Higher Spin Gauge Theories

Lecture 1



Introduction

Main topic — HS gauge fields

Generalization to higher tensor gauge fields of

SPIN 1 Y-M gauge potential A, :
SPIN 2 metric field gnm, :
SPIN 3 gravitino yna:

Goal: non-Abelian HS gauge symmetries

— nonlinear HS gauge interactions



Gauge symmetries guarantee consistency both for massless and massive

theories like HS gauge theory and String Theory

String theory via spontaneous breaking of HS gauge symmetries!?

HS Theory evolves to a nonlocal theory with emergent concepts of

space-time dimension, metric and local event

Example: 4d massless fields live on a delocalized 3-brane in ten dimen-

sions
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HS fields

Symmetric massless HS fields - main subject of these lectures
e m #* 0 symmetric fields of any spin: Singh-Hagen (1974)

Traceless symmetric tensors ong.ng;, Pny..ng o, Pni.mgzs---5 @

supplemer;gary fields

° m = 0 symmetric fields of any spin: Fronsdal (1978)
dny..ms s Pny..ns_o ~ Pnq..ns double traceless n"1"2n"3" g, o =0

Mixed symmetry fields
e m = 0 of any symmetry in flat space Labastida (1989), Skvortsov (2008),
Campoleony, Francia, Mourad, Sagnotti (2008)
° m = 0 of any symmetry in AdS Brink, Metsaev, MV (2000), Alkalaev,
Shaynkman, MV (2003) , N.Boulanger,C.Iazeolla and P.Sundell (2008) , Skvortsov
(2009)

A lot of particular examples in the literature



String

String Field Theory:

Massive fields of all symmetry types

Mg Nsg
W) = Zwml---mslvnl---nsz’ ,._ain% .. a_llaTQ .. a_22 ... |0)
QV) = 0 equations + constraints
oY) = Qle) gauge symmetries: true4-Stueckelberg

Mass scale m? ~ 1/d/
Tensionless limit o — oo : All fields become massless

High-energy symmetries?!

A HS symmetric String Theory = HS gauge theory



Fronsdal theory

vny..ns -~ FanNkK s double traceless symmetric tensor

Gauge transformation:

OPky..ks = O(k1€ko.. kis) > e mkg.. kg = O
(-..)- symmetrization: A, a.)) = 4(ay..an) -

€k,..k, 1 1S Symmetric traceless
Comment @ opn"m" g g, =0

Field equations

Giy. k() = 0,

s(s—1)
2
Problem 1.1. Check that Gg, i, is gauge invariant.

Gy ks (@) = Oop, g, (2) — 804, 0" 0py o) (@) + Ok Ok ® " ks ksn) (%)



Analysis of Fronsdal equations

5¢nnm1...m3_2 N 8n€nm1...m8_2

choose a partial gauge
gOn’I’L’ITL]_...’I’)’LS_Q — O angnml...ms_g — O

By field equation: OnOm """ =0
Taking into account 60" Ms—1 = []g"1--Ts—-1

choose the gauge 0,1 Ms—1 = (Q

Leftover gauge symmetry parameter £"1---"Ms—1 gatisfies
[Je™1--Ms—1 = amlsml...ms_l — 0 gnnml...ms_g, — 0.
Field equations

Dgpml...ms — O Spnnml...ms_g — O 8n(pnm1...m8_1 — O .
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Fronsdal action

1

1
S = Ive (ESOml'"mSGml.--ms(SO) — éS(S — 1)90nnm3'"m3Gppm3---ms(90)>

Important property Vo, dp:
1

05 = /Md (590m1"'m$Gm1...m3(90) - ZS(S - 1)59071“m3mm$Gppm3...ms(90)>

1
= /Md (wmlmsGmlmS(égp) _ ZS(S L 1)90nnm3'"mstpm3...m3((590

Problem 1.2. prove

Gauge variation S = 0 because G,m = 0.

s=20 @  scalar
s=1 on  Maxwell potential

s =2 onm linearized metric

)
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Various formulations of massless fields:
frame-like,

unrestricted,

BRST,

etc,

differ by

adding auxiliary fields that are expressed algebraically by their field equa-
tions via derivatives of dynamical fields
and/or Stueckelberg fields along with Stueckelberg shift gauge symme-

tries.

Interactions as the most crucial test: frame-like formulation

12



J

Yang-Mills theory

-elements of a Lie algebra |

Gnm = OnAm — OmAn + g[An, Am]a

5An — 8715 —I_ g[An, 8] y 5Gnm — g[Gnm, 5], 623(33) - [.

