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Abstract

Notes taken by Cristina Timirgaziu of lectures by Angel Uranga in June 2009 at the
Galileo Galilei Institute School ”New Perspectives in String Theory”. Topics include in-
tersecting D-branes models, magnetized D-branes and an introduction to F-theory phe-
nomenology.



1 Introduction

String phenomenology deals with building string models of particle physics. The goal is to
find a generic scenario or even predictions at TeV scale. Topics in string phenomenology in-
clude heterotic strings model building both on smooth (Calabi-Yau) and singular (orbifold)
manifolds and model building in Type II strings. The later has several branches: inter-
secting D-branes (type ITA strings), magnetized D-branes (type IIB), as well as F-theory
models.

Common problems in string phenomenology include the issue of supersymmetry break-
ing, moduli stabilization, flux compactifications, non perturbative effects and applications
to cosmology, in particular string inflation.

These lectures are concerned with model building using D-branes.

2 Intersecting D-branes

Model building using intersecting D-branes is a very active field in string phenomenology
and many reviews are already present in the littereature, including [1]- [5]. For a review of
recent progress see [6].

2.1 Basics of intersecting D-branes

In the weak coupling limit D-branes can be well described in the probe approximation as
hyperplanes where open strings can end. A number of N overlapping D-branes generates
a U(N) gauge theory with 16 supercharges, which corresponds to N' = 4 supersymmetry
in four dimensions. A Dp-brane, extending in the spacial directions z°... 2P, breaks half
the supercharges and the surving supersymmetry is given by () = €,Q 1 + egQr, where Q.
and Qg are left and right moving spacetime supercharges and e;, = I'°T'!... I'"Peg.!

The worldvolume dynamics of a Dp-brane is described by the Born-Infeld and Wess
Zumino actions

S = —Tp/dp“f e ?y/—det(G + 2ma/F) + /Cp+1>

where T, is the tension of the brane, ¢ is the dilaton, G - the induced metric on the D-
brane, F' - the field strength of the world volume gauge field and C,4; is the p 4+ 1 form
that couples to the D-brane.

Dp-branes give rise to non-abelian gauge interactions and also to four dimensional
chiral fermions provided the N = 4 supersymmetry is broken to N’ = 1 at the most. In
order to obtain 4d chirality the six dimensional internal parity must be broken, since the 16
supercharges in ten dimensions split as follows under the breaking of the SO(10) symmetry

SO(10) — SO(6) x SO(4); 16 — (4,21) + (4, 25).

1T denote de Dirac matrices.



Figure 1: Intersecting D6-branes.

Consider two D-branes intersecting as in fig. 1, where a preferred orientation has been
defined. The preferred orientation breaks the six dimensional parity. For phenomenological
purposes we need to consider two stacks of Ny and Nj type ITA D6-branes overlapping over
a 4d subspace and intersecting at angles 0, #, and 63 in three 2-planes. The spectrum of
open strings in this configuration contains several sectors

e 1-1 strings generate a U(N;) SYM theory in 7 dimensions with 16 supercharges
e 2-2 strings similarly lead to a U(NN2) SYM theory in 7 dimensions with 16 supercharges

e 1-2 strings generate massless chiral fermions in the (Ny, Ny) representation in 4 di-
mensions? (since these states are located at the intersection of the two stacks), as
well as other states, which could potentially be light scalars

e 2-1 strings generate the antiparticles of the states in sector 1-2.

The light scalars in the sector 1-2 exhibit the following masses®

1

o/m2 = 5(91 + 92 + (93)
1

om? = 5(—91 + 0y + 63)
1

CYI77”L2 = 5(91 - 92 + 63)

1
o/m2 = 5(‘91 + 02 — 03) (1)

2These chiral fermions leave in 4d because, due to the mixed boundary conditions (Neuman-Dirichlet)
of the open strings stretched between the two stacks of D-branes, the zero modes of a Ramond fermion,
corresponding to the 6d transverse space are not present.

3The oscillator modes in the expansion of the open strings will be shifted by +6; as in b*, /240, and
this change will show in the mass of the states through contribution to the zero point energy.
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Figure 2: Recombination of two branes.

