\rm IF} > \epsilon_{\rm ref}$
- minimal detectable h:

$$h_{\min} = \epsilon_{\mathrm{ref}} rac{E_{\mathrm{IF}}}{E_{\mathrm{s}}}$$

Molecular Quantum Interferometry

Rovibrational Quantum Interferometers

- coherent manipulation of different individual rotational-vibrational molecular quantum states
- molecules are not spherically symmetric
- $\bullet \ \to \mbox{molecules}$ can distinguish between different directions in space w. r. t. their internuclear axis
- $\bullet \to$ molecular spectra depend on the orientation of the molecule, if a non–isotropic situation is considered

Molecular Quantum Interferometry

Gravitational Wave Detection

- prepare molecules in a coherent superposition of two mutually orthogonal orientations in the x−y−plane ↔ two paths of a quantum interferometer
- linearly polarized GW (z-direction)
- the GW modifies the internuclear distance periodically
- free quantum evolution: non-isotropic perturbation removes the orientational degeneracy → states will acquire a quantum phase difference

Gravitational Waves

- linearized gravity: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1), \quad |h_{\mu\nu}| \ll 1$
- TT gauge :

$$\Box h_{ij} = 0, \qquad h_{\mu 0} = 0, \ \delta^{kl} h_{ik,l} = 0, \qquad \delta^{ij} h_{ij} = 0$$

Quantum Physics

• Klein–Gordon equation minimally coupled to gravity and to the Maxwell field:

$$\mathsf{g}^{\mu
u} \mathsf{D}_{\mu} \mathsf{D}_{
u} \psi - rac{m^2 c^2}{\hbar^2} \psi = \mathsf{0}$$

- covariant derivative: $D_{\mu}T^{\nu} = \partial_{\mu}T^{\nu} + \{ {\nu \atop \mu\sigma} \} T^{\sigma} {ie \over \hbar c} A_{\mu}T^{\nu}$
- Christoffel symbol: $\{ {}^{\nu}_{\mu\sigma} \} := \frac{1}{2} g^{\nu\rho} \left(\partial_{\mu} g_{\sigma\rho} + \partial_{\sigma} g_{\mu\rho} \partial_{\rho} g_{\mu\sigma} \right)$
- Maxwell potential: A_{μ}

Quantum Physics

• Klein–Gordon equation minimally coupled to gravity and to the Maxwell field:

$$\mathrm{g}^{\mu
u} D_\mu D_
u \psi - rac{m^2 c^2}{\hbar^2} \psi = 0$$

• insert:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

- Ansatz [1]: $\psi = \exp\left(\frac{i}{\hbar}[c^2S_0 + S_1 + c^{-2}S_2 + \ldots]\right)$
- compare equal powers of c^2 :

[1] C. Kiefer, T. P. Singh, Phys. Rev. D 44, 1067-1076 (1991)

D. Lorek (ZARM)

Schrödinger Equation: $i\hbar\partial_t\tilde{\phi} = \mathcal{H}\tilde{\phi}$

• Hamiltonian [1]:

$$\mathcal{H} = -\frac{\hbar^2}{2m} \left(\delta^{ij} - \mathbf{h}^{ij} \right) \partial_i \partial_j - \mathbf{e} \mathbf{A}_0 + \frac{i\mathbf{e}\hbar}{m} \frac{\mathbf{A}_i}{c} \left(\delta^{ij} - \mathbf{h}^{ij} \right) \partial_j$$

[1] S. Boughn, T. Rothman, Class. Quantum Grav. 23, 5839-5852 (2006)

D. Lorek (ZARM)

Schrödinger Equation: $i\hbar\partial_t \tilde{\phi} = \mathcal{H}\tilde{\phi}$

• Hamiltonian:

$$\mathcal{H} = -rac{\hbar^2}{2m} \left(\delta^{ij} - \mathbf{h}^{ij}
ight) \partial_i \partial_j - eA_0 + rac{ie\hbar}{m} rac{A_i}{c} \left(\delta^{ij} - \mathbf{h}^{ij}
ight) \partial_j$$

• for non-relativistic systems $A_i \ll A_0 \rightarrow$ Interaction Hamiltonian:

$$\mathcal{H}_{\mathrm{I}} = rac{\hbar^2}{2m} h^{ij} \partial_i \partial_j$$

Electric Potential A_{μ}

• inhomogenous Maxwell equations coupled to gravity:

$$4\pi j^{\mu}=D_{
u}\left(g^{\mu
ho}g^{
u\sigma}F_{
ho\sigma}
ight)$$

• Field-Strength Tensor: $F_{\rho\sigma} = \partial_{\rho}A_{\sigma} - \partial_{\sigma}A_{\rho}$

