Holography for non-relativistic CFTs Herzog, Rangamani & SFR, 0807.1099; Rangamani, SFR, Son & Thompson, 0811.2049

Simon Ross

Centre for Particle Theory, Durham University

Galileo Galilei Institute, 8 April 2009

Outline

- Review finite temperature holography for relativistic CFTs
- Holography for non-relativistic CFTs
- Heating up the non-relativistic theory
- Conformal non-relativistic hydro
- Future directions & conclusions

Holographic description of CFTs

Identify SO(d, 2) conformal symmetry with isometries of AdS_{d+1}.
 In Poincare coordinates,

$$ds^2 = r^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{dr^2}{r^2},$$

Dilatation is $D: x^{\mu} \to \lambda x^{\mu}, r \to \lambda^{-1}r$.

- Normalisable perturbations \leftrightarrow states; $h_{\mu\nu} \leftrightarrow \langle T_{\mu\nu} \rangle$
- $\mathcal{N} = 4 SU(N)$ SYM \leftrightarrow IIB on AdS₅ $\times S^5$ Can obtain many more explicit examples by replacing S^5 by a Sasaki-Einstein space.
 - Classical gravity valid at strong 't Hooft coupling.
- Focus on universal subsector: stress tensor correlation functions are graviton correlation functions in bulk.

Finite temperature

▷ Bulk black hole dual to thermal ensemble.

$$ds^{2} = r^{2} \left[-\left(1 - \frac{r_{+}^{4}}{r^{4}}\right) dt^{2} + d\mathbf{x}^{2} \right] + \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)^{-1} \frac{dr^{2}}{r^{2}}$$

Temperature $T = \frac{r_+}{\pi}$. Entropy $S = \frac{1}{4G_5}r_+^3 V = \frac{\pi^3}{4G_5}VT^3$ Free energy $F \approx TI = -\frac{\pi^3}{16G_5}VT^4$. Can extract bdy stress tensor from metric:

Henningson Skenderis Balasubramanian Kraus

$$ds^2 = rac{dz^2}{z^2} + rac{1}{z^2}[g_{(0)} + z^4g_{(4)}],$$

 $\langle T_{\mu\nu} \rangle \propto g_{(4)\mu\nu} \propto r_+^4 \mathrm{diag}(3,1,1,1).$

Hydrodynamics

• Effective description of long-wavelength perturbations

$$T_{\mu\nu} \sim \pi^4 T^4 (\eta_{\mu\nu} + 4u_\mu u_\nu) - 2\eta \sigma_{\mu\nu} + \dots$$

- Transport coefficients calculated in linearised theory on black hole background: $\frac{\eta}{s} = \frac{1}{4\pi}$.
 - Universal property for theories with a gravity dual.
 - Conjectured general lower bound.
- More direct approach:
 - Consider black hole solution with $T(t, \mathbf{x})$, $u^{\mu}(t, \mathbf{x})$.
 - Correct order by order in derivative expansion.
 - Hydrodynamic parameters determined by bulk dynamics:

$$16\pi G_5 T_{\mu\nu} = \pi^4 T^4 (\eta_{\mu\nu} + 4u_{\mu}u_{\nu}) - 2\pi^3 T^3 \sigma_{\mu\nu} + \dots$$

\star Applications to quark-gluon plasma and condensed matter

Bhattacharyya Hubeny Minwalla Rangamani

Non-relativistic CFTs

Strongly-coupled non-relativistic systems with conformal symmetry are also interesting

▷ Example: fermions at unitarity:

$$H=\int d^dx\partial_i\psi^\dagger_lpha\partial_i\psi_lpha+\int d^dx\int d^dy\psi^\dagger_lpha(x)\psi^\dagger_eta(y)V(|x-y|)\psi_eta(y)\psi_lpha(x).$$

If V(|x - y|) is tuned to have infinite scattering length, long-distance physics has a scaling symmetry

 $D: t \to \lambda^2 t, \quad x \to \lambda x$

with $\Delta_{\psi} = \frac{d}{2}$. Experimentally realised in cold atoms. > Non-rel CFTs have primary operators, state-op corr etc * Can we also describe these by a gravitational dual?