Generically the scalar spectrum laid out in (1) contains no massless states, in which
case there is no supersymmetry preserved in the theory. The scalars in the sector 1-2
can also be tachyons indicating the instability of the brane configuration. In this case
recombination of the branes will lead to a bound BPS state displaying the phenomenon
of wall crossing (see figure 2). The initial configuration is described by a scalar potential,
parametrized by a scalar ¢ with charges 1 and —1 under the gauge group generated by the
two D-branes, U(1) x U(1)

Vb = (lo* +¢)?,

where the Fayet-Illiopoulos term is related to the intersection angles & = 61+ 605+ 605. Three
situations can present

e the massive case, £ > 0 : the minimum of Vp is at < ¢ >= 0 and the U(1) x U(1)
gauge group is unbroken

e the tachyonic case, £ < 0 : the scalar ¢ gets a VEV which breaks U(1) x U(1) to one
U(1) (one brane)

e the massless case, £ = 0 : supersymmetric case, Vp = 0, stable U(1)? gauge group.

Let’s see under which conditions some supersymmetry can be preserved by config-
urations of intersecting D-branes. Remember that the supersymmetry transformations
preserved by a D-brane are of the form e;,Q; + egQr, where for two stacks of branes the
spinor coefficients satisfy

e, =T0.T° Ty €p

e% =1°.18 ', e%
Here m; and m, denote the compact directions of branes D6; and D6y respectively.
Generically no supersymmetry transformations survive both conditions, but for special
choices of the angles ; there may exist solutions. If R is the transformation that rotates

the D6; branes into the D6y branes, I'y, = R Iy, R™!, then R must be an element of the
SU(3) subgroup of the SO(6) rotations group. If we assume the diagonal form of R

R = diag(e”,e7% e%2 7% ¥ o7%),
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the determinant of any sub three matrix should be zero, leading to one massless scalar
among the states in (1) and, hence to N' = 1 supersymmetry. The condition on the angles
reads

91:i:92j:6’3:0. (2)

A special case presents when one of the angles, say 63, is zero. The condition (2)
becomes 0; = £0,, the rotation R is an element of SU(2) and the configuration preserves
N = 2 supersymmetry. In this case the spectrum is not chiral, but this distribution of
D-branes can serve to generate the Higgs states of the MSSM in the hypermultiplet of
N = 2. Spatial separation of the branes in the parallel directions allows to generate a
mass for the Higgs.

2.2 Toroidal compactifications

Consider Type ITA theory compactified on a product of three 2-tori, M* x T? x T? x T?,
and several stacks of N, D6,-branes wrapped on three-cycles II, factorized as the product
of one-cycles with wrapping numbers (n’, m!), where i labels the i-th 2-tous and a labels
the stack.

The homology class of the 3-cycles decomposes in a basis

I, = H(ni[ai] + my[bi]),

with [a;] and [b;] being the fundamental 1-cycles of the torus T7?.
The chiral spectrum is given by

e aa strings give rise to a four dimensional U(N,) SYM

e ab strings generated four dimensional chiral fermions in the bi-fundamental represen-
tation (N, Ny) with multiplicity given by the number of intersections between stacks
a and b, I, = [IL,] - [IL,] = [[;(nimi — nym?).

An important consistency condition of intersecting brane models is the RR tadpole
cancellation, which arises from the Gauss law for RR-fields. The RR fields carry D-brane
charges and in a compact space the total RR charge must vanish(flux lines cannot escape).
The RR tadpole cancellation can be phrased as consistency of the equations of motion of
the RR-fields. the D6-branes introduced previously are charged with respect to a 7-form
(7. The equation of motion for C7 is derived from the spacetime action

S = / Hg N xHg + Na/ C
“ 10d i " ; MyxTlg !
= / 07/\dH2+ZNa/ C7 A O(I1,),
10d . 10d



where Hg = dCY is the field strength of C, Hy = %194 Hg its Hodge dual and 6(I1,) a bump
3-form localized on II,. The equation of motion of C'; reads then

dHy =Y "N, 6(1L,),

which taken in homology yelds

0=> N, [M,].

Cancellation of the RR tadpoles implies cancellation of four-dimensional chiral anoma-
lies in the effective field theory. The cubic SU(N,)? anomalies are given by

Aa = #Da - #lja = ZNb Iaba
b

where #[], denotes the number of chiral fermions in the fundamental representation. These
anomalies vanish in virtue of

Y N [ =0— YN, [II,] - [IL,] = 0.
b b
In contrast, the mixed U(1), — SU(Ny)? triangle anomaly is generically non zero

Aab = #Db,qazl - #Db,qa:—l = Na Iab 7é 0.

