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Two parallel lines of research that may intersect!

Is higher-spin gauge theory a limit of string theory? Or maybe
it is the other way around? What constitutes the constructive
principle underlying higher-spin gauge theory?
Do higher-spin gauge theories exist as QFTs? Working
hypothesis: “yes”, based on the action principle for unfolded
dynamics given by quasi-topological Poisson sigma models in
∞-dimensional target spaces – natural generalizations of the
Cattaneo - Felder - Kontsevich model as well as topological
conformal affine models.
This constructive approach towards a fully nonlinear, off-shell
formulation of interacting, higher-spin gauge fields –
pioneered by Fradkin, Vasiliev and the Lebedev School – leads
naturally to a framework for relativistic QFT based on
infinite-dimensional, associative oscillator algebras and
Howe-dual gauge algebras – these basic building blocks and
algebraic structures have analogs in ordinary bosonic string
theory in flat spacetime.
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Unfolded dynamics and Poisson sigma models

The Poisson sigma models are natural generalizations of the
one-dimensional Hamiltonian action to arbitrary dimensions
providing an action formalism for unfolded dynamics:

(AKSZ,CF)

S =

∫
B

f ∗ [K + H] , f : (B, ∂B) → (T ∗N,N) ,

where T ∗N is a Z-graded symplectic manifold with canonical
form K . Gauge invariance requires that the “Hamiltonian” H
has vanishing graded canonical Poisson bracket with itself:

(Voronov)

(H,H)P.B. ≡ 0 .

The resulting unfolded dynamics is a generally covariant
formulation of classical field theory (including “rigid” field
theories as a special case) based on the extension of Sullivan’s
free differential form algebra by infinite sets of zero-forms that
contain all the local degrees of freedom on-shell.

P. Sundell On geometry, invariants and integrability in higher spin gauge theory



Quasi-topological nature of unfolded dynamics

The base manifold B can be of arbitrary even or odd
dimension, and the target space N is an N-graded manifold
coordinatized by a (possibly duality extended) unfolded
on-shell module – it has an infinite-dimensional submanifold
of degree 0.

The local degrees of freedom (observables) live on the
boundary M := ∂B. The topological nature of the equations
of motion is compensated by the presence of infinitely many
zero-forms.

The replacement of standard quadratic kinetic terms by
infinite “towers” of topological first-order kinetic terms (in K )
leads to novel properties in the ultra-violet as well as the
infra-red that may have a bearing on what constitutes
“finiteness” in QFT as well as the “cosmological constant
problem”.
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Q-structure and Poisson structure

The perturbatively defined Poisson sigma model

S =

∫
B

[
Pα(dXα︸ ︷︷ ︸

K

+Qα(X )) + V (X ) +
1

2
PαPβΠαβ(X ) + O(P3)︸ ︷︷ ︸
H

]
,

is gauge-invariant iff (H,H)P.B. ≡ 0.

If H is quadratic in P this condition is equivalent to that

(Π,Π)S .B. ≡ 0 , LQΠ ≡ 0 , LQQ+ΠV ≡ 0 , LQV ≡ 0 ,

⇒ Π := Παβ∂α ⊗ ∂β is a Poisson structure on N, and
Q := Qα∂α is a compatible Q-structure deformed by a bulk
observable V

Locally on N, Q = ΠU and V = 1
2Π(U,U).

If V = 0 a natural boundary condition is Pα|M = 0 .

The action can then be deformed by boundary terms
∮
M O(X )

where O are observables obeying LQO ≡ 0.
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Ultra-local initial value formulation

In a coordinate chart U ⊂ M, the “initial data” for the
unfolded equations of motion consists of boundary conditions
on p-forms with p > 0 (transition functions) and the values at
a single point for all non-Stückelberg zero-forms, referred to
as the generalized Weyl tensors.

The locally defined dynamical fields then arise as covariant
“normal-coordinate” expansions, given in generic models by
classical perturbative expansions, and in “integrable” models
based on Maurer-Cartan-like equations, such as higher-spin
gauge theories, by exact solutions.

This “ultra-local” initial/boundary value formulation is not
only meaningful for all types of field theories – it reproduces
the results of the standard “local” formulation if such a
formulation exists – but also crucial for theories with
fundamental higher-derivative interactions such as higher-spin
gauge theories.
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Howe duality, geometry and observables

Both higher-spin and string theory yield infinite-dimensional
towers of “oscillators” transforming under infinite-dimensional
symmetry algebras containing two maximal commuting
subalgebras that defines “auxiliary” and “space-time” gauge
symmetries.

