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1 Introduction

String phenomenology deals with building string models of particle physics. The goal is to
find a generic scenario or even predictions at TeV scale. Topics in string phenomenology in-
clude heterotic strings model building both on smooth (Calabi-Yau) and singular (orbifold)
manifolds and model building in Type II strings. The later has several branches: inter-
secting D-branes (type IIA strings), magnetized D-branes (type IIB), as well as F-theory
models.

Common problems in string phenomenology include the issue of supersymmetry break-
ing, moduli stabilization, flux compactifications, non perturbative effects and applications
to cosmology, in particular string inflation.

These lectures are concerned with model building using D-branes.

2 Intersecting D-branes

Model building using intersecting D-branes is a very active field in string phenomenology
and many reviews are already present in the littereature, including [1]- [5]. For a review of
recent progress see [6].

2.1 Basics of intersecting D-branes

In the weak coupling limit D-branes can be well described in the probe approximation as
hyperplanes where open strings can end. A number of N overlapping D-branes generates
a U(N) gauge theory with 16 supercharges, which corresponds to N = 4 supersymmetry
in four dimensions. A Dp-brane, extending in the spacial directions x0... xp, breaks half
the supercharges and the surving supersymmetry is given by Q = εLQL + εRQR, where QL

and QR are left and right moving spacetime supercharges and εL = Γ0Γ1....ΓpεR.1

The worldvolume dynamics of a Dp-brane is described by the Born-Infeld and Wess
Zumino actions

S = −Tp
∫
dp+1ξ e−φ

√
−det(G+ 2πα′F ) +

∫
Cp+1,

where Tp is the tension of the brane, φ is the dilaton, G - the induced metric on the D-
brane, F - the field strength of the world volume gauge field and Cp+1 is the p + 1 form
that couples to the D-brane.

Dp-branes give rise to non-abelian gauge interactions and also to four dimensional
chiral fermions provided the N = 4 supersymmetry is broken to N = 1 at the most. In
order to obtain 4d chirality the six dimensional internal parity must be broken, since the 16
supercharges in ten dimensions split as follows under the breaking of the SO(10) symmetry

SO(10)→ SO(6)× SO(4); 16→ (4, 2L) + (4̄, 2R).

1Γi denote de Dirac matrices.
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Figure 8. A more concrete picture of the configuration of two D6-branes intersecting over a 4D
subspace of their volumes.

The appearance of chirality can be understood from the fact that the geometry of the two
D-branes introduces a preferred orientation in the transverse 6D space, namely by considering
the relative rotation of the second D6-brane with respect to the first. This also explains why one
should choose configurations of D6-branes. For example, two sets of D5-branes intersecting
over 4D do not lead to 4D chiral fermions, since they do not have enough dimensions to define
an orientation in the transverse 6D space.

Configurations of intersecting D6-branes are the topic of coming sections. Indeed, we will
describe in section 6.2 that intersecting D-brane models are dual to other configurations of
D-branes, or even of other objects in string/M-theory, leading also to chirality. Hence
intersecting D-branes are a good representative of the behaviour of string theory in
configurations with low enough supersymmetry to allow for chirality.

Before entering the details, it will be useful to mention the results of the spectrum for
this configuration. The open string spectrum in a configuration of two stacks of n1 and n2

coincident D6-branes in flat 10D intersecting over a 4D subspace of their volumes consists of
three open string sectors:

6161. Strings stretching between D61-branes provide U(n1) gauge bosons, three real
adjoint scalars and fermion superpartners, propagating over the seven-dimensional (7D)
world volume of the D61-branes.
6262. Similarly, strings stretching between D62-branes provide U(n2) gauge bosons, three
real adjoint scalars and fermion superpartners, propagating over the D62-brane 7D world
volume.
6162 + 6261. Strings stretching between both kinds of D6-brane lead to a 4D chiral
fermion, transforming in the representation (n1, n2) of U(n1) × U(n2), and localized at
the intersection. The chirality of the fermion is encoded in the orientation defined by the
intersection; this will be implicitly taken into account in our discussion.

2.4. Open string spectrum for intersecting D6-branes

In this section, we carry out the computation of the spectrum of open strings in the configuration
of two stacks of intersecting D6-branes [13]. In particular, we explicitly show the appearance
of 4D chiral fermions from the sector of open strings stretching between the different D6-brane
stacks. The key point in getting chiral fermions is that the non-trivial angle between the branes
removes fermion zero modes in the R sector, and leads to a smaller Clifford algebra.