This anomaly is cancelled via the Green Schwarz Sagnotti mechanism thanks to the
extra couplings

Cs A trF, + Cs AN tr(Fy A Fy),
D6, D6y,

which reduce in four dimension to

/(Bz)a/\trFa+/ qub/\tr(Fb/\Fb),
4d 4d

with (BQ)G = f[Ha} 05, ¢b = f[Hb] Cg and d¢b = _5ab *4d (Bg)a.

Any U(1) coupling to the 2-form B, will become massive and many U(1)’s in the
theory receive a mass in this way, which is a welcomed phenomenological feature. We have
to make sure though that the hypercharge U(1)y stays massless.

2.3 Torodial compactifications with O6-planes

Consider ITA theory compactified on 7% and mod out by the symmetry QR(—1)/F, with Q
the worldsheet parity, f; the left moving worldsheet fermion number and R an antiholo-
morphic involution z; — Z;. The QR symmetry introduces O6-planes in the theory. When
introducing a stack of N, D6,-branes with wrapping numbers (n’,m:), the presence of



OR The tadpole condition (3) takes the de-
tailled form

Z Noninind =16

QRw a
— Z Nymlnn? =16
QRO - Z Nnlm2n? =16
— Z Nonin2m? =16

QROBw @

Figure 3: O-planes in Zs X Zs orientifolds.

the O6-planes requires also the introduction of their images in respect with the O-planes,
called D6’,-branes, with wrapping numbers (n’, —m’,), which characterize the 3-cycle [IT,].
The RR tadpole cancellation condition is then modified to

ZNa [Ha] + Z N, [H;] + Z(_4>[HOG] =0. (3)

The gauge group of the theory is given by ®, U(N,) and the chiral fermions come from
sectors

e ab : I, fermions in the ((,, ;)

e ab’ : I,y fermions in the ((J,, y).

2.4 Toroidal orbifold compactifications

We consider the orbifold 7° /7o X 7o, generated by the elements

0 : (2172’2723) - (—217 — X2, 23)
w (21722>Z3) - (217_227_23)
0(,() : (21722723) — (_Z17227_Z3)

and we mod out by QR, with R : (21, 29, 23) — (21, 22, 23). Four types of orientifold planes
are present in the theory, generated by the symmetries QR, QR6, QRw and QROw, as
depicted in figure 3.

Let’s consider the explicit example [7] in table 1. The visible gauge group of this model
isU(3)y xU(1)gx SU(2)p x SU(2)., where we used the fact that N D-branes parallel to the
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a,d|6+2] (1,00 | (3, ) (3,—1)
2 0,1) | (1,0) | (0,—1)
2 0,1) | (0,—-1) | (1,0)
h | 2 || (=2,1) | (=3,1) | (4,1
he | 2 || (=2,1) | (—4,1) | (=3,1)
24 1,0) | (1,0) | (1,0)

Table 1: Intersecting D-branes example.

orientifolds generate an USp(N) gauge group and USp(2) ~ SU(2). Equally, due to the
invariance of D-branes a and d under the orbifold, the U(NN) gauge symmetry is projected
to U(N/2).

The Standard Model particles are obtained as follows

e sectors ad and ab generate 3 representations (3 + 1,2,1) which represent the left
handed quarks and leptons @, L

e sectors ac and dc generate 3 representations (3 + 1,1,2) : right handed particles ug,
dR7 €Rr, VR

e sector be generate the Higgs states (1,2,2) : H,, Hy

The model represents a L-R extension of the MSSM. It is possible to choose the T°
generators in such a way to satisfy the supersymmetry condition

tan™" (x1/2) + tan™ (x2/3) + tan"" (xa/4) = 0,
where y; = (#2); for torus (T?);.
The hypercharge is defined as Qy = %Qa — Qg — QQC, while Qp_1, = Q — Qq.