The oscillators arise within a “first-quantized” gauge field
theory on an auxiliary bundle. The gauge-invariant auxiliary
observables – the “vertex operators” – are the quantized
representations of the space-time symmetry algebra forming
an “algebraic ring” constituting the fiber of a
“second-quantized” gauge field theory on a bundle over a
“spacetime” (Dixmier’s enveloping-algebra approach).

The gauge-invariant space-time observables constitute the
fiber for what one may think of as yet another “hyper” field
theory (Deligne “recycling”).

P. Sundell On geometry, invariants and integrability in higher spin gauge theory



Unfolding, folding and recycling observables

· · · Inv
[
Inv

[
Fn ↪→ En

π→ Mn

]
≡ Fn+1 ↪→ En+1

π→ Mn+1 . . .
]
· · ·

The independent roles of the base manifolds Mn and Mn+1 is
manifest in higher-spin gauge theory and unfolded dynamics in
general. Two key features are that the auxiliary field theory in
En only couples to zero-forms on Mn+1, and the Mn+1 ⊃ MD ,
unfolded spacetime.

This picture is blurred in standard string theory where
spacetime is interpreted as a slice of Fn ⊂ Fn+1 given by the
zero-modes of worldsheets.

A natural termination of a seemingly perpetual recycling
process could involve recurrences for the Poisson sigma models
that are defined on homotopy classes of even-dimensional and
odd-dimensional manifolds and observable-cycles.
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Vasiliev’s quasi-topological off-shell Poincaré gravity

Suppose the observable algebra Fn+1 ⊃ A , the associative
algebra of arbitrary polynomials on the phase space R2D .
Assume En+1 contains the subsection

F := dA + A ∗A ' 0 , B := dB + A ∗B −B ∗A ' 0 ,

A ∈ Ω[1](U)⊗A , B ∈ Ω[0](U)⊗A , U ⊆ Mn+1 .

While the Maurer-Cartan form A is topological the “Riemann”
zero-form B contains locally defined degrees of freedom.
In the spontaneously broken “metric” phase

B(x , p)
!
= p2 +

∞∑
s=0

∞∑
n=0

psx s+nRie(s + n, s) ,

the off-shell normal-coordinate expansion of spin-s gauge
fields on a space-time “slice” in Fn+1.
On MD ⊂ Mn+1 the spin-2 sector contains Borisov -
Ogievetsky’s nonlinear realization of off-shell Poincaré gravity
based on Diff0(D)/O(D − 1, 1).
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Local symmetries of (A, B) system

As a Lie algebra, A ∼= poly0(D) = poly+(D) D poly−(D), the
smooth even and odd poly-vector fields on RD .

Various structures break this symmetry to subalgebras:
Linear momenta pa ⇒ diff0(D) = diff+(D) D diff−(D), the
smooth even and odd vector fields on RD .
Linear coordinates and momenta (xa, pa) ⇒ linear affine igl(D)
Metric-conformal structure ηab ⇒ various conformal
so(D − t + 1, t + 1) ⊃ iso(D − t, t) and the Howe-dual

sp(2) : T+ := p2 , T 0 :=
1

2
{x , p} , T− := x2 .

ker adT+ ⇒ the off-shell higher-spin algebra

h(iso(D−1, 1)) := U [iso(D−t, t)]∩A :=
U [iso(D − t, t)]

I [A ]

where I [A ] is the vanishing ideal in A . This algebra contains
a subalgebra isomorphic to diff0(D) (preserving linear xa).
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Phases, observables and geometry

Different phases of a dynamical system are characterized by
their observable contents – the nature of observables may
change drastically in passing from one phase to another.

In gauge theories observables must be gauge invariant on-shell
⇒ they can acquire well-defined expectation values that break
the gauge symmetry classically.

noncompact gauging ⇒ observables are conserved quantities:

nonlocal functionals that remain invariant under small
deformations of the submanifold (homotopy cylinder) of the
base-manifold where they are evaluated – e.g. a decorated
Wilson loop, a cycle on which a conserved form is evaluated,
or a single point where closed zero-form charges are evaluated.