Nishida

Non-relativistic conformal symmetry

Galilean symmetry: rotations M_{ij} , translations P_i , boosts K_i , Hamiltonian H, particle number N. i = 1, ..., d. Extended by the dilatation D,

 $[D, P_i] = iP_i, [D, H] = ziH, [D, K_i] = (1 - z)iK_i, [D, N] = i(2 - z)N.$

Dynamical exponent z determines scaling of H under dilatations.

For z = 2, N is central, and there is a special conformal generator C: [D, C] = -2iC, [H, C] = -iD.Schrödinger algebra: Symmetry of free Schrödinger equation.

* Isometries of a gravitational dual?

Embedding in SO(d+2,2)

Embed Galilean symmetry in ISO(d + 1, 1) by light-cone quant: choose light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}}(x^0 \pm x^{d+1})$, identify

$$M_{ij} = \tilde{M}_{ij}, \quad P_i = \tilde{P}_i, \quad K_i = \tilde{M}_{-i}, \quad H = \tilde{P}_+, \quad N = \tilde{P}_-.$$

 x^+ is Galilean time coordinate; x^- momentum is particle number. \triangleright Particle number should be discrete: need to identify x^- —DLCQ. Extend to embed Sch(d) in SO(d + 2, 2) by

$$D = ilde{D} + (z-1) ilde{M}_{+-}$$

For z = 2, $C = \frac{\tilde{K}_{-}}{2}$. \star Sch(d) is a subgroup of SO(d + 2, 2)

Geometrical dual

Deform AdS_{d+3} to

$$ds^{2} = -r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}}.$$

Homogeneous space, Killing vectors

$$\begin{split} M_{ij} &= -i(x^{i}\partial_{j} - x^{j}\partial_{i}), \quad P_{i} = -i\partial_{i}, \quad H = -i\partial_{+}, \\ D &= -i(x^{i}\partial_{i} + 2x^{+}\partial_{+} - r\partial_{r}), \\ K_{i} &= -i(-x^{+}\partial_{i} + x^{i}\partial_{-}), \quad N = -i\partial_{-}. \end{split}$$

- Most general geometry with these symmetries.
- Solution of a theory with a massive vector, $A^- = 1$.
- Non-rel causal structure: $I^+(x_0^+, x_0^-, \mathbf{x}_0) = \{x^\mu : x^+ > x_0^+\}.$

Dual in string theory

Herzog	Adams	Maldacen
Rangamani	Balasubramanian	Martelli
SFR	McGreevy	Tachikawa

Take $AdS_5 \times S^5$,

$$ds^{2} = r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}} + (d\psi + P)^{2} + d\Sigma_{4}^{2},$$

and apply a TsT transformation:

• T-dualize the Hopf fiber coordinate ψ to $\tilde{\psi}$,

• Shift
$$x^- o ilde x^- = x^- + ilde \psi$$
,

• T-dualise $\tilde{\psi}$ to ψ at fixed \tilde{x}^- .

Resulting solution is

$$ds^{2} = -r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}} + (d\psi + P)^{2} + d\Sigma_{4}^{2},$$

$$B = r^2 dx^+ \wedge (d\psi + P).$$

Maldacena Martelli Tachikawa

Heating up the non-relativistic theory

Apply the TsT transformation to the Schwarzschild-AdS solution,

$$ds^{2} = r^{2}(-f(r)dt^{2} + dy^{2} + dx^{2}) + \frac{dr^{2}}{r^{2}f(r)} + ds^{2}_{S^{5}},$$

where $f(r) = 1 - r_+^4 / r^4$. Resulting solution in 5d is

$$ds^{2} = r^{2}k(r)^{-\frac{2}{3}} \left(\left[\frac{r_{+}^{4}}{4\beta^{2}r^{4}} - r^{2}f(r) \right] (dx^{+})^{2} + \frac{\beta^{2}r_{+}^{4}}{r^{4}} (dx^{-})^{2} - [1 + f(r)]dx^{+}dx^{-} \right) + k(r)^{\frac{1}{3}} \left(r^{2}dx^{2} + \frac{dr^{2}}{r^{2}f(r)} \right).$$

$$A = \frac{r^{2}}{k(r)} \left(\frac{1 + f(r)}{2} dx^{+} - \frac{\beta^{2}r_{+}^{4}}{r^{4}} dx^{-} \right),$$

$$e^{\phi} = \frac{1}{\sqrt{k(r)}}; \quad k(r) = 1 + \frac{\beta^{2}r_{+}^{4}}{r^{2}}.$$

 $\triangleright \beta$ param. choice of x^- coord in TsT; define $\gamma^2 \equiv \beta^2 r_+^4$.