3 More chiral models

Supersymmetric D-branes on Calabi-Yau compactifications of Type II theories fall in two
classes

e IIA : A-branes wrapped on Special Lagrangian 3-cycles, such as the D6-branes in the
intersecting D-branes models

e [IB : B-branes wrapped on holomorphic cycles. B-branes carry holomorphic stable
gauge bundles.



In the absence of branes, type ITA theory compactified on a Calabi-Yau X is related by
mirror symmetry to type IIB theory compactified on the mirror manifold X. This duality
extends also in the presence of the open string sector relating A-branes to B-branes.

We can describe two tractable regimes in which it is possible to break the 6d parity in
IIB theories in order to obtain chirality :

e D3-branes at singularities, for instance at the conical singularity at the origin of an
C3/Z3 orbifold : in this case the breaking of the six dimensional parity is achieved
through the action of the orbifold, which defines a preferred orientation. For examples
of phenomenological model building see [8] - [10].

e Magnetized D-branes : the pseudovector quality of the magnetic fields leads to the
breaking of parity. Below we give a brief outline of model building rules with mag-
netized branes. For further reading see references [11] - [15].

3.1 Magnetized D-branes

Consider N D5-branes wrapped on a T2 with magnetic field F # 0. The magnetic field
must satisfy the Dirac quantization condition % fT2 F =n € Z. For a D-brane wrapping
m times around the torus we have m% fT2 F =n € Z. The magnetic field will induce D3
charges on the D5-branes as follows

SD5:TTL Cﬁ+/ C4/\U“FI?7L C’6+n 04
MAxT? MAxT? MAxT? M*

The final state is a bound state of m D5 and n D3-branes. If we perform a T-duality
along X* 4 we obtain m D4-branes along X° and n D4-branes along X*, hence we obtain
a D4-brane with wrapping numbers (n,m) on T?. The angle of the D4-brane with respect
to the horizontal axis of the torus is given by tg § = F = . This is an instance of
1-dimensional mirror symmetry. The intersecting D-brane models described previously are
T-dualizable to magnetized branes models. Let’s see how chirality arrises in the magnetized
branes picture.

Consider stacks of N, D5,-branes with magnetic fields F,, characterized by (n,,m,),
with n, quantizing the magnetic flux and m, the wrapping number. The aa sector gives rise
to the gauge bosons of U(N,) and their superpartners. These fields do not see the magnetic
field, as they are not charged under the U(1) from U(N,). In contrast, states arising from
sector ab have charges (1,—1) under U(1), x U(1), and are sensitive to the difference in
the magnetic field F, — F}, between the different stacks. Kaluza-Klein compactification
of these 6d states leads to 4d chiral fermions, whose number is given by the index of
the Dirac operator, # = ¢ [ F' = ¢ n. Hence the number of chiral fermions is given by
Iy = (+1) [ F,+ (—1) [ Fy. For general wrapping numbers m, the gauge group generated
by stack a is U(N,m,) that gets broken to U(N,)™ and further to the diagonal U(N,) of

4X%5 are the coordinates of the T2 torus.
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Figure 4: Yukawa couplings in intersecting D-branes models.

the mg copies. Hence the fundamental representation ([, Eb) leads to m, X my copies of
(Ng, Np). If follows that

Ng Ny
I, = /Fa — /Fb = (— — —) MMy = NgMp — NpMg.-
me my

More realistic cases make use of D9-branes on T? x T? x T?. Notice that so far we have
not introduced O9-planes in the theory. Stacks of N, D9-branes with wrapping numbers

(ni, m!), where i labels the i-th torus, characterizing the magnetic fields F! = #?RQ)_ =

tand’ give rise to the following spectrum

e aa: U(N,) factors
o ab: I, = [[2_,(nimi — nim) representations (N,, N)

The supersymmetry condition 6y 4+ 0 + 63 = 0 from intersecting D-branes becomes

tan 'F — 1 4 tan ' Fy + tan 1 Fy = 0.
In the special case F3 = 0 we obtain F} = —F, and N’ = 2 supersymmetry.

3.2 Remarks on the phenomenology of particle physics models
from D-branes

D-brane models can generate effective field theories that describe the MSSM or some GUT
theory, such as SU(5). Gauge coupling unification is not natural in D-brane models, since
each Standard Model factor comes from different D-branes stacks

Vg,
g%’M,a gs ’

unless some symmetry is present for which the volumes are related Vi, = Vi, for a # b.
Another possibilty is to consider some limit in the moduli space in which the volumes align,
like large anisotropic volumes with very diluted fluxes.