Thus, in noncompact gauge theories the geometry of the base
manifold is deeply reflected in the observable content – it may
differ drastically (even locally) between different phases.
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Infinite-dimensional geometries in the (A, B)-system

“unbroken” phase: observable decorated Wilson lines

WC (A,B) = TrA P

(
∗∏

p∈C

B(p)) ? exp?

∮
C

A

 ,

on a universal poly0(D)-bundle that measure transition
functions for A and expectation values for B.

“soldered” (or “softly broken”) phase: observable de Rham
cohomology ring H∗

DR(M) on poly+(D)-bundle with base

M
loc' poly−(D); subring from generalized Pontryagin classes

C = STrA P?(E ,B+,B−) , dC ' 0 , C '/ dC ′ ,

where STrA (f ? g) = (−1)ε(f )STrA (g ? f ) and

ε(B±) = ±B± , A = E+Ω , ε(E ) = −E , ε(Ω) = Ω .

DΩE ' 0 , DΩB±+[E ,B∓]? ' 0 , dΩ+Ω?Ω+E?E ' 0 .
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Broken metric phase of the (A, B) system

Consistent truncation (Weyl order)

A = paA
a(x) , B = papbB

ab(x) + B(x)

〈det Bab〉 6= 0 & choice of signature ηab ⇒ B = T+ + B ′

B ′ ∩ Im adT+ : Stückelberg fields ,

A ∩ coker adT+ : broken gauge fields .

Gauge fix ⇒ ker adT−
!
3 B‘ =

∑∞
s,n=0 psx s+nRie(s + n, s)

A ' eaPa + ωabMab︸ ︷︷ ︸
∈ker adT+

+L

[
ea ∂

∂pa
B ′

]
︸ ︷︷ ︸
∈ker adT−

, L :=
(
adT 0 |coker adT0

)−1
,

T a := ∇ea ' 0 , Rab := dωab+ωac∧ωc
b ' ec∧edRiea

c ,
b

d .
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Off-shell and on-shell invariants for Poincaré gravity

The spin-2 truncation of the (A,B)-system has two types of
soldered off-shell observables:

Topological invariants:
{
STrA P?(E ,B ′

−,B ′
+)

}
∩ H∗

DR(M) are
off-shell closed, globally defined, local functions. By a general
theorem they are topological. Since they are parity odd they
can be identified as the Pontryagin class; indeed

STr E ? · · · ? E︸ ︷︷ ︸
4n factors

∝ p4n(e,R(2, 2))+d(globally defined (4n − 1)-form) .

Dynamical ε-invariants: non-topological, off-shell closed and
globally defined D-forms given by

C [D](E ,B) = εa[D]e
a1 · · · eaD L[0](B ′) ,

for arbitrary Lorentz-invariant functions L[0].

Given a Lagrangian D-form one may ask for further on-shell
conserved p-forms with p < D.
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Where are all the local observables in classical gravity?

In ordinary classical D-dimensional gravity we seek
perturbative statements about weakly curved systems
involving “local” degrees of freedom – for example a “dilute
gas” of well-separated Schwarzschild solutions that can
remain classically stable for a very long time.

By analyzing the gravitational radiation in such a multi-body
system it should be possible to disentangle at least some
information about the positions and masses of separate bodies.

So there should exist “classical amplitudes” in degree 0,
accessible to local observers, doing the job of removing gauge
artifacts in a curvature expansion.
However, not many local observables in degree p < D are
known:

∃ one exact Noether (D − 1)-form for each globally defined
vector field. Some yield quasi-observables (AdM mass and
Wald entropy) given certain boundary conditions.
∃ on-shell conserved (D − p − 1)-forms from “free” p-forms
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Enter higher-spin symmetry and cosmological constant

In higher-spin gauge theory the observable/geometry issue
becomes acute since the nonabelian gauge symmetry blurs all
standard classical notions of geometry and the fields transform
together with (nonpolynomial) higher-derivative constructs.

The unfolded approach presents two countermeasures:

an “integrable” bundle based on associative oscillator algebras
not much different from the (A,B) system
an additional massive parameter in the form of a “bare”
cosmological constant Λ

These facilitate the explicit construction of infinite towers of
on-shell conserved p-forms with p > 0 in infinite-dimensional
higher-spin geometries containing D-dimensional spacetime as
a submanifold.

