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1. Motivation and Introduction
Possibility of low-scale string models without SUSY 

(using D-branes at orbifold singularities
with brane SUSY breaking mechanism)

• At tree-level there are many massless scalar fields
  with non-trivial gauge charges.
• Non-zero one-loop corrections to the masses of those
  scalar fields are expected because of lack of SUSY.

Some extra scalar fields would become massive and 
decouple, and some others would obtain negative mass 
squared and would become Higgs doublet fields in the
Standard Model for electroweak symmetry breaking.
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Some concrete calculations have shown
the possibility of radiative symmetry breaking.

m2 ∼ +

NS R

boson loop
(positive)

fermion loop
(negative)

possible to have:

m2 ! − g2

16π2

1
α′ f(R/

√
α′) < 0

Antoniadis-Benakli-Quiros (2000), N.K. (2006)
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“NS-NS tadpole problem”
Two kinds of closed-string tadpole contributions

assuming open-closed string duality

R-R

NS-NS

massless R-R tadpoles
should be canceled
 for the consistency

of the model.

massless NS-NS tadpoles
are not required to cancel

for consistencies
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In general string models without SUSY have
NS-NS tadpoles of massless dilaton and graviton.

• The conceptual difficulty (or understanding):

  The background geometry and fields configurations are
  not the “solution” of String Theory.
    -> This should be cured by Fishler-Susskind mechanism
        which is very difficult to do unfortunately.

• The actual difficulty:

  Open-string one-loop calculations get infrared divergences.
  Some reasonable technique to evade these divergences?
    -> “tadpole resummations”

lim
p→0

1
p2
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Tadpole resummations in field theory
Dudas-Nicolosi-Pradisi-Sagnotti (2005)

Possibility to obtain true values of physical quantities
in “wrong vacua”

Is the same is possible in String Theory?

ex.
“wrong vacua”

tadpole

+ + ......

V = −4a(v2 − v2
f )vfφ + · · ·

Vres =

Vf + Vres = 0
Vf
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The technique gives one positive result:

The vacuum energy of a “Dp-brane” in Bosonic String 
Theory is canceled by the tree-level contribution from 
tadpole resummations,

which is consistent with Senʼs conjecture of “Dp-brane”
decay in Bosonic String Theory: “tachyon condensation”.

Similar resummations are possible in String Theory
using boundary state formalism

Some non-trivial checks and applications to actual
calculations of scalar masses will be given.

(Λcl
p = Tp)Λcl

p + Λres
p = 0 N.K. (2008)
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2. Some techniques

In this talk we mainly consider Bosonic String Theory,
although the same is applicable to Superstring Theory.

Boundary State Formalism

open string
one loop

closed string
tree

1
2!

〈Bp|D|Bp〉

the cylinder amplitude

second order of
tadpole insertion

Dp-brane
boundary state

propagator
operator
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The Cylinder Amplitude
-- one-loop correction to the vacuum energy of Dp-brane --

Ap =
1
2!

〈Bp|D|Bp〉 =
1
2!

Vp+1N
2
p ∆p

∆p ≡ πα′

2

∫ ∞

0
ds

∫
dd⊥p

(2π)d⊥
e−

πα′
2 p2

⊥s 1
(η(is))24

=
πα′

2

∫ ∞

0
ds

1
(2π2α′s)d⊥/2

1
(η(is))24

Np ≡ Tp/2 : normalization factor of |Bp〉

d⊥ ≡ d− (p + 1) with d = 26

Infrared divergence due to massless NS-NS tadpoles
of dilaton, graviton and tachyon.
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Tadpole couplings in boundary states

Aµν ≡ 〈0; k|aµ
1 ãν

1 |Bp〉 = −Tp

2
Vp+1S

µν Sµν ≡ (ηαβ ,−δij)

D-brane effective action in Einstein frame

SDp = −Tp

∫
dp+1ξe−aφ

√
−det gαβ

ignoring B-field
and gauge field

Ldil = −Tpe
−aφ = −Tp + Tpaφ− 1

2!
T pa2φ2 +

1
3!