As discussed above, the spectrum of states for open strings stretched between branes in
the same stack is exactly as in section 2.2. It yields a U(na) vector multiplet in the 7D world
volume of the ath D6-brane stack.

We thus centre in the computation of the spectrum of states for open strings stretched
between two stacks a and b. The open string boundary conditions for the coordinates along

Figure 1: Intersecting D6-branes.

Consider two D-branes intersecting as in fig. 1, where a preferred orientation has been
defined. The preferred orientation breaks the six dimensional parity. For phenomenological
purposes we need to consider two stacks of N1 and N2 type IIA D6-branes overlapping over
a 4d subspace and intersecting at angles θ1, θ2 and θ3 in three 2-planes. The spectrum of
open strings in this configuration contains several sectors

• 1-1 strings generate a U(N1) SYM theory in 7 dimensions with 16 supercharges

• 2-2 strings similarly lead to a U(N2) SYM theory in 7 dimensions with 16 supercharges

• 1-2 strings generate massless chiral fermions in the (N1, N̄2) representation in 4 di-
mensions2 (since these states are located at the intersection of the two stacks), as
well as other states, which could potentially be light scalars

• 2-1 strings generate the antiparticles of the states in sector 1-2.

The light scalars in the sector 1-2 exhibit the following masses3

α′m2 =
1

2
(θ1 + θ2 + θ3)

α′m2 =
1

2
(−θ1 + θ2 + θ3)

α′m2 =
1

2
(θ1 − θ2 + θ3)

α′m2 =
1

2
(θ1 + θ2 − θ3) (1)

2These chiral fermions leave in 4d because, due to the mixed boundary conditions (Neuman-Dirichlet)
of the open strings stretched between the two stacks of D-branes, the zero modes of a Ramond fermion,
corresponding to the 6d transverse space are not present.

3The oscillator modes in the expansion of the open strings will be shifted by ±θi as in bα−1/2+θi
and

this change will show in the mass of the states through contribution to the zero point energy.

3



S52 A M Uranga

D61
D62

(a)

D6

(b)

Figure 9. Recombination of two intersecting D6-branes into a single smooth one, corresponding
to a vev for a scalar at the intersection.

recombination is very explicit. It is given by deforming two intersecting 2-planes, described
by the complex curve uv = 0, to the smooth 2-cycle uv = ε, with ε corresponding to the vev
of the scalar at the intersection.

The configuration with tachyonic scalars corresponds to situations where this
recombination is triggered dynamically. Namely, the recombination process corresponds
to condensation of the tachyon at the intersection. It is interesting to point out that in
the degenerate case where the intersecting brane system becomes a brane–antibrane system
(e.g., θ1 = θ2 = 0, θ3 = 1), the tachyons are mapped to the well-studied tachyon of brane–
antibrane systems. The situation where all light scalars have positive squared masses
corresponds to a non-supersymmetric intersection, which is nevertheless dynamically stable
against recombination. Namely, the recombined 3-cycle has volume larger than the sum of
the volumes of the intersecting 3-cycles.

Indeed, the different regimes of dynamics of scalars at intersections have a one-to-one
mapping with the different relations between the volumes of intersecting and recombined
3-cycles [15]. Namely, the conditions to have or not have tachyons are related to the angle
criterion [16] determining which particular 3-cycle has smaller volume. The supersymmetric
situation corresponds to both the intersecting and recombined configurations having the same
volume; the tachyonic situation corresponds to the recombined 3-cycle having smaller volume;
the massive situation corresponds to the intersecting 3-cycle having smaller volume.

3. Four-dimensional compactifications with intersecting D-branes

Intersecting D6-branes provide a mechanism to generate 4D chirality, a key ingredient
of the standard model of particle physics. This suggests the application of intersecting
D-branes to phenomenological model building, namely the construction of string models with
4D gravitational and gauge interactions reproducing the standard model. Note that although
intersecting D6-branes provide 4D chiral fermions already in flat 10D space, gauge interactions
remain 7D and gravity interactions remain 10D unless we consider compactification of
spacetime.