The conserved forms are given by nonpolynomial derivative
expansions that are computable by “localizing” supertraces.
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Remainder of presentation

Zoom in on Vasiliev’s equations

Perturbative structure of zero-form “amplitudes”

Comment on multi-ray system

Related (open) issues:

Multi-body systems?
Do (independent) zero-form charges exist for (A)dS gravities?
or
Do there exist (nonlinear) consistent lower-spin truncations of
higher-spin gauge theories?
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Vasiliev’s 4D on-shell (Â, B̂ , Ĉ )-system

On-shell anti-de Sitter analog of 4D (A,B) system:
strip traces off Riemann by expanding in sl(2; C)-doublet
oscillators Y α = (yα, ȳ α̇)
⇒ on-shell higher-spin algebra hs(4) ⊃ sp(4) ∼= so(2, 3) and
T± ≈ T 0 ≈ 0
⇒ B does not source A (topological (A,B)-system)

quasi-topological deformation ⇐ doubled master fields in

Â =
[
A (Y )⊗A (Z )︸ ︷︷ ︸

two commuting copies

]
⊗twist A (K , K̄ )︸ ︷︷ ︸

outer Kleinians

,

subject to integrable differential constraints in Z

D̂Ĉ ≈ 0 , Ĉ ? B̂ ≈ B̂ ? Ĉ , Ĉ := CαŜα(Y ,Z ;K , K̄ ) ,

Ĉ?Ĉ ≈ iC 2
(
1+B̂?(κK + κ̄K̄ )︸ ︷︷ ︸

central

)
, κ := (−1)N? , κ̄ := (−1)N̄?︸ ︷︷ ︸

inner Kleinians

where Cα is anti-commuting and N = a+ · a− is the number
operator for a± = 1

2(y ± z) idem N̄.
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Traces and localized supertraces

Defining Y± = 1
2(Y ± Z ), two traces on Â are:

T̂ r+
[
f̂
]

:=

∫
R8

d4Yd4Z f w (Y ,Z ;K , K̄ )︸ ︷︷ ︸
symbol in w -order

|K=K̄=0 ,

T̂ r−
[
f̂
]

:= T̂ r+
[
(−1)N̂? ? f̂

]
, N̂ := Y +·Y− = −1

2
Y ·Z ,

obeying T̂ r−
[
f̂ ? ĝ

]
= (−1)ε̂(f̂ )T̂ r−

[
ĝ ? f̂

]
.

If
∫

R8 d4Yd4Z f w (Y ,Z ) < ∞ then it is independent of w .

For example, if a trace is finite in Weyl order then it is also
finite (and given by the same value) in normal order.

The inner Kleinians have Weyl and normal-ordered forms

(−1)N̂? = δ4(Y ) δ4(Z )︸ ︷︷ ︸
Localized!

= : eYZ :︸ ︷︷ ︸
Analytical!

.
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Bosonic models

Models respecting spin-statistics arise upon imposing

ππ̄(Â, B̂, Ĉ ) := KK̄?(Â, B̂, Ĉ )?KK̄ = (Â, B̂, Ĉ ) ⇒ ε̂(Ŝα) = −Ŝα .

The bosonic model has (at least) two phases:
observable decorated Wilson lines (including zero form charges)

on (Â, B̂, Ĉ ) ↪→ Êbos
π→ M with Ehresmann connection Â.

observable p-form charges in H∗
DR(M) on soldered bundle

(Ω̂, Ê , B̂±, Ĉ±) ↪→ Êbos
π→ M with Ehresmann connection

Ω̂ = 1
2 (1 + π)Â, generalized vielbein Ê = 1

2 (1− π)Â and

M
loc' 1

2 (1− π)Âbos.

The local degrees of freedom on M are contained in the
locally defined zero-forms B̂ and Ŝα.

〈B̂〉 = 0 and 〈Ŝα〉 = zα ⇒ Ŝα is topological and

B̂ = Φ̂0(Y ,Z )︸ ︷︷ ︸
topological

+ Φ̂+(Y ,Z )︸ ︷︷ ︸
quasi-topological

?K +Φ̂−(Y ,Z )︸ ︷︷ ︸
quasi-topological

?K̄ + Φ̂1(Y ,Z )︸ ︷︷ ︸
topological

?KK̄ .
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Zero-form observables and topological nature of Ĉ

Zero-form charges are given by the supertraces

Ĉ [0] = T̂ r−
[
P?(Ŝα, B̂)

]
, P∗ an arbitrary ?-polynomial.

