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Old story (1995):

N = 2 supersymmetric Yang-Mills theory = Yang-Mills-Higgs
system plus fermions:

e Higgs field falls into condensate (®) € h, and breaks the
gauge group up to maximal torus (in general position);

e supersymmetry ensures (partial) cancelation of perturba-
tive corrections, and existence of light BPS states, with
masses ~ |q-a+g-a”|, (q,9) - set of electric and magnetic
charges.



One may speak on moduli space of the theory: u ~ <Tr<b2>,
or generally the set coefficients of

P(z) = (det(z — D)) (1)

Classical moduli space: singular point at the origin v = O,
where the gauge group restores, and nothing interesting ...
but this is in domain of strong coupling, where quasiclassics
does not work.



Quantum moduli space

D D
a+a =0 a =0

Gauge group never restores, but there are singularities where
BPS states become massless: e.g. the monopole at o =
and dyon at a + o = 0.



Seiberg-Witten theory: N = 2 supersymmetric Yang-Mills the-

ory (U(N¢) gauge group)
1 _
Lo= g—QTr (Ffw + |Dyd|? + [, B + .. ) (2)
0
so that [®,®] = 0 = & = diag(ay,...,an,), and Dy® =
[Ay, @1 = A (a;—aj), so that only A% = A!, remain massless.

SW theory gives a set of effective couplings T;;(a) in the low-
energy N' =2 SUSY Abelian U(1)"@"K gauge theory.

Lefr =1Im Ty;(a) FL,F), + ... (3)

0 2N,
with T;; — log % + 0 ((g) )

weak coupling



N = 2 kinematics encodes nontrivial information in holomor-
phic prepotential T;; = ‘9 f (effectlve action isIm/[ d*6F(®)).

The prepotential itself is determined by: > of genus=rank,
with a meromorphic differential dSgqy, such that

0dSgy >~ holomorphic (4)

or by an integrable system.

Period variables {a; = $4. dSgw} and F are introduced by

OF
= j{ dSsw = e (5)
consistent by symmetricity of 885 = T;: (a) period matrix of

> (integrability from Riemann blllnear identities).



Famous example of X: let Py (z) = (det(z — ®)), then

/\QNC
w +

N¢
= Py (z) = ] (z — )
=1

d
dSSW ~ z—w
w

(6)

Integrable system is N.-periodic Toda chain.

Simplest possible(?) example N, = 2, z — momentum, logw —
coordinate, the curve 2 and dSgp turn into the Hamiltonian
and Jacobi form of physical pendulum or the 1d “sine-Gordon”
(A — 0: Liouville) system

A4 5

w+—=2—u
w



In fact the simplest possible example is No =1 (U(1) N =2
supersymmetric gauge theory?)

/\(w—l—%):z—v (7)

giving rise to F = %aQtl + et1, with A2 =¢l1, ¢ = fz%w = .

Indeed, the Toda ‘“chain” (dispersionless limit):

Stringy solution F = 3a?t; + e!1: a system of particles

al = %—f — at1 with constant velocity = number = a.



Topological A-string on Pl with quantum cohomology OPE:
w-w ~ elll, primary operators t; <> w, a « 1:
F ~ (exp(al + t1w)) is a truncated generation function.

Toda hierarchy - the descendants: ty41 < op(w@), Th < on(1),
(a = —To) then

a2t1

F = +elt = F(t,a) = F(t,T) (8)
being still a solution to the Toda equation
02 F O°F
—— = exp




Solution is found via dual “Landau-Ginzburg” B-model (the
N, =1 SW curve)

1
z=v—i—/\<w—i——) (9)
w
by construction of a function with asymptotics,

S(z) = > 2k — 2 > Tpz"(logz — cp)+
k>0 n>0 (10)
—|—2alogz—8—}——2 > ika—}_
da nso k2" oty

(¢, = 27{?:1 %), whose “tail” defines the gradients of prepoten-
tial (analogs of the dual periods), e.g.