The procedure is therefore to construct compactifications M4 × X6 of type IIA string
theory to four dimensions, including configurations of intersecting D6-branes. The aim is to
obtain models with 4D gravitational and gauge interactions, the latter sector being as close as
possible to the standard model. This is described by a gauge group

SU(3)c × SU(2)w × U(1)Y (19)

a set of charged chiral (left-handed) fermions in three copies with identical gauge quantum
numbers, namely

3 × [(3, 2)1/6 + (3, 1)1/3 + (3, 1)−2/3 + (1, 2)−1/2 + (1, 1)1 + (1, 1)0] (20)

Figure 2: Recombination of two branes.

Generically the scalar spectrum laid out in (1) contains no massless states, in which
case there is no supersymmetry preserved in the theory. The scalars in the sector 1-2
can also be tachyons indicating the instability of the brane configuration. In this case
recombination of the branes will lead to a bound BPS state displaying the phenomenon
of wall crossing (see figure 2). The initial configuration is described by a scalar potential,
parametrized by a scalar φ with charges 1 and −1 under the gauge group generated by the
two D-branes, U(1)× U(1)

VD = (|φ|2 + ξ)2,

where the Fayet-Illiopoulos term is related to the intersection angles ξ = θ1 +θ2 +θ3. Three
situations can present

• the massive case, ξ > 0 : the minimum of VD is at < φ >= 0 and the U(1) × U(1)
gauge group is unbroken

• the tachyonic case, ξ < 0 : the scalar φ gets a VEV which breaks U(1)×U(1) to one
U(1) (one brane)

• the massless case, ξ = 0 : supersymmetric case, VD = 0, stable U(1)2 gauge group.

Let’s see under which conditions some supersymmetry can be preserved by config-
urations of intersecting D-branes. Remember that the supersymmetry transformations
preserved by a D-brane are of the form εLQL + εRQR, where for two stacks of branes the
spinor coefficients satisfy

ε1L = Γ0...Γ3 Γπ1 ε
1
R

ε2L = Γ0...Γ3 Γπ2 ε
2
R

Here π1 and π2 denote the compact directions of branes D61 and D62 respectively.
Generically no supersymmetry transformations survive both conditions, but for special
choices of the angles θi there may exist solutions. If R is the transformation that rotates
the D61 branes into the D62 branes, Γπ1 = R Γπ2 R

−1, then R must be an element of the
SU(3) subgroup of the SO(6) rotations group. If we assume the diagonal form of R

R = diag(eθ1 , e−θ1 , eθ2 , e−θ2 , eθ3 , e−θ3),
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the determinant of any sub three matrix should be zero, leading to one massless scalar
among the states in (1) and, hence to N = 1 supersymmetry. The condition on the angles
reads

θ1 ± θ2 ± θ3 = 0. (2)

A special case presents when one of the angles, say θ3, is zero. The condition (2)
becomes θ1 = ±θ2, the rotation R is an element of SU(2) and the configuration preserves
N = 2 supersymmetry. In this case the spectrum is not chiral, but this distribution of
D-branes can serve to generate the Higgs states of the MSSM in the hypermultiplet of
N = 2. Spatial separation of the branes in the parallel directions allows to generate a
mass for the Higgs.

2.2 Toroidal compactifications

Consider Type IIA theory compactified on a product of three 2-tori, M4 × T 2 × T 2 × T 2,
and several stacks of Na D6a-branes wrapped on three-cycles Πa factorized as the product
of one-cycles with wrapping numbers (nia,m

i
a), where i labels the i-th 2-tous and a labels

the stack.
The homology class of the 3-cycles decomposes in a basis

Πa =
3∏
i=1

(n1
a[ai] +m1

a[bi]),

with [ai] and [bi] being the fundamental 1-cycles of the torus T 2
i .

The chiral spectrum is given by

• aa strings give rise to a four dimensional U(Na) SYM

• ab strings generated four dimensional chiral fermions in the bi-fundamental represen-
tation (Na, N̄b) with multiplicity given by the number of intersections between stacks
a and b, Iab = [Πa] · [Πb] =

∏
i(n

i
am

i
b − nibmi

a).