ε̂(Ŝα) = −1 and [Ŝα, B̂]? ≈ 0 ⇒ independent supertraces are

Ĉ
[0]
(n) := T̂ r−

[
(B̂)?n

]
, n = 1, 2, . . . .

If 〈Ŝα〉 6= zα there are local degrees of freedom on M

associated to Ŝα, and they are captured by cyclic traces which
depend on global properties of Z -space.
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Perturbative B-expansion and homotopy integrals

〈Ŝα〉 = zα ⇒ Weyl-curvature expansion

Â ≈ A + Â(1)(Y ,Z |A;B) + Â(2)(Y ,Z |A;B,B) + · · · .

B̂ ≈ B + B̂(2)(Y ,Z |B,B) + B̂(3)(Y ,Z |B,B,B) + · · · ,

Ĉ ≈ Ĉ(1)(Y ,Z |B) + Ĉ(2)(Y ,Z |A;B,B) + · · · .

The perturbative expansion in w -order is of the schematic
form:

∂

∂Z
f̂ w
(n) ≈

∑
p+q=n

f̂ w
(p) ? f̂ w

(q) =: ĵw(n)(Y ,Z )

⇒ f̂ w
(n) ≈

∮
Cw

n

dtn
2πi

ĵw(n)(Y , tnZ )γ(tn) , γ(t) = log
t

1− t
,

provided ĵw(n)(Y , tZ ) is analytic in the whole t-plane and Cw
n

encloses the branch cut in γ along [0, 1].
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Perturbative associativity and homotopy contours

The nth order is well-defined if {Cw
k }k<n admit smooth

deformations such that
f̂ w
(p) ? f̂ w

(q) are finite for p, q < n since then ĵw(n)(Y ,Z ) is

real-analytic in Z if the initial data (A,B) is real-analytic in Y .

f̂ w
(p) ?

(
f̂ w
(q) ? f̂ w

(r)

)
=

(
f̂ w
(p) ? f̂ w

(q)

)
? f̂ w

(r) for p, q, r < n since then

the nth order Z -space differential equation is integrable.

The first condition is weaker than the second condition:
finiteness may hold for topologically distinct sets {Cw

k }k<n

(separated by poles).
The second condition requires absence of poles inbetween
{Cw

k }k<n: ∃ closed curve Λw
reg ⊂ C encircling [0, 1] such that

Cw
k = Λw

reg for k < n ⇒ finiteness (no “nested” singularities)
This may deform {Cw

k }k<n far away from [0, 1]; even so,
Z -space integrability still holds: when the derivative lands on
a ?-factor in ∂Z (f̂ w

(p) ? f̂ w
(q)), the “highest-order” homotopy

integral in that factor can be deformed back from Λw
reg to

[0, 1] by the induction hypothesis.
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Perturbative associativity and unfolded integrability

Perturbative associativity ⇒ F̂ ≈ 0 and D̂B̂ ≈ 0 ∀Z if

F̂ |Z=0 = F +
∞∑

n=1

J
[2]
(n)(A,A;B, . . . ,B) ≈ 0 ,

D̂B̂|Z=0 = DB +
∞∑

n=2

P
[1]
(n)(A;B, . . . ,B) ≈ 0 ,

constituting full perturbative unfolded equations of motion
that are integrable on a universal base manifold M.

The perturbative associativity also assures conservation on M
of the zero-form charges

Ĉ
[0]
(n) =

∞∑
p1+···pn=n

T̂ r−
[
B̂(p1) ? · · · ? B̂(pn)

]
︸ ︷︷ ︸

=: Ĉ(n|n+m) , m := p1+···+pm−m

.
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Regularization of space-time non-locality

Pert. associativity holds if (A,B) are arbitrary polynomials.

ea invertible on M4 ⊂ M ⇒ standard equations of motion for
higher-spin gauge fields; trial calculations indicate that{

∇2φ
}

+ {Λφ}︸ ︷︷ ︸
Killing unitarizable

+
∞∑

n=0

αn

Λ

n−1 {
∇2nφ2

}
︸ ︷︷ ︸
Born-Infeld tail; strongly coupled for

Killing normalizable fields

+O(φ3) ≈ 0 .