• insert:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

• point charge: $j_0 = q \delta^3(r)$ and $j_i = 0$

Electric Potential A_{μ}

• inhomogenous Maxwell equations coupled to gravity:

$$4\pi j^{\mu} = D_{
u} \left(g^{\mu
ho} g^{
u\sigma} F_{
ho\sigma}
ight)$$

• insert:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

- point charge: $j_0 = q \delta^3(r)$ and $j_i = 0$
- periodic gravitational waves: $h_{\mu\nu} = h_{\mu\nu}^0 \cdot \exp(i[\vec{k}\vec{x} \omega t])$
- Influence of the GW is adiabatic (low frequency) and quasi-constant (long wavelength) → potentials are static

• Ansatz:
$$A_0 = q/r + qA_0^{(1)}$$
, $A_i = qA_i^{(1)}$

Potential A_0 of a Point Charge q in the Field of a GW

$$A_0 = rac{q}{r} \left(1 - rac{x^i h_{ij}^0 x^j}{2r^2} e^{i(ec k ec x - \omega t)}
ight)$$

D. Lorek (ZARM)

Rovibrational QIs and Gravitational Waves

Firenze, 24th Feb, 2009

HD⁺ Molecular Hamiltonian

• molecular Hamiltonian contains:

$$\mathcal{H} = T_e + V_{en1} + V_{en2} + V_{nn} + T_{n1} + T_{n2} + \delta \mathcal{H}$$

- T: kinetic energy
- V: potential energy
- e, n1, n2: electron, first nucleus, second nucleus

Perturbation to Molecular Hamiltonian

electronic kinetic energy: $(h \cdot R_{\infty}) \delta \tilde{T}_{e}(R) \cos(2\phi)(1 - \cos(2\theta))$

electronic Coulomb energy: $(h \cdot R_{\infty}) \,\delta \tilde{V}_{en}(R) \cos(2\phi)(1 - \cos(2\theta))$

nuclear Coulomb energy: - $(h \cdot R_{\infty}) (2R)^{-1} \cos(2\phi)(1-\cos(2\theta))$

Perturbation to Molecular Hamiltonian

electronic kinetic energy: $(h \cdot R_{\infty}) \delta \tilde{T}_e(R) \cos(2\phi)(1 - \cos(2\theta))$ electronic Coulomb energy: $(h \cdot R_{\infty}) \delta \tilde{V}_{en}(R) \cos(2\phi)(1 - \cos(2\theta))$ nuclear Coulomb energy: $-(h \cdot R_{\infty}) (2R)^{-1} \cos(2\phi)(1 - \cos(2\theta))$

Perturbation Energy: $\sim 0.1 \cdot h \cdot R_{\infty}$

D. Lorek (ZARM)

Rovibrational QIs and Gravitational Waves

Firenze, 24th Feb. 2009

Total Perturbation Operator

- GW can not drive rotational, vibrational or electronic transitions
- GW only couples states with $|\Delta m| = 2$ as expected from quadrupole nature of GW

Perturbation Matrix

Eigenvalues

eigenvalues for the total perturbation operator for the vibrational ground state v = 0

D. Lorek (ZARM)

Rovibrational QIs and Gravitational Waves

Firenze, 24th Feb. 2009

Eigenvalues

Differential Energy Shift: $60 \,\mu\text{Hz}$ for $h = 10^{-19}$

D. Lorek (ZARM)

Firenze, 24th Feb. 2009

State Spectra

Gravitational Wave Detection

D. Lorek (ZARM)

Rovibrational QIs and Gravitational Waves

Firenze, 24th Feb. 2009

Comparison with "Classical" Detectors

Advantages

- most accurate measurement methods available
- physics of the probe and the interaction between the probe and the environment is well understood
- exactly identical, well defined probes exist
- no storage time limit
- spectral-, polarization- and directional-sensitivity can be chosen and modified within milliseconds

Challenges

- \bullet ultra-cold molecules ($\ll\!mK)$ to be prepared in a specific state
- multi-chromatic narrow linewidth laser-fields required
- control/suppress environmental perturb. (em. fields, vibrations)

Quantum Interferometry

- \bullet Basic ideas of AI \rightarrow Rovibrational states of molecules
- Molecular states are sensibel to non-isotropic effects
- Quantum sensor for fundamental physics

Gravitational Waves and HD⁺

Prospects

Quantum Interferometry

Gravitational Waves and HD^+

- Hamiltonian of a charged particle in a GW field
- Electric potential of a point charge in a GW field
- ullet \to Perturbation operator of HD^+ and energy shifts
- Adequate construction

Prospects

Quantum Interferometry

Gravitational Waves and HD^+

Prospects

- $h = 10^{-19} \rightarrow 60 \,\mu\text{Hz}$ (current AI: $\approx 100 \,\mu\text{Hz}$)
- Further tests of fundamental physics
- Al

Quantum Interferometry	
Gravitational Waves and <i>HD</i> ⁺	
Prospects	

A. Wicht, C. Lämmerzahl, D. L., H. Dittus, Phys. Rev. A 78, 013610

Thanks for your attention!