An important consistency condition of intersecting brane models is the RR tadpole
cancellation, which arises from the Gauss law for RR-fields. The RR fields carry D-brane
charges and in a compact space the total RR charge must vanish(flux lines cannot escape).
The RR tadpole cancellation can be phrased as consistency of the equations of motion of
the RR-fields. the D6-branes introduced previously are charged with respect to a 7-form
C7. The equation of motion for C7 is derived from the spacetime action

SC7 =

∫
10d

H8 ∧ ∗H8 +
∑
a

Na

∫
M4×Πa

C7

=

∫
10d

C7 ∧ dH2 +
∑
a

Na

∫
10d

C7 ∧ δ(Πa),
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where H8 = dC7 is the field strength of C7, H2 = ∗10d H8 its Hodge dual and δ(Πa) a bump
3-form localized on Πa. The equation of motion of C7 reads then

dH2 =
∑
a

Na δ(Πa),

which taken in homology yelds

0 =
∑
a

Na [Πa].

Cancellation of the RR tadpoles implies cancellation of four-dimensional chiral anoma-
lies in the effective field theory. The cubic SU(Na)

3 anomalies are given by

Aa = #�a −#�̄a =
∑
b

Nb Iab,

where #�a denotes the number of chiral fermions in the fundamental representation. These
anomalies vanish in virtue of∑

b

Nb [Πb] = 0→
∑
b

Nb [Πa] · [Πb] = 0.

In contrast, the mixed U(1)a − SU(Nb)
2 triangle anomaly is generically non zero

Aab = #�b,qa=1 −#�b,qa=−1 = Na Iab 6= 0.

This anomaly is cancelled via the Green Schwarz Sagnotti mechanism thanks to the
extra couplings ∫

D6a

C5 ∧ trFa +

∫
D6b

C3 ∧ tr(Fb ∧ Fb),

which reduce in four dimension to∫
4d

(B2)a ∧ trFa +

∫
4d

φb ∧ tr(Fb ∧ Fb),

with (B2)a =
∫

[Πa]
C5, φb =

∫
[Πb]

C3 and dφb = −δab ∗4d (B2)a.

Any U(1) coupling to the 2-form B2a will become massive and many U(1)’s in the
theory receive a mass in this way, which is a welcomed phenomenological feature. We have
to make sure though that the hypercharge U(1)Y stays massless.

2.3 Torodial compactifications with O6-planes

Consider IIA theory compactified on T 6 and mod out by the symmetry ΩR(−1)fL , with Ω
the worldsheet parity, fL the left moving worldsheet fermion number and R an antiholo-
morphic involution zi → z̄i. The ΩR symmetry introduces O6-planes in the theory. When
introducing a stack of Na D6a-branes with wrapping numbers (nia,m

i
a), the presence of
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Figure 3: O-planes in Z2 × Z2 orientifolds.

the O6-planes requires also the introduction of their images in respect with the O-planes,
called D6’a-branes, with wrapping numbers (nia,−mi

a), which characterize the 3-cycle [Π′a].
The RR tadpole cancellation condition is then modified to∑

a

Na [Πa] +
∑
a

Na [Π′a] +
∑

(−4)[ΠO6] = 0. (3)

The gauge group of the theory is given by ⊗a U(Na) and the chiral fermions come from
sectors

• ab : Iab fermions in the (�a, �̄b)

• ab’ : Iab′ fermions in the (�a,�b).

2.4 Toroidal orbifold compactifications

We consider the orbifold T 6/Z2 × Z2, generated by the elements

θ : (z1, z2, z3)→ (−z1,−z2, z3)

ω : (z1, z2, z3)→ (z1,−z2,−z3)

θω : (z1, z2, z3)→ (−z1, z2,−z3)

and we mod out by ΩR, with R : (z1, z2, z3)→ (z̄1, z̄2, z̄3). Four types of orientifold planes
are present in the theory, generated by the symmetries ΩR, ΩRθ, ΩRω and ΩRθω, as
depicted in figure 3.

Let’s consider the explicit example [7] in table 1. The visible gauge group of this model
is U(3)a×U(1)d×SU(2)b×SU(2)c, where we used the fact that N D-branes parallel to the

7



N (n1
a,m

1
a) (n2

a,m
2
a) (n3

a,m
3
a)

a, d 6 + 2 (1, 0) (3, 1) (3,−1)
b 2 (0, 1) (1, 0) (0,−1)
c 2 (0, 1) (0,−1) (1, 0)

h1 2 (−2, 1) (−3, 1) (−4, 1)
h2 2 (−2, 1) (−4, 1) (−3, 1)

24 (1, 0) (1, 0) (1, 0)

Table 1: Intersecting D-branes example.

orientifolds generate an USp(N) gauge group and USp(2) ' SU(2). Equally, due to the
invariance of D-branes a and d under the orbifold, the U(N) gauge symmetry is projected
to U(N/2).