Yukawa couplings coefficients are computable as function of the moduli Yj;; ~ e~
(see fig. 4). Some couplings can be forbidden in perturbation theory, such as the 10,2101955, +1
in SU(5) GUT models. Such couplings can be generated by D-instantons or in F-theory.

Agjk
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Figure 5: D7-branes fill the first torus and intersect over 2-cycles.

4 F-theory

Consider an orientifold of the type IIB theory compactified on a Calabi-Yau, that contains
D7 branes. The D7 branes will wrap 4-cycles, II,, in the compact space and will generi-
cally intersect over 2-cycles(see figure 5). Gauge interactions are localized on the 4-cycles.
Chiral matter is localized at the intersections, hence matter will be 6-dimensional. Yukawa
couplings are localized at triple intersections of the matter curves.

F-theory generalizes this picture by englobing non-perturbative effects that generate
Yukawa couplings missing in the perturbative picture. Useful reviews and references for
this part of the lectures are [16] - [20].

4.1 What is F-theory

Let’s recall the relation between M-theory on a T? torus and type IIB theory on S*. Taking
the torus to be small and reformulating this as type IIA on a small circle, then T-dualizing
along this small circle gives II1B theory on a large circle. In the limit of vanishing area,
A = RiR,, of the T?, for fixed 7 = g—few this leads to uncompactified type IIB with
complex coupling constant 7 = 1/gs + i a, where a is the RR zero form.

A fibration of this duality leads to F-theory. Consider a 7d compactification of M-
theory with a T2 fiber over the complex projective space P! (elliptically fibered K3). The
torus parameter 7(z) is allowed to depend on the complex coordinate z of P'. When the
T? fiber shrinks to zero(A — 0, 7(z2)-fixed) we obtain a compactification of IIB on P* with
varying 7. The degenerate fibers correspond to 7-branes in the IIB picture.

The resulting theory is a non perturbative vacuum of IIB. The coupling constant 7 suf-
fers SL(2,Z) monodromies at the singularities (7-branes) and, in general, a weak coupling
limit cannot be defined. The 7 — 7 + 1 transformation corresponds to a D7-brane.

Non-abelian enhanced gauge symmetries can be obtained for coincident D7-branes or,
in the F-theory language, for coincident degenerations of the elliptic fiber. The massless
gauge bosons correspond to M2 branes wrapping collapsed 2-cycles : f22 C5 = Ay. If the 2-
cycles are blown up, the degenerate elliptic fiber will deform into a chain of spheres(sausage)
intersecting according to the Dynkin diagram of the enhanced gauge group.

If the elliptic fibration is described by the equation

y? =2+ fs(2)x + g12(2),
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| ord(f) | ord(g) | ord(A) | fiber-type | singularity-type

0 0 n I, A,

2 >3 | n+6 I Dia
>3 4 8 IV* By

3 >5 9 11T E,
>4 5 10 1T Eq

Table 2: Kodaira classification of singular fibers.

then the enhanced gauge symmetries generated by the singularities of the elliptic fibra-
tion are classified according to the vanishing order of the polynomials f, g and of the
discriminant A = 27¢? + 4f? as depicted in Table 2.

4.2 Model building in F-theory

Consider now M-theory compactified on an elliptically fibered Calabi-Yau fourfold. This
leads to IIB on the base Bz of C'Y}, while the complex structure 7(zq, 29, 2z3) of the fiber
torus encodes the dilaton and the axion. 7-branes are located at the discriminant locus
A(z1, 29, 23) = 0, where the T? degenerates by pinching one of its cycles, hence the 7-branes
wrap 4-cycles, S,, on Bs. The emerging picture is very similar to type IIB models with
intersecting D7-branes.

In oder to achieve chirality one needs to introduce magnetic fields. Since gauge bosons
arise from the 3-form (s, the magnetic field is described by the G-flux, G, = dC}.

The matter appearing at the intersection of 7-branes is read out through the unfolding
procedure [21], which requires to know how the singularity of the elliptic fibration gets
enhanced at the intersection. For instance, given the enhancing

U(Na) X U(Nb) — U(Na + Nb)7

aa | ab

ba | bb
Adjayy, — (Adja, 1) + (1, Adjp) + (N, Np) + (Ng, Np).