T pa3φ3 − · · ·

Λcl
p = Tp

{
Agrav = Aµνε(h)

µν = −Vp+1Tpηαβε(h)
αβ ,

Adil = Aµνε(φ)
µν = Vp+1Tpa.

vacuum energy
+ + + ...

(
a ≡ d− 2p− 4

2
√

d− 2

)
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Strategy for tadpole resummations

+ + + • • •+Λp = Λcl
p +

= + + • • •+

“Closed strings bouncing on a Dp-brane”
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Multi-point vertices in boundary state formalism

−Tpa
2

M̂ ≡
∫

ddxδd⊥(x)|B̃p(x)〉(−Tp)〈B̃p(x)|

integrating over Dp-brane world volume

|B̃p(x)〉 ≡ 1
Tp

δp+1(x̂− x)|Bp〉

specify one point
on Dp-branenormalization

for correct coupling
x

(
Tpa×

1
Tp

)2

× (−Tp)× ddxδd⊥(x)→ −Tpa
2 × Vp+1
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Similar for three-point vertex and higher

Tpa
3

M̂ (3) ≡ 1
3!

Tp

(
Np

Tp

)3 ∫
ddxδd⊥(x)

×|B̃p(x)〉|B̃p(x)〉|B̃p(x)〉

Closer look at “propagator”

∆p =
πα′

2

∫ ∞

0
ds

1
(2π2α′s)d⊥/2

1
(η(is))24

→ πα′

2

∫ ∞
ds

1
(2π2α′s)d⊥/2

{
e2πs + 24 +O(e−2πs)

}

tachyon
tadpoles

dilaton/graviton
tadpoles

Regularize via an “ultraviolet” cutoff on s
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3. Actual calculations on vacuum energies
Full two-point function

= + + • • •+

“one bounce”
1
2!
〈Bp|DM̂D|Bp〉 =

1
2!

∫
ddxδd⊥(x)〈Bp|D|B̃p(x)〉(−Tp)〈B̃p(x)|D|Bp〉

=
1
2!

Vp+1N
2
p

(
Np

Tp

)2

(−Tp)(∆p)2

Similar for “two bounces”, and more

A(2)
p =

1
2!

{
〈Bp|D|Bp〉+ 〈Bp|DM̂D|Bp〉+ 〈Bp|DM̂DM̂D|Bp〉+ · · ·

}

≡ 1
2!
〈Bp|DM |Bp〉

=
1
2!

Vp+1N
2
p

∆p

1 + Tp(Np/Tp)2∆p
→ 1

2!
Vp+1Tp

similar to the cylinder

geometric series

Λ(2)
p = − 1

2!
Tp
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Full three-point function

A(3)
p =

1
3!

Tp

∫
ddxδd⊥(x)

(
〈Bp|DM |B̃p(x)〉

)3

=
1
3!

Vp+1Tp

(
(N2

p /Tp)∆p

1 + Tp(Np/Tp)2∆p

)3

→ 1
3!

Vp+1Tp

Λ(3)
p = − 1

3!
Tp

1
3!

=
1
3!
× 1

3!
× 3!

vertex

third order of
tadpole

insertions

# of
contractions

Full Vacuum Energy of Dp-brane

Λres
p ≡ −

(
A(2)

p + A(3)
p + · · ·

)
/Vp+1

= −Tp

∞∑

n=1

1
n(n + 1)

= −Tp

exactly cancels

Λcl
p = Tp

Consistent with Senʼs conjecture
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4. Some Consistency Checks
“tadpole resummations” on a D25-brane in SO(8192) theory

8192 D25-branes in unoriented Bosonic String Theory

-> (unstable) “solution” of String Theory

• no tadpoles of dilaton and graviton
• tachyon (with tadpole)

“tadpole resumations” should not give corrections to
the vacuum energy, even though tachyon exists.

Douglas-Grinstein (1987), Marcus-Sagnotti (1987), Weinberg (1987)
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two kinds of boundary states and three kinds of amplitudes

|B25〉 and |C25〉 for orientifold
fixed plane: O25

A =
1
2!