Yang-Mills Action

1
S = —Z/tr(GmnGm”) S = gMazw g/AQaA + 92/A4,

1
59 = —Zg/tr[GmnGm”,e] —0.
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° The coupling constants are fine tuned

° field spectra are distinguished:. Aij— elements of a Lie algebra: not
any set of fields A, is allowed

e Interactions to other fields are restricted, requiring covariant deriva-
tives 9n,x® — DnXx® = X' + An%sx"

x¢ —some [-module

e Cubic vertex contains one derivative
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Gravity

Riemann tensor R,m, j; transforms homogeneously under diffeomorphisms

Ognm = 8n(§k(37))gkm + 8m(fk($))gkn + §k(w)8kgnm

for gnm = Mum + kenm diffeomorphisms provide a nonlinear deformation
of the Fronsdal transformation dpnm

Einstein action S = —4%2]’\@}% IS a nonliner deformation of the
Fronsdal action for spin two.

Highly restricted field spectrum: only one spin-2 field.

Two derivatives In interactions.

Interactions via covariant derivatives.

0 — D=0—-I — Christoffel connection
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Goal

To find a nonlinear HS theory such that

(i) Fronsdal (or Labastuda) theory in the free field limit

(ii) HS gauge symmetries related to HS parameters £1"s-1 deform to
non-Abelian

These conditions were believed for a long time to admit no solution.
S — matrix argument Coleman, Mandula (1967)
If symmetry is larger than usual (super)symmetries in Minkowski space-

time 4+ inner symmetries the scattering is trivial: no interaction.
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HS Problem

HS-gravity interaction problem  Aragone, Deser (1979)

Riemann tensor R,,, ;; 7 0 in a curved background.

655" = [R..(e.Dp.)#0 7!
;

Weyl tensor for s > 2

For s < 2, 455°Y contains only the Ricci tensor to be compensated by
the variation of the Einstein action, allowing nonlinear gravity and su-
pergravity.

For s > 2, Weyl tensor contributes to §5:°" : difficult to achieve HS gauge

symmetry at the nonlinear level.
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Higher Derivatives in HS Interactions
A.Bengtsson, I.Bengtsson, Brink (1983)

Berends, Burgers, van Dam (1984)
S=524+534+...

53 = Y (DPo) (DY) (D) HatrH3i=3

p,q,T
String: p o~V
HS Gauge Theories (m = 0): Fradkin, M.V. (1987)
AdSy: (X9 +(XN2—(x) - - (X2 =02, p=r"1

[Dn, Dm] ~ P_2 — )\2

The p — oo limit is ill-defined at the interaction level both in string

theory and in HS gauge theory
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HS Fields in AdS Background

Anti-de Sitter space:

Rynki =0, Rinii = Ronnkl — N Gmk9ni — Gmidnk)
p=X"1is AdS, radius.
Symmetry: o(2,d — 1)
To preserve HS gauge symmetries of massless fields, mass-like terms

have to be adjusted in terms of )\

For general mixed symmetry fields it is impossible to keep all flat space
HS gauge symmetries unbroken in AdS background

Metsaev (1995), Brink, Metsaev, M.V. (2000)
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Role of AdS Background in HS T heories

Near AdS: expansion in powers of the shifted Riemann tensor R,,, i
(which is zero in the AdS space) rather than in powers of the Riemann

tensor R
[Dn, D] ~ A% ~ O(1) + O(R).

The action is modified by cubic terms

gint — A~ (Pt PP DIV R
fus 2

which contain higher derivatives along with negative powers of ).
There exists such S that its HS gauge variation compensates the
nonzero gaugde variation of the free covariantized action. (Fradkin, M.V.
(1987))

For given spin, a highest order of derivatives in a vertex is finite increas-

ing linearly with spin.
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Spin 3 example

MV ((<£1986)), unpublished , Zinoviev (2008)
590mnk — D(menk) —|— c o
_ 2 2
533 —/(DSODSO‘F)\ ©*)
S330 = A\~ °S335 + S332
S330 = / D?(ppR),  S33p= / ppR

5525, = / ([D,D]D(gpeR) ~ )\ZD(gpeR))

[Dn, D] ~ X2 ~ O(1) + O(R)

A"2652;, compensates §S33 + 6553,

For analogous analysis for s = 5/2 see Sorokin (2004)
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Compensation mechanism

. S_l . .
Sznt — Z Slzcnt7 S]cht — )\—2]€ /M4 Z Dp(ga)Dq(go)R
k=0 p+q=2k

The highest derivative term Sg"ltl IS gauge invariant in the flat limit.
Since [Dy, D] ~ A2 ~ O(1) 4+ O(R) its variation with )\ % 0 gives
55t = \2(1-k) /M4 S DP(p)DUe)R
p+q=2s5-3
This term compensates §5"",, modulo terms of order \~(25-6).
The process goes on unless one is left with the X-independent terms

59t — /M4 Z DP(o)DY(e)R
ptq=1

which just compensates the variation of the covariantized free action
§Scov 4 55"t — 0. To understand miraculous cancellations:
Geometric approach
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Nonlinear HS gauge theories
e Full nonlinear equations of motion are known in any d for symmetric
boson HS fields (2003) and in 4d for supersymmetric systems of HS fields
(1990)
e Once a spin s > 2 field appears, a consistent HS theory contains an
infinite set of HS fields with infinitely increasing spins
e Different spin one Yang-Mils symmetries g = u(n),o(n) or usp(2n).
Odd spins: adjoint representation of g.
Even spins: the opposite symmetry second rank representation of g,
that contains a singlet for a colorless graviton
o(1): s=0,2,4,6,..., u(1): s=0,1,2,3...