In the case of the enhancement SO(10) x U(1) — Eg, we obtain chiral matter in the
16 spinorial representation of SO(10) : 78 — 45+ 1+ 16 + c.c..

So far model building in F-theory has mainly focused on local constructions, due to
the complexity of Calabi-Yau fourfolds. These constructions use the bottom-up approach,
which has been applied before to models with D3-branes at singularities.

Consider a local base with a single 4-cycle S and 7-branes wrapping S leading to an
SU(5) GUT model. Other 7-branes on non-compact cycles S” generate matter. The re-
quirement to have a single small 4-cycle is very restrictive and S must be a del Pezzo surface
dP,,n = 0...8. These surfaces are P, blown up at n points. One obtains n exceptional

the off-diagonal gauge bosons ( > become chiral fields at the intersection
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2-cycles F;, which together with the hyperplane class H satisfy

H-H =
H-E, = 0
EZE] = —57;]'.

Since dP, are rigid one cannot move the branes in order to break the SU(5) GUT group
to the Standard Model one. This can be achieved by turning on magnetization along the
hypercharge direction

SU((5) — SU(3) x SU(2) x U(1)y

24 — (8,1)0 4 (1,3)0 + (1, 1)0 + (3,2) 13 + (3,2)1/3.

No exotics are obtained through this modified KK reduction.
One must ensure that the hypercharge is massless. This is achieved if class [Fy] is
homologically trivial

/ 04 tI‘(Fy VAN Fy) == / BQ A tI‘Fy; BQ = / 04 = 0.
8d 4d

(Fy]

The matter content is the following 3(5 + 10) + 2y, + 2p,. Please note that while the
quarks and leptons fall into SU(5) multiplets, a doublet-triplet splitting operates for the
Higgs states. This is obtained in the following manner.

Step 1. The 10, 5, 5 are obtained at interesctions from the local enhancements

SU(6) — SU(5) x U(1)
35 —>24+5+5+1
50(10) — SU(5) x U(1)
45 —24+10+10+1

Step 2. Ensure the appropriate states survive as SU(5) is broken to Standard model
gauge group. This can be achieved if the curves Ypatter, 2Higes are insensitive, respectively
sensitive to the magnetic flux Fy @ [, Fy =0, fZHiggs Fy # 0. As Higgs doublets and
triplets have different hypercharges, the triplets can be projected out in this way.

As a concrete example let’s consider the case where the 4-cycle S = dPs, with 5[Fy] =
Es — Ey, ng Fy = —1/2 and fE4 Fy = 1/5 (all others =0), where E,5 are exceptional

13



x fz Fy fz/ Fy | multiplicity
10 2H - E, — E5 0 3 3
) H 0 3 3
5Hu—>(1,2)+3 H—El—Eg 1/5 2/5 1
5Hd—>(1,2)_3 H—EQ—E4 —]_/5 —2/5 1

Table 3: Matter curves

2-cycles from the blown up points of the del Pezzo surface. The curves from which matter
is obtained are detailed in Table 3.

Note that the above spectrum could have been obtained from IIB with D7-branes. The
novelty in F-theory is the presence of the Yukawa coupling 10 - 10 - 5.

Yukawa coupligs in F-theory arise from triple intersection of the matter curves. An
Yukawa coupling of the form (Ny, No)(Na, N3)(N3, N1) can be obtained from unfolding of
the local enhancement

Ad] — Ad]l + Ad]Q + Ad]g + (Nl, Ng) + (NQ, Ng) + (Ng, Nl) + c.c.

One can engieneer a 10 5 5, coupling from a local SO(12) enhancement

SO(12) — SO(10) x U(1) — SU(5) x U(1) x U(1)

66=45+1+10+10=(24+10+1)+1+5+5+cc.

Similarly a 10 10 5, can be obtained from a local Es enhancement
E¢ — SO(10) x U(1) — SU(5) x U(1) x U(1)

78=45+14+16+16=(244+10+1)+1+10+5+ c.c.

Much progress remains to be done in understanding other phenomenological properties
of F-theory, such as gauge coupling unifications, supersymmetry breaking, flavor textures,
as well as building global compact models.
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