〈B25|D|B25〉

M =
1
2!

(〈B25|D|C25〉 + 〈C25|D|B25〉)

K =
1
2!

〈C25|D|C25〉

Full cylinder amplitude with bouncing on D25 and O25

(the same for the
other amplitudes) No Correction to Vacuum Energy

A(2) =
1
2!

V26N
2
25

∆25

1 + T25(N25/T25)2∆25
× 1

1− T25(N25/T25)2∆25

→ 0

(Ignoring tachyon divergence ->                                         and the 
same for multi-point functions. No correction to the vacuum energy.)

A(2) +M(2) +K(2) = 0,
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“tadpole resummations” on a D9-brane in Sugimoto model

32 D9-branes in a specially unoriented Superstring Theory
-> not a “solution” of String Theory, but stable

(D9-brane is not expected to decay.)

• NS-NS tadpoles (dilaton and graviton)
• no tachyon

“tadpole resummations” should not give the correction to
the D9-brane vacuum energy which cancels the classical 

vacuum energy, even though the system is not a “solution”.

A(2) =
1
2!

V10N
2
9

∆NS

1 + T9(N9/T9)2∆NS
× 1

1 + T9(N9/T9)2∆NS

→ 0
no correction to D9-brane vacuum energy
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5. Problems and Limitations of this Procedure
On the relation with open-string field theory analysis

on “tachyon condensation”

From Taylor-Zwiebach (TASI 2001):

tachyon potential
(tachyon mode only) V (ϕ) = −1

2
ϕ2 + µϕ3

a level truncation: Ψs = ϕ|0〉 + B(α−1 · α−1)|0〉 + β(b−1c−1)|0〉 + · · ·

V = −1
2
ϕ2 + 26B2 − 1

2
β2

+ µ

[
ϕ3 − 130

9
ϕ2B − 11

9
ϕ2β + · · ·

]

Ecorr
vac ! −0.68T25

Ecorr
vac ! −0.95938T25

ϕ

ϕ

ϕ

ϕB
ϕ4 heavy modes are

integrated out
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Open string massive modes are important in the analysis
of “tachyon condensation” using open-string field theory.

Their role is not evident in the procedure of
“tadpole resummations”.

One thing we can say:

Open-closed string duality, which is essential
in the procedure of “tadpole resummations”,

requires infinite number of open string modes.
The effects of open string massive modes are

implicitly included.
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Gravitational back reactions

The procedure of “tadpole resummations” includes
“propagations” of closed string in the direction perpendicular

to D-branes, assuming flat space-time.

The existence of D-branes should change
the background geometry (and background fields).

It may affect the results of “tadpole resummations”,
although it is not included in the analysis

based on string field theory.

ex. spontaneous compactifications: Dudas-Mourad (2000)
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6. One-loop scalar masses
Boundary states with constant background scalar fields

are required.

They can be obtained extending the formalism
by Callan et al. (1988).

SA

: “boundary coordinates”
: “boundary action”

x, xD, θ, θD

|Bp;φ〉 = Np

∫
DXDΘ eiSA(φ) |x, x̄, xD, x̄D〉|θ, θ̄, θD, θ̄D〉|Bgh〉|Bsgh〉
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Two categories of massless scalar fields

1) “gauge boson” polarized parallel to the D-brane

4,5

0,1,2,3

6,7,8,9

4,5

0,1,2,3

6,7,8,9

D5

D5

compact

compact

“Wilson line”
Callan et al. (1988) 

2) “gauge boson” polarized perpendicular to the D-brane

“D-brane moduli”
Polchinski (1994)

Callan-Klebanov (1996)

SA = S‖
A = −Ai

∫ 2π

0
dσ

[
∂σXi

]
τ=0

SA = S⊥A = −AI

∫ 2π

0
dσ

[
∂τXI

]
τ=0
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Four D3-branes and Three anti-D7-branes
on a SUSY             orbifold singularityC3/Z3

      operation matrices on each D-braneZ3

γ3 = diag(12,α11,α
211)

γ7̄3 = 13

(α ≡ ei2π/3)

U(2)×U(1)1 ×U(1)2
U(3)

No massless R-R tadpoles (anomalies) by

3Tr(γ3)− Tr(γ7̄3) = 0

U(1)non-anomalous

(“brane SUSY breaking”: Antoniadis-Dudas-Sagnotti (1999), ...) 