Fermions: bifundamental.
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Cubic actions

iNn 4d Fradkin, MV (1987), d = 5 MV (2001), Alkalaev, MV (2002);
particular spins in d > 4 Beckaert, Boulanger, Cnockaert (2005), Fotopoulos,
Irges, Petkou, Tsulaia (2007), Boulanger, Leclercq, Sundell (2008).

partially gauge fixed approach Metsaev (2005,2007)
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Cartan formulation of gravity

Diffeomorphisms without a distinguished spin two metric tensor:
exterior algebra calculus

ab

dmn , |_]o,mfn — 6% yWn o, dmn — 6?,16na )
e? = dx"el frame one-form (vielbein)
w® = dz"w,* Lorentz connection

a,b...=0,1...d—1 ‘flat’ tangent space indices.

Extra d(dz_l) components in €% are compensated by the o(d—-1,1) local

Lorentz symmetry

se(x) = e®(x)ep(x) eap(®) = —epe (), Sgmn(z) = 0.
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Gravity as a gauge theory

e?, w are gauge fields of AdS algebra o(d—1,2) or its Poincare contraction
iso(d—1,1)

W =eP, + %wabMab
The YM curvature two-form is
R = dW—I—W/\WET“Pa—I—%R“bMab,
T¢ = Dle® = de® + w% A €?,
R =R _ 2,0 p b Rab:dwab+wac/\wcb

A1 =) is the AdS radius. Flat limit: A — 0
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Zero torsion condition
T =0 — w = w(e, Oe)

Rn kl = ege?Rmn ab(w(e),e) is Riemann tensor for T = 0.
AdSy : R*» =0, R*=0.

Minkowski: R, 1 = 0, R*=20
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MacDowell — Mansouri Action

1

GMM[, 1= _
e, ] 4K2\2

/M4 RA102 A Ra3a4€a1a2a3a4 7 R ab _ R ab )\Qea A eb

Three terms:
R ANeAe. Einstein action without cosmological constant,
eNeANeAe. cosmological term,

RAR: Gauss-Bonnet term that contains higher derivatives but does not

contribute to the equations of motion

5 /M4 RAI2 A Ry 00 =0
Problem 1l.1. Prove
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Vacuum Global Symmetry

Any solution of
T(Wgy) = 0, R™®(Wy) =0, rank(e?) = d

describes local AdS; geometry. W, satisfies the equations of motion of
the MM action.

To describe a gauge model that has a global symmetry h it is useful to
reformulate it in terms of the gauge connections W and curvatures R of
h in such a way that the zero curvature condition R(Wy) = 0 solves the

field equations providing a A-symmetric vacuum solution Wj.

Other way around: if a symmetry A is not known, reformulate dynam-
iIcs a la MacDowell-Mansouri to guess the structure of an appropriate

curvature R and thereby the nonAbelian algebra h.
29



Frame-like formulation of HS fields
gnm — € — {eg,wgb}
admits a natural generalization to s > 2
907”&1---713 N Gnal"'a’s_l N {enal‘“a’s—l 7wna1-"as—1ab1“-bt}
A set of HS 1—-form connections labeled by the index 0<t¢t<s—1 for a

spin s

Wwal-as—1 ,b1...b¢ — dCmemalmaS_l’blmbty (w|t:O — e)

symmetric in the fiber indices a; and (separately) in b, and satisfy the

(anti)symmetry condition

s —1
w(al...as_l ,CLS) bo...by —0 (111

t

w 1--a5-1,b1..b¢ jg traceless in a and b.

Identification

— kl —
¥ni..ns — e(nl;nQ_,,nS) ¥ king..ms — 0
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Higher spin curvatures

— ad —
Ral...as_l,bl...bt — (DMw)al...as_l,bl...bt — dwal...as_l,bl...bt — h1 Waq...a5_1,b1...bt q

are invariant under the gauge transformation

2
— pad ad\ __
5wa1...a8_1,b1...bt - DMeal...aS_]_,bl...bt ) (DM) = 0.