Normal-ordered plane-wave decomposition of initial data

B = T (Π) : eM·Y : , M := (µα, µ̄α̇) , Π :=
∂

∂M
,

where T is a “polarization tensor”, e.g.
Killing normalizable fields (“singular” B)
Unitarizable run-away/singular modes (“pseudo-singular” B)
Non-unitarizable “instantons” (“regular” B)

Regularize ⇔ deform closed homotopy contours {C ::
k } → Λ::

reg.
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Computation of zero-form charges

The mth perturbative correction Ĉ(n|n+m) is given by[
n+m∏
k=1

T̂k(Πk , Π̃k)

] [
2m∏
i=1

∮
C ::

i

γ(ti )dti
2πi

] ∑
m1+m2=m

T̂ r−
[
Pm1,m2

]
,

where Pm1,m2 are ?-polynomials of the schematic form

Pm1,m2

(
{ti}| {: eMk ·Y+M̃kZ :}︸ ︷︷ ︸

n + m entries

;κ, . . . , κ︸ ︷︷ ︸
m1 entries

, κ̄, . . . , κ̄︸ ︷︷ ︸
m2 entries

)]
.

“Squeezed” plane-waves g(τ, ρ, ρ̃) := : eτy ·z+ρ·y+ρ̃·z : obey

g(τ, 0, 0) ? g(τ ′, 0, 0) = g(τ + τ ′ − 2ττ ′, 0, 0) ,

and thus Pm1,m2 = g({ti , µk , µ̃k})ḡ({ti , µ̄k , ˜̄µk})eσ0({ti ,µk ,µ̃k})

g({ti , µk , µ̃k}) = g (τ({ti}), ρ({ti , µk , µ̃k}), ρ̃({ti , µk , µ̃k})) .

“monomial domination”: τ depend polynomially on {ti} such
that τ ∼

∏2m
i=1 ti as |ti | → ∞ idem ρ, ρ̃ and σ0.
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Localization of supertraces

Normal and Weyl order are points in the ∞-dimensional affine
space of “universal” and sp(4)-invariant orderings.

Going smoothly from between them may deform

{C ::
i }

:: → Weyl
−−−−−−→ Λloc far away from [0, 1].

The supertrace localizes in the Weyl order, where

T̂ r− [g(τ, ρ, ρ̃)] =
1

(1− τ)2
exp

ρ · ρ̃
1− τ

.

The Jacobian pre-factor is potentially “anomalous“ – can
destroy associativity unless {C ::

i } deform into some Λloc.

Monomial domination ⇒ if Λloc is sufficiently large then

1

1− τ
∼

2m∏
i=1

1

ti

which is manifestly free from nested singularities.
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Amplitude formula

A zero-form charge is thus given by its residues at {ti = ∞}
leading to the amplitude formula (tixi = 1)

Ĉ
[0]
(n) =

∞∑
m=0

[
n+m∏
k=1

T̂k(Πk , Π̃k)

] [
2m∏
i=1

∮
0

log(1− xi )dxi

2πi

]
∑

m1+m2=m

1

(1− τ)2
∏

i x
2
i

exp
( ρ · ρ̃

1− τ
+ σ0︸ ︷︷ ︸

they both ∼
∏

i
1
xi

)
.
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Applicability

The applicability of the amplitude formula depends on the

polarization tensor T̂ (Π):

Instantons (regular initial data): perturbative associativity
holds for generic closed homotopy contours; the amplitude
formula applies after the Λloc-deformation that assures
perturbative associativity of localization.
Killing normalizable fields (singular initial data): trial

calculations based on Laplace transforms of T̂ indicate that
perturbative associativity requires large Λ::

reg; the amplitude

formula applies again since Λloc ∼ Λ::
reg (no conflict!).

Run-away/singular fields (pseudo-singular initial data): trial

calculations indicate ĵ ::(n)(Y , tZ ) ∼ log(1− t) ⇒ perturbative

associativity requires open contours Λ::
reg = [0, 1] ⇒ conflict

with localization and the zero-form charges appear to be
formally divergent.
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Many-ray and many-body systems

SEE BLACKBOARD
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Outlook into “Ring Theory”

generalized Poisson sigma models in fiber and total space

unbroken and soldered phases

∞-dimensional graded oscillators and formal geometry

(conformal) affine extensions of fiber algebra

noncompact associative algebras and bi-modules (noncompact
topological open strings, Langlands, Dixmier,...)

the “mixed-symmetry problem” and nonassociativity

Question: Contact with standard QFT/string theory? or is
unfolded QFT well-defined “Quantum Engineering”?
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THANK YOU !
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Higher-spin versus Kac-Moody approaches

In ordinary string theory the auxiliary gauging is better
understood than the gauging in spacetime except, or course,
for the massless sector.