One non-trivial example in the second category.
(the first category -> Antoniadis-Benakli-Quiros (2000))
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Massless modes under

D3-D3 open string (SUSY)

D3-anti-D7 open string (non-SUSY)

(Φa
1 ,Ψa

1) : (2∗, 1)+1,

(Φa
2 ,Ψa

2) : (1, 1)0,
(Φa

3 ,Ψa
3) : (2, 1)−1.

φ1 : (2, 3∗)0,
φ2 : (2∗, 3)0,
ψ1 : (1, 3)−1,

ψ2 : (1, 3∗)+1,

a = 1, 2, 3

one-loop mass
     of φ ≡ Φ3

2

U(3)×U(2)×U(1)

2

1 1

1

2

3
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Using the boundary state with constant scalar
background field (without technical details):

m2
φ = 9g2(2γ + 3 ln 3)α′ [3〈B7̄3 |D|B3〉 + 〈B3|D|B3〉

]
/V4,

two cylinder vacuum amplitudes

No R-R tadpole divergence

m2
φ|R−R = 9g2(2γ + 3 ln 3)α′ · (NT

3 )2 · 2π2 α′

4π
·
(
−8 · 3

2π
+ · · ·

)

NS-NS tadpoles -> tadpole divergence in NS-NS contribution
[
3〈B7̄3 |D|B3〉 + 〈B3|D|B3〉

]
NS−NS

= (NT
3 )2 · 2π2 α′

4π
V4 · 2

∫ ∞

0
ds + finite
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• The tadpole coupling of the twisted NS-NS closed string
   has been investigated. 
        Merlatti-Sabella (2000) and Bertolini et al. (2002)
• Contact two-point interaction has been suggested.
        Marotta (2002)
• Higher order contact couplings are yet to be explored.

We can not do the complete “tadpole resummations”
due to the lack of the information on contact couplings,
but it is possible to make the NS-NS contribution finite

by doing partial “tadpole resummations”.

Only the twisted closed string contributes.

SA = S⊥A = −AI

∫ 2π

0
dσ

[
∂τXI

]
τ=0

= 0

for untwisted sector: XI(τ,σ + 2π) = XI(τ,σ)
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“partial tadpole resummations”

D3D3
or

-anti-D7
“bouncing” only on D3-brane

: an assumption

describing
one bouncing
on D3-brane

M̂T ≡
∫

d10xδ6(x)|B̃3〉(−TT
3 )〈B̃3|

〈B3|D|B3〉 −→ 〈B3|D|B3〉
+〈B3|DM̂TD|B3〉+ 〈B3|DM̂TDM̂TD|B3〉+ · · · ,

〈B7̄3 |D|B3〉 −→ 〈B7̄3 |D|B3〉
+〈B7̄3 |DM̂TD|B3〉+ 〈B7̄3 |DM̂TDM̂TD|B3〉+ · · · .

TT
3 ≡ 2NT

3 /κ4D
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NS-NS contribution

m2
φ|NS−NS = 9g2(2γ + 3 ln 3)α′ · 2TT

3

In total

NS-NS R-R

We need further information on the twisted sector
to judge the sign of mass squared.

m2
φ = 9g2(2γ + 3 ln 3)α′

[
4NT

3

κ4D
−(NT

3 )2 · 2π2 α′

4π
· 8 · 3

2π

]
+ · · ·
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9. Summary
1) The importance of NS-NS tadpole problem in string 
models without supersymmetry is emphasized.

2) The procedure of “tadpole resummations” is formulated 
in String Theory.

3) “Tadpole resummations” give a consistent results with 
the “tachyon condensation” in Bosonic String Theory.

4) Some non-trivial checks are presented and the problems 
and limitations of this procedure are discussed.

5) The application to one-loop masses of scalar modes is 
briefly introduced.