The Standard Model particles are obtained as follows

• sectors ad and ab generate 3 representations (3 + 1, 2, 1) which represent the left
handed quarks and leptons QL, L

• sectors ac and dc generate 3 representations (3̄ + 1, 1, 2) : right handed particles uR,
dR, eR, νR

• sector bc generate the Higgs states (1, 2, 2) : Hu, Hd

The model represents a L-R extension of the MSSM. It is possible to choose the T 6

generators in such a way to satisfy the supersymmetry condition

tan−1(χ1/2) + tan−1(χ2/3) + tan−1(χ3/4) = 0,

where χi = (R2

R1
)i for torus (T 2)i.

The hypercharge is defined as QY = 1
3
Qa −Qd − 1

2
Qc, while QB−L = 1

3
Qa −Qd.

3 More chiral models

Supersymmetric D-branes on Calabi-Yau compactifications of Type II theories fall in two
classes

• IIA : A-branes wrapped on Special Lagrangian 3-cycles, such as the D6-branes in the
intersecting D-branes models

• IIB : B-branes wrapped on holomorphic cycles. B-branes carry holomorphic stable
gauge bundles.
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In the absence of branes, type IIA theory compactified on a Calabi-Yau X is related by
mirror symmetry to type IIB theory compactified on the mirror manifold X̃. This duality
extends also in the presence of the open string sector relating A-branes to B-branes.

We can describe two tractable regimes in which it is possible to break the 6d parity in
IIB theories in order to obtain chirality :

• D3-branes at singularities, for instance at the conical singularity at the origin of an
C3/Z3 orbifold : in this case the breaking of the six dimensional parity is achieved
through the action of the orbifold, which defines a preferred orientation. For examples
of phenomenological model building see [8] - [10].

• Magnetized D-branes : the pseudovector quality of the magnetic fields leads to the
breaking of parity. Below we give a brief outline of model building rules with mag-
netized branes. For further reading see references [11] - [15].

3.1 Magnetized D-branes

Consider N D5-branes wrapped on a T 2 with magnetic field F 6= 0. The magnetic field
must satisfy the Dirac quantization condition 1

2π

∫
T 2 F = n ∈ Z. For a D-brane wrapping

m times around the torus we have m 1
2π

∫
T 2 F = n ∈ Z. The magnetic field will induce D3

charges on the D5-branes as follows

SD5 = m

∫
M4×T 2

C6 +

∫
M4×T 2

C4 ∧ trF = m

∫
M4×T 2

C6 + n

∫
M4

C4

The final state is a bound state of m D5 and n D3-branes. If we perform a T-duality
along X4 4 we obtain m D4-branes along X5 and n D4-branes along X4, hence we obtain
a D4-brane with wrapping numbers (n,m) on T 2. The angle of the D4-brane with respect
to the horizontal axis of the torus is given by tg θ = F = m

n
. This is an instance of

1-dimensional mirror symmetry. The intersecting D-brane models described previously are
T-dualizable to magnetized branes models. Let’s see how chirality arrises in the magnetized
branes picture.

Consider stacks of Na D5a-branes with magnetic fields Fa, characterized by (na,ma),
with na quantizing the magnetic flux and ma the wrapping number. The aa sector gives rise
to the gauge bosons of U(Na) and their superpartners. These fields do not see the magnetic
field, as they are not charged under the U(1) from U(Na). In contrast, states arising from
sector ab have charges (1,−1) under U(1)a × U(1)b and are sensitive to the difference in
the magnetic field Fa − Fb between the different stacks. Kaluza-Klein compactification
of these 6d states leads to 4d chiral fermions, whose number is given by the index of
the Dirac operator, # = q

∫
F = q n. Hence the number of chiral fermions is given by

Iab = (+1)
∫
Fa + (−1)

∫
Fb. For general wrapping numbers ma the gauge group generated

by stack a is U(Nama) that gets broken to U(Na)
ma and further to the diagonal U(Na) of

4X4,5 are the coordinates of the T 2 torus.
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Figure 16. Geometric origin of the hierarchy of Yukawa couplings for different generations.

