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Massive Spin-2

* Any higher dimensional theory of gravity

such as String Theory has infinite number
of them.

What we want is a theory in 4D with a
finite number of interacting massive spin-2
particles.



* |f they are massive gravitons they imply
infrared modifications of gravity with
important cosmological implications.

* Non metrical massive spin-2 theories offer
dark matter candidates

* We need consistent interacting theories.



* Even classically we do not have a fully
satisfactory model of consistent massive
spin-2 particles ( massive gravitons or any
other).

* First we shall briefly review known models
of massive gravitons.



Fierz-Pauli ( 1939)
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Number Of Adjustments

* Actually since the only symmetries are
global Poincare' even the coefficients in
the Einstein Hilbert part are arbitrary.

* Absence of Ghosts and Tachyons in the
Linear Theory fix them uniquely to the FP
form

* P. van Nieuwenhuizen NPB 60 (1973) 478



5 massive d.o.f propagate

* No ghosts or tachyons.

 Zero mass limit does not produce GR in

leading order approximation. The light
bending is predicted to be % of that of GR

* Non linear terms must be taken into
account.

A. |. Vainstein. Phvs.Lett.39B (1972) 393



* |t can then be shown that in the range
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one can still use GR, where M =
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Curved Space ( BD Ghost)

* No Coordinate Invariant non linear
completion in D=4 is known.
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Alternatives in D=4
Increase the number of fields

f-g theory :

A second symmetric second rank tensor is
introduced

C.J. Isham, A. Salam and J. Strathdee
PRD3 (1971)867,



More Recently

* N.Arkani-Hamed, H. Georgi and
M.D. Schwartz, arXiv:0209227

» E. Babvichev, C.Deffayet and R, Zour
arXiv:0901.0393



Alternative in higher than 4D

DGP

G. R. Dvali, G. Gabadadze, M. Porrati
arXiv:0005016

» C. Deffayet (A short Review with
Cosmological Applications)

Int. J. Mod. Phys. D 16 (2007) 2023



DGP
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AdS/CFT Approach

 E. Kiritsis and V.Niarchos

arXiv:0808.3410




Non Metric Massive spin-2

* A Lorentz tensor tz’jk symmetric

w.r.t the interchange of the i and j can also
produce a spin-2 particle.




O(1,3) content

Impose two extra conditions:

fr]i]z‘wk = ()

tijie + tjki + thij =0




Unconstrained Action

* Subject to these conditions tz 1 has 16
iIndependent components, J

* |t can be contained in the components of a
spin connection or torsion.

* We want to include gravity, thus, we end up
with gravity theories including torsion.




These models do not make
graviton massive!
« Cosmological applications:

» arXiv.gr-qc/0608121

Yi Mao , Max Tegmark , Alan Guth ,
Serkan Cabi

e arXiv:0808.2063
Yi Mao



Fundamental Fields

* Vierbein el
1
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Invariants

e
Fii =" Fijk.
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e-F = S,ijleijkl




Torsion

 Define
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O(1,3) pieces
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S=[d'wel, e = dete,

L =Lp+ L,

Ly = atyjpt”" + Boiv' + yaid’



Gravitational Action
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Ghost and Tachyon Free Classes

» Tachyon and ghost cancellations in flat

backgrounds require restrictions on the
parameters.

* |n flat space only the ¢co =0 has been
studied




K. Hayashi and T'. Shirafuji

Prog. Theor. Phys. 64, {66 (1980)
64. 1435 (1980)

64, 2222 (1980).

Phys. Rev. D 21. 3269 (1980).



There are 10 parameters

* We shall work with a 6-parameter family
by choosing:




Reduced Lagrangian

Ly = atrt” Mo’ + Za?;a”) :
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Field equations

 Gravitational
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Gravitational Equations
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 We shall not need H



Trace of Grav.Equ.

* |f the torsion vanishes

 First (in torsion) order terms

C1F(1) = —3aV;v'




Antisymmetric Grav.Equ.
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Symmetric Grav.Equ.

Likewise the symmetric part of Gravitational

equations can be derived.




1. Curl of the torsion equations

e £ -trace
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2- Trace of the torsion Equation
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Vanishing Torsion Backgrounds

* Grav.Equ. + Torsion Equ.
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Einstein Manifolds
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Linearised Equ. in Einstein Background

* Antisymmetric Einstein
(e1 — 4he3) Fya — VEF ik —
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In terms of torsion components
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Important result

Foyg) =0 = VEFp




Axial vector Q]
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Constraints
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V is determined algebraically in terms of t
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Constraint




Spin-2 Field

Xij = V'tkij)

e This is traceless and transverse if v=0




Equation for ¢;;;

1
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Both the trace and the divergence of this equation is zero.
There are thus five independent equations.




Symmetric Einstein
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Symmetric Spaces

Wijkr =0




Einstein




Massive Spin-2

Xij = V(i)

N xij =0, V'xij =0




KG Equation
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All components of ;%
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Cosmological Constant and

Masses
A 1 c,
6 M >
M? = 1 (4Ac. +@) 3¢ =3 +2M_°
l6c, P
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3o 3oc,

p




Unitarity Bound(1)

« Combining the above we can rewrite the
mass of the spin-2 particle as,

l6c, M 2M>
0 p

M,*=4A +
3o,




Absence of Ghosts and
Tachyons in flat backgrounds

c5; < 0,c6 >0, <0,

o= Q- §C1>O



Unitarity Bound (2)

* This shows that if the spin zero particle is non
tachyonic the mass of the spin 2 particle is
bounded from below by

2
M,” >~ 4A
 This bound is identical to the one discovered In

 A. Higuchi, NPB 325(1989)745




Relation to Fierz Pauli

* Note that our spin-2 field is not a metric
tensor.

* On the other hand FP in flat space is a
unique consistent massive spin-2 theory.

* |Is there a FP equation in our scheme?



Yes

 Our KG equation for the
k
Xij = V k(i)

can be derived from a FP equation

written in the curved background, but not
for the metric!

* |t reduces to the standard FP in flat
background.



Conclusions(1)

* We have obtained a propagating spin-2

field with no pathologies (so far!) in curved
backgrounds.

* The propagating d.o.f are a massless graviton, a
massive spin-2 and a massive spin 0 particle.

* The inclusion of non linearities follow from the
starting action. They will be coordinate invariant

—automaticatly.



Conclusions(2)

* More general models with no tuning must be
studied.

* Solve the equations for t in arbitrary Einstein
backgrounds and also other backgrounds.

 Non linear effects should be examined.