OF dw
—_—~ —_—~ S
oa Bzw [5]o



Smooth Riemann surface (of genus 3)
with fixed A- and B-cycles.

Cylinder z=v + A (w+ L)
with degenerate B- cycle.



What is the sense of this oversimplified example?

Topological A-string: the prepotential counts asymptotics of
the Hurwirz numbers, number of ramified covers by string
world-sheets of the (target!) P!

Gauge-string duality: sum over partitions = summing instan-
tons in 4D N = 2 SUSY gauge theory (Nekrasov partition
function).

U(1) gauge theory: non-commutative instantons, Toda hier-
archy - the deformation of the UV prepotential

t
1 2 Z k k
FUV,O_§T¢ —>FUv— k; 1CD
k>0 |

with 7 =t1 ~ log A.



Partition function in deformed gauge theory (at T, = d,,1)

2 ¢
Z(a,t;h) =) M eh% > k>0 itTCNet1(ak )
o (—h2)lK
S (11)
~ €XPp (ﬁf(cht) _I_ .. )
is some over set of partitions k = k1 > ko > ... with the

Plancherel measure

my =[] ki—ki+7—1  lli<icj<e (ki —kj+Jj—1) (12)
k — . . — / ]
i< J— [X, (U + ki —0)!
and particular (Chern) polynomials
chp(a,k) =1, chi(a,k) =a, chs(a, k)= a®+ 2h°[K|

chz(a, k) = a® + 6h2alk| + 38> k;(k; + 1 — 24) (13)




or

hu hu\ 1. ' - l
(67 _ 6_7) > @G = 37 Zoen(a ko) (14)
=1 =0 "

coming from the Chern classes of the universal bundle over
the instanton moduli space.

The T-dependence Z(a,t) — Z(a,t, T) is restored from the
Virasoro constraints

Ln(t, T; 8, 0r;02)Z(a,t, T; i) =0, n> -1 (15)



Non Abelian theory: U(N¢) gauge group, nontrivial SW theory.
Partition function more complicated, but quasiclassics always
given by solution to the same functional problem:

F = /da?f”(w)FUv(x) — %/

x>

£S5 aP (0i =3 [ do wf"(@)
1=1

dadif"(2) " (3) F(z — )+

(16)
with FUv(a?) = Zk>0 tk%, and

3
log mlz{ — F(z) x 22 (Iog:c — 5)

when integrated with (double derivative of the) shape function



£(X)

a
Shape function for partitions (Young diagrams)

flz) = |z —a|l+ Af(z)

Extremal shape for large partition



Non-Abelian theory: extremal shape for N, = 2



From the functional one gets for S(z) = ddzéfé’j(:z)

S(z)=>_ tkzk — /da:f”(a:)(z —z)(log(z —z) — 1) — a®”
k>0
(17)

with vanishing real part

Re S(z) = 3 (S(z 4 i0) + S(z — i0)) = 0 (18)
on the cut, where Af(x) # 0. On the double cover

N¢
2= [ (z—2)(z—x]) (19)
1=1

S is odd under y < —y, then f'(z) ~ jump (CD(a:) = %), and
s(z)dz

dP = +
VI (z — ) (2 — )

(20)



If all ¢, =0, for k > 1, t; = log ANe, T}, =6, 1:

_ -1
b pp. F2Nclogz £ 2NelogA 4+ O(27 ) (21)

and there exists a meromorphic function w = ANeexp (—d),
satisfying

/\2Nc

w —+

w

Ne
= Py.(2) = [] (z — ) (22)
1=1

which restores the SW curve.



To restore the dependence on descendants o,(1) quasiclassi-

cally (influenced by Saito formula)
OF

—| = (=)™ (S
S|, = ()t (Su)o
where
d’n,
S”:S, n>0
dz™

or S, is the n-th primitive (odd under w < %).