The first observation we can make is that all models constructed above are non-
supersymmetric. One simple way to see it is that we start with type IIA string theory
compactified on X6, and introduce D6-branes. Since RR tadpole cancellation requires that the
total RR charge vanishes, we are forced to introduce objects with opposite RR charges, in the
sense of branes and antibranes, a notoriously non-supersymmetric combination.

An equivalent derivation of the result is as follows. If we succeed in constructing a
supersymmetric configuration of D6-branes, the system as a whole would be a supersymmetric
BPS state of type IIA on X6. Since for a BPS state the tension is proportional to the RR charge,
and the latter vanishes due to RR tadpole cancellation, the tension of the state must vanish.
The only D6-brane configuration with zero tension has no D6-brane at all. Hence the only
supersymmetric configuration would be just type IIA on X6, with no brane at all.

These arguments suggest a way out of the impasse. In order to obtain N = 1
supersymmetric compactifications we need to introduce objects with negative tension and
negative RR charge, and which preserve the same supersymmetry as the D6-branes. Such
objects exist in string theory and are orientifold 6-planes, O6-planes. Introduction of these
objects leads to an interesting extension of the configurations above constructed, and will
be studied in section 4.3. In particular, we will use them to construct supersymmetric
compactifications with intersecting D6-branes.

Before doing that, it is interesting to consider diverse difficulties one encounters in non-
supersymmetric models, and the extent to which they can be satisfactorily solved.

3.4.1. Tachyons at intersections. Even if each stack of D6-branes preserves some
supersymmetry, the preserved supersymmetry may be different for different stacks. In these
situations, the spectrum of open strings at intersections is generically non-supersymmetric,
and some light scalar at the intersection may be tachyonic. Such tachyons signal an instability
against recombination of the two sets of intersecting branes into a single smooth one. The
initially considered configuration is not really stable.

There are two possible ways to face these tachyons. The first possibility is to consider
configurations where all scalar fields at all intersections are non-tachyonic, leading to non-
supersymmetric models which are nevertheless stable against small perturbations. These are
at best local minima, since as argued above, there always exists a global supersymmetric
minimum, which is the type IIA vacuum, and corresponds to having no D6-brane at all.
The metastable vacua may tunnel to this global minimum; they, however, provide reasonable
enough models if sufficiently long-lived.

A second possibility is to employ tachyons of this kind, with the right quantum numbers,
to trigger electroweak symmetry breaking. Although the string scale should be higher than
the weak scale, the gauge symmetry breaking scale can be adjusted to around 100 GeV by

Figure 4: Yukawa couplings in intersecting D-branes models.

the ma copies. Hence the fundamental representation (�a, �̄b) leads to ma ×mb copies of
(Na, N̄b). If follows that

Iab =

∫
Fa −

∫
Fb =

(
na
ma

− nb
mb

)
mamb = namb − nbma.

More realistic cases make use of D9-branes on T 2×T 2×T 2. Notice that so far we have
not introduced O9-planes in the theory. Stacks of Na D9-branes with wrapping numbers

(nia,m
i
a), where i labels the i-th torus, characterizing the magnetic fields F i

a = ni
a

mi
a(R1R2)i

=

tanθia give rise to the following spectrum

• aa : U(Na) factors

• ab : Iab =
∏3

i=1(niam
i
b − nibmi

a) representations (Na, N̄b)

The supersymmetry condition θ1 + θ2 + θ3 = 0 from intersecting D-branes becomes

tan−1F − 1 + tan−1F2 + tan−1F3 = 0.

In the special case F3 = 0 we obtain F1 = −F2 and N = 2 supersymmetry.

3.2 Remarks on the phenomenology of particle physics models
from D-branes

D-brane models can generate effective field theories that describe the MSSM or some GUT
theory, such as SU(5). Gauge coupling unification is not natural in D-brane models, since
each Standard Model factor comes from different D-branes stacks

1

g2
YM,a

=
VΠa

gS
,

unless some symmetry is present for which the volumes are related VΠa = VΠb
for a 6= b.

Another possibilty is to consider some limit in the moduli space in which the volumes align,
like large anisotropic volumes with very diluted fluxes.