The situation is somewhat reversed in higher-spin gauge
theory where the auxiliary gauging is introduced somewhat by
hand.

Similarly, in the Kac-Moody approach to supergravity it is
natural to extend the program from the adjoint representation
to more general representations in the enveloping algebra
modulo some suitable ideal reflecting an auxiliary gauging –
c.f. generalized Sugawara constructions.

This state of affairs motivates a combined approach enhanced
with conformal affine constructions perhaps along the lines of
the integrable, topological, noncompact Wess-Zumino-Witten
models containing multi-singleton composites studied by J.
Engquist, L. Tamassia and me.
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Local degrees of freedom: observables and phases

The locally defined unfolded configuration space is given by
the space of gauge orbits in the space of the zero-forms. After
removing Stückelberg fields (the image of the massive shift
symmetries) this space is given by the Weyl zero-forms
modulo the nonabelian gauge transformations.
Unfolded field theories with noncompact gauge algebras, such
as gravity, supergravity and higher-spin gauge theory, have
two characteristic phases: an unbroken phase in which all
gauge symmetries, including local translations, are locally
defined, and a soldered phase with observable de Rham
cohomology in positive degrees which requires the local
translations to be softly broken.
By their very definition observables, if they exist, are
generalized conserved charges. The unbroken observables are
expected to be slightly more nonlocal than soldered
observables, which are more standard boundary vertex
operators for the Poisson sigma model.
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Unbroken phase, Lax pairs and decorated Wilson loops

If all gauge symmetries are locally defined then the
observables are presumably given by highly nonlocal
higher-dimensional generalizations of Lax pairs in
two-dimensional integrable models.

In higher-spin gauge theory the unbroken observables are
given explicitly by decorated Wilson loops.

The unfolded formulation of the nonlinear realization of
off-shell Poincaré gravity suggests that similar constructs exist
also in gravitational systems.
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Soldered phase: equivariant de Rham cohomology

Observable p-forms requires that some of the gauge
transformations – the local translations – act as
diffeomorphisms, while the remaining unbroken gauge
symmetries – the generalized Lorentz transformations – act as
locally defined rotations.

The observables are then given by integrals over closed cycles
of globally defined and on-shell closed composite forms,
referred to as conserved forms, that are algebraic functions of
the zero-forms and the broken gauge fields, referred to as the
generalized vielbein.
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Nonlocality and translations versus transvections

If the noncompact gauge algebra is reductive, such as in
Poincaré supergravities, or if the conserved forms are
restricted to be given by polynomial derivative expansions,
then there are only finitely many conserved charges (barring
notions such as dual Weyl zero-forms).
If, on the other hand, the noncompact gauge algebra is
semisimple, e.g. if there is a nonvanishing cosmological
constant, and if the conserved forms are allowed to have
nonpolynomial derivative expansions, then there are additional
conserved forms in the free (weak-curvature) limit that may
give rise to conserved forms in the full interacting theory.
The aforementioned statement also holds for p = 0: the
simplest example is the bilinear forms on the self-dual,
infinite-dimensional, gauge-algebra module containing the free
Weyl zero-forms. For a free many-body system the bilinear
zero-form charges are given by two-particle amplitudes plus
self-interactions.
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Unfolded QFT

Instead of starting from the standard action postulates, one may
think of a perturbative QFT as follows:

Symmetry: a noncompact algebra g with a maximal compact
subalgebra h and a simple subalgebra m ⊂ g

Spectrum: an ∞-dimensional g-module M that decomposes
into irreps with discrete eigenvalues of C2[g] such that
D := M|h is unitarizable and T := M|m, referred to as the
twisted-adjoint module, consists of m-types |Θα〉 (tensors)

Harmonic expansion: the equivariant maps (changes of basis)
S : D → T and S ∗ : T → D encode completeness
relations/boundary conditions that may require D to consist
of more than just lowest-energy representations
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The Weyl zero-form module R[0]

Let L : U → G/H where U
loc' g/h is a coordinate chart;

define L−1dL =: E + Ω ∈ g/m E m; set |Φ〉 := L−1S |λ〉
with |λ〉 ∈ D; The resulting generalized Bargmann-Wigner
equations read

(∇+ E )|Φ〉 ≈ 0 , ∇ := d + Ω ,

|Φ〉 := Φα|Θα〉 ∈ R̃[0] := Ω[0](U)⊗ T ,

where Φα are referred to as the generalized Weyl tensors.

