Do WMAP data favor V mass and CDM-DE coupling?

Giuseppe La Vacca, Silvio A. Bonometto (Milano-Bicocca) Loris P. L. Colombo (USC, Los Angeles, USA) Jostein R. Kristiansen, Roberto Mainini (Oslo University)

References:

- GLV, S. A. Bonometto, L. P. L. Colombo, arXiv:0810.0127 [astro-ph], New Astron.
- GLV et al., arXiv:0902.2711 [astro-ph.CO], submitted to JCAP
- J. R. Kristiansen et al., arXiv:0902.2737 [astro-ph.CO], submitted to PRL
- M.B. Gavela et al., arXiv:0901.1611 [astro-ph]

<u>0-th order approximation</u>: ΛCDM

 \rightarrow fits all data (available)

 \rightarrow conceptually unacceptable (coincidence, fine tuning)

1-st order approximation: ?

- → DE is a self-interacting scalar field also linearly interacting with CDM
 - i.e. the dark Sector is some kind of unique "substance"

WHY SHOULD THE 2 DARK COMPONENTS BE DISJOINT?

Assuming no coupling: ad-hoc extra hypothesis The point of this talk:

coupled DE cosmology fully acceptable, with coupling at the Planck Scale,

IF NEUTRINOS HAVE SIGNIFICANT MASSES

 $\sum m_{\nu} \approx 1 \ eV$

≈ 0.17

MORE THAN upper limits on coupling and neutrino masses!

Vice versa:

If v masses above current cosmological limits, as detectable in future β -decay or $0v\beta\beta$ -decay experiments,

STRONG EVIDENCE OF CDM-DE COUPLING

CDM – DE COUPLING ALREADY DETECTED? (if coupling at Planck Scale, at the available sensitivity level, NO stronger signal possible)

Modifing spectra with cDE and massive $\boldsymbol{\nu}$

 $V(\phi) = \frac{\Lambda^{\alpha+4}}{\phi^{\alpha}}$ Ratra-Peebles (RP) potential

$$\phi'' + 2\mathcal{H}\phi' + a^2 V_{,\phi} = C\rho_c a^2,$$

$$\rho'_c + 3\mathcal{H}\rho_c = -C\rho_c \phi'$$

$$V(\phi) = \frac{\Lambda^{\alpha+4}}{\phi^{\alpha}} \exp\left(\frac{4\pi\phi^2}{m_p^2}\right)$$
 SUGRA potential

$$\beta \equiv \sqrt{\frac{3}{16\pi}} m_P C$$

RP

*s*ugra

MCMC (WMAP5 + LSS + SNIa)

The results:		Parameter $ACDM + \nu$'s WMAP only all data		w = const.	$cRP + \nu$'s all data	$cSUGRA + \nu's$ all data	
		$10^2 \omega_b$	2.244 ± 0.066	2.258 ± 0.061	2.247 ± 0.062	2.260 ± 0.061	2.260 ± 0.065
		ω_c	$\begin{array}{c} 0.1156 \\ \pm \ 0.0078 \end{array}$	$\begin{array}{c} 0.1098 \\ \pm \ 0.0040 \end{array}$	$\begin{array}{c} 0.1132 \\ \pm \ 0.0069 \end{array}$	$0.1039 \\ \pm 0.0062$	$ \begin{array}{r} 0.1042 \\ \pm \ 0.0084 \end{array} $
		$10^2 \theta$	1.0401 ± 0.0030	1.0401 ± 0.0030	1.0402 ± 0.0030	1.0401 ± 0.0029	1.0406 ± 0.0030
WMAP5 0.2 0.4 0.6 -10 0 10	0 1 2 3	au	$\begin{array}{c} 0.085 \\ \pm \ 0.017 \end{array}$	$\begin{array}{c} 0.087 \\ \pm \ 0.017 \end{array}$	$\begin{array}{c} 0.085 \\ \pm \ 0.017 \end{array}$	$\begin{array}{c} 0.087 \\ \pm \ 0.016 \end{array}$	0.088 ± 0.017
		$M_{ u}$ (eV) (95% C.L.)	< 1.20	< 0.66	< 0.94	< 1.13	< 1.17
WMAP5 +2dF		$egin{array}{c} \beta \ (95\% \ { m C.L.}) \end{array}$				< 0.17	< 0.18
	$\prod_{i=1}^{n}$	$\log_{10}(\Lambda/{ m GeV})$ (95% C.L.)				< -4.2	< 6.3
$\beta^{-10} \frac{10}{\log_{10}(\Lambda/\text{GeV})}$	0 1 2 3 M _V /eV	n_s	$\begin{array}{c} 0.955 \\ \pm \ 0.017 \end{array}$	$\begin{array}{r} 0.962 \\ \pm \ 0.014 \end{array}$	0.958 ± 0.015	$\begin{array}{r} 0.969 \\ \pm \ 0.015 \end{array}$	$\begin{array}{r} 0.970 \\ \pm \ 0.018 \end{array}$
		$\ln(10^{10}A_s)$	$\begin{array}{c} 3.053 \\ \pm \ 0.043 \end{array}$	3.045 ± 0.040	$\begin{array}{c} 3.049 \\ \pm \ 0.040 \end{array}$	3.055 ± 0.040	$\begin{array}{c} 3.057 \\ \pm \ 0.041 \end{array}$
		σ_8	$\begin{array}{c} 0.691 \\ \pm \ 0.075 \end{array}$	$\begin{array}{c} 0.713 \\ \pm \ 0.056 \end{array}$	$\begin{array}{c} 0.711 \\ \pm \ 0.059 \end{array}$	$\begin{array}{c} 0.723 \\ \pm \ 0.062 \end{array}$	$\begin{array}{c} 0.717 \\ \pm \ 0.069 \end{array}$
		$H_o~(\rm km/s/Mpc)$	67.0 ± 4.4	$\begin{array}{c} 70.1 \\ \pm \ 2.1 \end{array}$	$\begin{array}{c} 69.7 \\ \pm \ 2.2 \end{array}$	$\begin{array}{c} 71.8 \\ \pm \ 2.5 \end{array}$	$\begin{array}{c} 71.9 \\ \pm \ 2.7 \end{array}$
		$-2 \ln(\mathcal{L})$	1329.39	1407.25	1407.38	1407.44	1407.33

Conclusions

- v mass limits from cosmology: within which model set ?
- opening the option of DE-CDM coupling v mass and coupling degenerate, softening usual cosmological limits
- COUPLING ALREADY IN CURRENT DATA? (a nearly 2σ signal)
- combining cosmic and (possible) lab data, v mass and coupling fully constrained (5 σ on coupling obtainable).