Yukawa couplings coefficients are computable as function of the moduli Yijk ∼ e−Aijk

(see fig. 4). Some couplings can be forbidden in perturbation theory, such as the 10+210+25Hu,+1

in SU(5) GUT models. Such couplings can be generated by D-instantons or in F-theory.
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Figure 5: D7-branes fill the first torus and intersect over 2-cycles.

4 F-theory

Consider an orientifold of the type IIB theory compactified on a Calabi-Yau, that contains
D7 branes. The D7 branes will wrap 4-cycles, Πa, in the compact space and will generi-
cally intersect over 2-cycles(see figure 5). Gauge interactions are localized on the 4-cycles.
Chiral matter is localized at the intersections, hence matter will be 6-dimensional. Yukawa
couplings are localized at triple intersections of the matter curves.

F-theory generalizes this picture by englobing non-perturbative effects that generate
Yukawa couplings missing in the perturbative picture. Useful reviews and references for
this part of the lectures are [16] - [20].

4.1 What is F-theory

Let’s recall the relation between M-theory on a T 2 torus and type IIB theory on S1. Taking
the torus to be small and reformulating this as type IIA on a small circle, then T-dualizing
along this small circle gives IIB theory on a large circle. In the limit of vanishing area,
A = R1R2, of the T 2, for fixed τ = R2

R1
eiθ this leads to uncompactified type IIB with

complex coupling constant τ = 1/gS + i a, where a is the RR zero form.
A fibration of this duality leads to F-theory. Consider a 7d compactification of M-

theory with a T 2 fiber over the complex projective space P1(elliptically fibered K3). The
torus parameter τ(z) is allowed to depend on the complex coordinate z of P1. When the
T 2 fiber shrinks to zero(A→ 0, τ(z)-fixed) we obtain a compactification of IIB on P1 with
varying τ . The degenerate fibers correspond to 7-branes in the IIB picture.

The resulting theory is a non perturbative vacuum of IIB. The coupling constant τ suf-
fers SL(2,Z) monodromies at the singularities (7-branes) and, in general, a weak coupling
limit cannot be defined. The τ → τ + 1 transformation corresponds to a D7-brane.

Non-abelian enhanced gauge symmetries can be obtained for coincident D7-branes or,
in the F-theory language, for coincident degenerations of the elliptic fiber. The massless
gauge bosons correspond to M2 branes wrapping collapsed 2-cycles :

∫
Σ2
C3 = A1. If the 2-

cycles are blown up, the degenerate elliptic fiber will deform into a chain of spheres(sausage)
intersecting according to the Dynkin diagram of the enhanced gauge group.

If the elliptic fibration is described by the equation

y2 = x3 + f8(z)x+ g12(z),

11



ord(f) ord(g) ord(∆) fiber-type singularity-type

0 0 n In An−1

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 2: Kodaira classification of singular fibers.

then the enhanced gauge symmetries generated by the singularities of the elliptic fibra-
tion are classified according to the vanishing order of the polynomials f , g and of the
discriminant ∆ = 27g2 + 4f 3 as depicted in Table 2.

4.2 Model building in F-theory

Consider now M-theory compactified on an elliptically fibered Calabi-Yau fourfold. This
leads to IIB on the base B3 of CY4, while the complex structure τ(z1, z2, z3) of the fiber
torus encodes the dilaton and the axion. 7-branes are located at the discriminant locus
∆(z1, z2, z3) = 0, where the T 2 degenerates by pinching one of its cycles, hence the 7-branes
wrap 4-cycles, Sa, on B3. The emerging picture is very similar to type IIB models with
intersecting D7-branes.

In oder to achieve chirality one needs to introduce magnetic fields. Since gauge bosons
arise from the 3-form C3, the magnetic field is described by the G-flux, G4 = dC3.

The matter appearing at the intersection of 7-branes is read out through the unfolding
procedure [21], which requires to know how the singularity of the elliptic fibration gets
enhanced at the intersection. For instance, given the enhancing

U(Na)× U(Nb)→ U(Na +Nb),

the off-diagonal gauge bosons

(
aa ab
ba bb

)
become chiral fields at the intersection

Adja+b → (Adja, 1) + (1, Adjb) + (Na, N̄b) + (N̄a, Nb).

In the case of the enhancement SO(10) × U(1) → E6, we obtain chiral matter in the
16 spinorial representation of SO(10) : 78→ 45 + 1 + 16 + c.c..