Thermodynamics of bulk solution

▷ Horizon at $r = r_+$, null Killing vector $\xi = \frac{\partial}{\partial t} = \frac{\partial}{\partial x^+} + \frac{1}{2\beta^2} \frac{\partial}{\partial x^-}$. Entropy $S = \frac{1}{4G_5} r_+^3 \beta \Delta x^- V$, Temperature $T = \frac{r_+}{\pi\beta}$. Chemical potential $\mu = \frac{1}{2\beta^2}$ — chemical potential for particle number. Black hole corresponds to a grand canonical ensemble.

 \triangleright Using a saddle-point approximation to the partition function,

$$\langle N \rangle = \frac{\gamma^2}{8\pi^2 G_5} (\Delta x^-)^2 V, \quad \langle E \rangle = \frac{r_+^4}{16\pi G_5} \Delta x^- V, \quad \langle P \rangle = \frac{r_+^4}{16\pi G_5} \Delta x^-.$$

Equation of state $P = \varepsilon$. Consequence of non-relativistic conformal symmetry; $dP = 2\varepsilon$.

▷ Interesting limit: $r_+ \rightarrow 0$ at fixed γ . Zero temperature, finite particle number density.

Hydrodynamics

- General bulk solution has four parameters: β, r₊, vⁱ. Promote to functions of t, xⁱ?
 - \triangleright Obtain by TsT from relativistic hydro solution.
 - Four parameters: r_+ , unit-normalized u^{μ} .
 - Assume independent of x^- : functions of x^+, x^i .
- Dual hydro stress tensor?

We constructed an action using covariant counterterms, but required stringent boundary conditions.

 \Rightarrow Applying holographic renormalisation does not give a good stress tensor.

Re-interpret AdS stress tensor in non-relativistic theory.

Maldacena Martelli Tachikawa

Hydrodynamics

Rangamani SFR Son Thompson

 Dimensional reduction of relativistic stress tensor T^{μν} along x⁻ gives non-relativistic stress tensor complex:

$$T^{++} =
ho, \, T^{+i} =
ho v^i, \, T^{ij} = \Pi^{ij}, \, T^{+-} = \varepsilon + \frac{1}{2}
ho v^2, \, T^{-i} = j^i_{\varepsilon}.$$

 In non-relativistic conformal theory, two transport coefficients at first order: shear viscosity η, heat conductance κ.

$$rac{\eta}{s} = rac{1}{4\pi}, \quad \kappa = 2\eta rac{arepsilon + P}{
ho T}$$

• Can justify this approach to non-relativistic stress tensor by arguing planar sector of D3-brane field theory is unchanged by TsT transformation.

Lifshitz theory

Kachru Liu Mulligan

Drop boosts, retaining anisotropic scaling symmetry.

• Theory has a d+2 dimensional gravitational dual:

$$ds^2 = -r^{2z}dt^2 + r^2d\mathbf{x}^2 + rac{dr^2}{r^2}.$$

Killing vectors

$$M_{ij} = -i(x^i\partial_j - x^j\partial_i), \quad P_i = -i\partial_i, \quad H = -i\partial_t,$$

 $D = -i(x^i\partial_i + zt\partial_t - r\partial_r).$

Solution of a theory with p-form fields with a Chern-Simons coupling.

• Finite temperature solutions recently obtained.

Danielsson Thorlacius

Discussion

- NRCFT is an interesting and challenging extension of AdS/CFT.
- Easy to embed solutions in string theory; solution-generating transformation.
- Finite temperature solutions obtained.
- Hydrodynamics related to hydrodynamics of $\mathcal{N}=4$ SYM by TsT transformation.

Discussion

Issues:

- Role of extra x^- direction?
- Compactification of x^- .
- Large N limit?
- Asymptotics unusual; black hole solutions have slow falloff. Difficult to define boundary stress tensor directly.
- Lifshitz case avoids many of these issues, but not yet related to string theory.