The Weyl zero-form modules
are Harish-Chandra modules generated by covariant
differentiation of the “smallest” Weyl tensors, referred to as
primary Weyl tensors
contain all the local degrees of freedom of the field theory
are infinitely indecomposable if g = iso(D − 1, 1) and M2 = 0
(the “strictly massless” case)
are self-dual if |Λ|+ |M2| > 0
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Gauge fields and the on-shell Skvortsov module R

Integrating Bianchi identities yields potentials and Stückelberg
fields in various N degrees:

(BMV,ASV,Skvortsov,BIS)[
∇+ µ + E +

∞∑
k=1

Σ[k+1](E , . . . ,E )

]
|X 〉 ≈ 0 ,

|X 〉 := Xα|Θα〉 ∈ R :=
⊎
p∈N

Ω[p](U)⊗ T(p) ,
where

µ are massive integration constants
Σ[1+k] describes k-fold integrations whereby p-forms “source”
(p + k)-forms, which are dual to Chevalley-Eilenberg cocycles
“gluing” R[p] to R[p+k].

The on-shell modules are not unique – e.g. trace extensions in
positive degrees. (c.f. Campoleoni,Francia,Mourad,Sagnotti)

The “minimal” massive modules (|Λ|+ |M2| > 0) are radial
reductions of the minimal massless Skvortsov modules in flat
spacetime. (BIS)
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Oscillators, Howe-duality and Schur modules

For maximally symmetric spacetimes with cosmological
constant Λ, each m-type in R has multiplicity 1. This implies
realizations in terms of oscillators and cell-operators:

Fock space F± from bosonic (+) or fermionic (-) oscillators

[αa
ξ, ᾱ

η
b ]∓ = δa

βδη
ξ ,

where a labels an m-vector if Λ = 0 and a g-vector if Λ 6= 0,
and ξ = 1, 2, . . . , ν± →∞ labels rows (+) or columns (-).
Three-graded Howe-dual algebras

g̃ = g̃(−1) ] g̃(0) ] g̃(+1) =

{
sp(2ν+) bosons
so(2ν−) fermions

T ξη = ᾱξ · ᾱη, Nα
η = 1

2 [ᾱξ, αη]± and Tξη = αξ · αη.

Gauging g̃(+1) = {Tξη}∀ξ,η ∪
{
Nξ

η

}
ξ<η

yields the Schur

module

R = S ⊗ Ω(U) , S ∼= S± = (kerg̃(+1)) ∩ F± ,

and (d + Ω + Σ)|X 〉 ≈ 0 with Σ realized explicitly by means of
Olvert-Metsaev cell-operators that commute “weakly” to g̃(+1).
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Cattaneo-Felder-Kontsevich model

For V = 0, |B| = 2 and |Xα| = 0, the Poisson sigma model
describes the formal ?-product quantization of a standard
zero-graded Poisson manifold coordinatized by R[0]. The local
degrees of freedom of the CFK model are the constant
on-shell values for Xα|M .
The gauged CFK model arises upon exchanging some
coordinates and momenta, viz.

(Xα;Pα) = (φi , ξr ; ηi , λr ) ↔ (X̃α, P̃α) = (φi , λr ; ηi , ξ
r ) ,

where ξr now function as Lagrange multipliers implementing
the curvature constraints Fr := dλr + f st

r λsλt ≈ 0 – the
Hamiltonian constraints on boundary observables generated
by Hamiltonian functions U r obeying Π(U r ,Us) = f rs

t Ut are
spontaneously broken by integration constants.
Since ξr |M = 0 and the one-forms do not propagate any local
degrees of freedom, it follows that the local degrees of
freedom of the gauged model are the on-shell values for φi |M
that can be taken to be constant in the gauge where λr ≈ 0 –
thus the gauging removes local degrees of freedom as it
should be.
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