(23)

(24)

For higher t;, #= 0, exp (—<®) has an essential singularity and

cannot be described algebraically. Implicitly it is fixed by

dcbz—'/ "(2)de = —27i,
jilj i ij(a:)x )

resp, dd = F2NL, fB_ dd = 0
J

(25)



Instanton expansion in 4d gauge theory F =} ;>0 qd]-"d,
g~ N2Ne log A ~ tq.

Topological string expansion: h is background parameter (IR
cutoff) in 4d gauge theory.

Topological string condensate: (o1(1)) # 0, T, = 4,1 is the
simplest possible background, while a ~ T is the gauge theory
condensate itself.



In the pertirbative limit A — O cuts shrink to the points z = a;,
73 =1,...,N¢. the curve is

Ne

wpert = Pn(2) = [] (2 —v) (26)
i=1

endowed with (t(2) = Yrsotez®; T(z) = X,~0 Thz")

Ne
S(z) = -2 Z o(z,v5) + t'(2)
=1 (27)

Qre”
0 oy (iog(z — ) — )

o(ziz) =)

k>0



Logic:

e restrict to the N-th class of backgrounds, with only Ty, ..., Ty #
O;

e the “minimal” theory was with T, = 4, 1 and F = F(a,t),
Ty = 1 corresponds to the condensate (o1 (w)) # O;

e N -+ 1-th derivative of S becomes single-valued.



Perturbative solution:

af = S(v;) = S0, (28)
gives rise to
Ne
fpert(aly ey AN t, T) — Zl FUV(aj; t, T)‘l‘
j=
+ Z F(a;, aj, T) (29)



Result: the full functional F(a,t,T) is given by solution to:
F = —%/ dzidzaf’ (1) f(x2) F(z1,22; T)+
r1>To
*-/}hdw(w)FUv(w;hTF)+ (30)
+3aP (0~} [ do af"@)
i
with
T
Fry(zt, T) = / t/(x)dT (x) (31)

0
and the kernel

aQF(:Ula T, T)

afclamz — T/($]_>T/(x2) |Og(a:1 — 332) (32)




Nonabelian theory: solve the variational equation

t'(z) — /da:f”(a:)a(z; ) =aP, zel (33)
with I = |Jcuts. The integral
S(2) = t'(2) — aP — / dz f"(z)o (2 ) (34)

is multivalued, due to the logarithms in o(z; x), but its N+1-th
derivative

N
(N—l) — d S
dd d (dzN> (35)

can be already decomposed over abelian differentials.

It is determined by singularities at z(P+) = oo and at the
branch points {z;}, 7 = 1,...,2N., where it has poles due
to f(z) ~ (x —x;)7Y/2 (cf. with matrix models!). In fact
o/, ... ®WN=1) gre reqgular 2—, ..., N— differentials on the curve.



One writes

2Ne N-1 k
Jp(N—=1) _ (z)dz_l_dz B3 ( ) (36)

k
Y j=1k=1 (Z—%)

fix the periods of d®(N—=2) . dod’ by 2N, constraints, ending
up, therefore with

(2N +1)N, — 2N.- N = N, (37)
variables, to be absorbed by the Seiberg-Witten periods
1 2 (N-1) -
aj:—,jf Z_dd . j=1,...N. (38)
and define the prepotential by
N OF
aDzlf FgoN-1) =9 g N, (39)
J B; N 8%



The Meissner mechanism in superconductor: condensation of
electric charge Kills magnetic field except for a thin tube, en-
suring confinement of magnetic monopoles, if they exist !

To turn into problem of mathematical physics one needs:

e condensates,

e duality between electric and magnetic charges.



e Effective theory near N/ = 2 singularity or ' = 1 vacuum:;

e Supersymmetric QCD with large fundamental masses: weak
coupling m > A and confinement of monopoles by ANO

strings.

e [owards strong coupling: regime of dual theory,
m < N\, change of quantum numbers, but still confinement

of monopoles!



New integrable structures:

e Monodromies in “mass moduli space” and KZ equation;

e \World-sheet sigma model for ANO string: integrable struc-
ture, describing the space of vacua, or quantum numbers

in 4d gauge theory!