So far model building in F-theory has mainly focused on local constructions, due to
the complexity of Calabi-Yau fourfolds. These constructions use the bottom-up approach,
which has been applied before to models with D3-branes at singularities.

Consider a local base with a single 4-cycle S and 7-branes wrapping S leading to an
SU(5) GUT model. Other 7-branes on non-compact cycles S ′ generate matter. The re-
quirement to have a single small 4-cycle is very restrictive and S must be a del Pezzo surface
dPn, n = 0...8. These surfaces are P2 blown up at n points. One obtains n exceptional
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2-cycles Ei, which together with the hyperplane class H satisfy

H ·H = 1

H · Ei = 0

Ei · Ej = −δij.

Since dPn are rigid one cannot move the branes in order to break the SU(5) GUT group
to the Standard Model one. This can be achieved by turning on magnetization along the
hypercharge direction

FY =


2

2
2
−3

−3


SU(5)→ SU(3)× SU(2)× U(1)Y

24→ (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)−1/3 + (3̄, 2)1/3.

No exotics are obtained through this modified KK reduction.
One must ensure that the hypercharge is massless. This is achieved if class [FY ] is

homologically trivial∫
8d

C4 tr(FY ∧ FY ) =

∫
4d

B2 ∧ trFY ; B2 =

∫
[FY ]

C4 = 0.

The matter content is the following 3(5̄ + 10) + 2Hu + 2Hd
. Please note that while the

quarks and leptons fall into SU(5) multiplets, a doublet-triplet splitting operates for the
Higgs states. This is obtained in the following manner.

Step 1. The 10, 5, 5̄ are obtained at interesctions from the local enhancements

SU(6)→ SU(5)× U(1)

35→ 24 + 5 + 5̄ + 1

S0(10)→ SU(5)× U(1)

45→ 24 + 10 + 1̄0 + 1

Step 2. Ensure the appropriate states survive as SU(5) is broken to Standard model
gauge group. This can be achieved if the curves Σmatter, ΣHiggs are insensitive, respectively
sensitive to the magnetic flux FY :

∫
Σmatter

FY = 0,
∫

ΣHiggs
FY 6= 0. As Higgs doublets and

triplets have different hypercharges, the triplets can be projected out in this way.
As a concrete example let’s consider the case where the 4-cycle S = dP8, with 5[FY ] =

E3 − E4,
∫
E3
FY = −1/2 and

∫
E4
FY = 1/5 (all others =0), where E4,5 are exceptional
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Σ
∫

Σ
FY

∫
Σ′ FY multiplicity

10 2H − E1 − E5 0 3 3
5 H 0 3 3

5Hu → (1, 2)+3 H − E1 − E3 1/5 2/5 1
5Hd
→ (1, 2)−3 H − E2 − E4 -1/5 -2/5 1

Table 3: Matter curves

2-cycles from the blown up points of the del Pezzo surface. The curves from which matter
is obtained are detailed in Table 3.

Note that the above spectrum could have been obtained from IIB with D7-branes. The
novelty in F-theory is the presence of the Yukawa coupling 10 · 10 · 5.

Yukawa coupligs in F-theory arise from triple intersection of the matter curves. An
Yukawa coupling of the form (N1, N̄2)(N2, N̄3)(N3, N̄1) can be obtained from unfolding of
the local enhancement

U(N1 +N2 +N3)→ U(N1) + U(N2) + U(N3)

Adj → Adj1 + Adj2 + Adj3 + (N1, N̄2) + (N2, N̄3) + (N3, N̄1) + c.c.

One can engieneer a 10 5̄ 5̄Hd
coupling from a local SO(12) enhancement

SO(12)→ SO(10)× U(1)→ SU(5)× U(1)× U(1)

66 = 45 + 1 + 10 + 1̄0 = (24 + 10 + 1) + 1 + 5̄ + 5̄ + c.c.

Similarly a 10 10 5Hu can be obtained from a local E6 enhancement

E6 → SO(10)× U(1)→ SU(5)× U(1)× U(1)

78 = 45 + 1 + 16 + 1̄6 = (24 + 10 + 1) + 1 + 10 + 5̄ + c.c.

Much progress remains to be done in understanding other phenomenological properties
of F-theory, such as gauge coupling unifications, supersymmetry breaking, flavor textures,
as well as building global compact models.
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