Additional components in

s—1 S s — 2 s—1
eniay..a, 1 - 0 @O — 0O 4+ 0011 4 AT

are gauged away by the generalized HS Lorentz gauge parameter¢,, , ..

n
demay...as_1 = Om&aq...as_1 — (5721€a1...a8_1,b, 5% . flat frame
AREEmEE
5a1.-.a3_1,b IS a traceless tensor of the symmetry O : 5(@1.--%_1,(1) =
0.

€aq...a,_1 . SYMmetric traceless parameter of the Fronsdal theory
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Free Action iIn Minkowskl Space

1
S:/Md qur(d eN1-Ms—2P _ 5 dxm, wnl...ns_gp,m) wnl...ns_gq’r .

Important property that makes HS gauge symmetry manifest

ny..Ne_ m r ny...NMNe_ m
qu,rdxmw 1 S 2p7 5wn1'“n8_2q7 — qu/’ndxm 5w 1 S 2p7 wnl...ns_Qq

since it implies that

5S:/Md qur(éRnl...ns_Qp Wnl...ns_gq’r + el Ns—2p 5Rn1...n3_2q’r)
Problem 2.1. Prove
Problem 2.2. Prove that

S = Mé EP4" (Rnl...ns_zp 5wn1...ns_2q,r — 567’&1---ns—QPRnlmns_Qq’T)

,r
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EOM for w,

Rnl---ns—l — denl...ns_l . dCCm wnl...ns_l,m — O

expresses w in terms of derivatives of e modulo a pure gauge part
Problem 2.3. Prove and find w"1-"s-1,M(¢),

EOM for e is
dz By (P R 15-2)07 = Q|
or in the Einstein—like form

R lp.m] =0

m(ni;no..ng_1)

Gauge invariance implies equivalence to the Fronsdal action
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wa1--as-1,01--0t different ¢ : different dynamical roles
t = 0: frame-like HS field
t = 1: Lorentz connection-like auxiliary field

t > 1: extra fields appear for s > 2

By virtue of constraints ¢ is an order of derivatives

“Yaq...ag_1,b1..by — M (abl e abteall---as—l)
Extra field decoupling condition:

independence of the free action of extra fields = absence of higher

derivatives.

Extra fields do contribute at the interaction level : should be expressed
iIn terms of the dynamical fields (modulo pure gauge degrees of free-

dom) by constraints (Lopatin, Mm.v. (1988))
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First On-shell Theorem

by virtue of constraints and field equations, most of the HS field strength:
are zero

S
Rlal"'as_l,bl'"bt — Xa1°"as—17b1'°'bt <ﬁ> : t<s—1
5wdyn

S
R]_almas_l,blmbs_l — hc A hdcal...as_]_ C’ b1...bs_1 d+Xa1...aS_1,b1...bS_1 (ﬂ)
5wdyn
Xal---as—labl---bt (5585

The generalized Weyl tensor C%1--@s:b1...bs

) = 0 by field equations.

Wdyn

clai...as,as4q13bo...bs — 0, C1-+as—2¢db1.-bs Ned = 0,

parametrizes on-shell nontrivial components of the HS field strengths.
For s = 2 it parametrizes the on-shell nonzero components of the Rie-

mann tensor, i.e. the Weyl tensor.
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Spin two

Fields: e% and w?.

Zero-torsion constraint and Einstein equations
T =0, R® = ¢, A edC’ac’bd

Cacbd js the Weyl tensor in the symmetric basis

Cac,bd C"[;b]’ [ed] C‘[/‘C/b], [ad] clac,b)d — NacC% 0% = 0

The restrictions on the derivatives of %% result from the Bianchi

identities
DYRW® =0 = ec Aeg A (DFC, 0y =0, = Dlcae bl = ¢ cacl bd

where DL is Lorentz covariant derivative and

C(abc d)f — 0 n bCabc, de __
3 ) a

36



The process goes on by analyzing Bianchi.

For simplicity, Minkowski background: A% = dz%, , w® = 0
dCaC, bd _ thaCf, bd —

dCabf, cd hg(:;.)cfabfg7 cd + Cabfc’gd + Cfabfal7 gc>

Continuation gives
dCalmaQ-I_k,ble — hc((2 + k)cal...a2+k C,blbg _|_ 200,1...0,2_|_k (b170b2))
Combined with linearized Einstein equations gives unfolded spin two

equations

Analogously for any spin
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Central On-Shell Theorem

0<t<s, o(n) =1(0) n=(#)0

Rlal-"as—l,bl---bt — 5(75 _ (S _ 1))hc A tha’l‘”as—l c bi1...bs_1d

Ecal...as+k,b1...b3 —0 |8|| s+ k
0< k<

[ s— 1

t

ﬁcal---%—l—k’ b1...bs — hc<(2—|—]€)0a1"'%+kc, bi...bs + SCal"'as—Fkbl’ bs...bs C—|—)\2ha O ..

D2 =0

Infinite set of 0—forms (% %+k b1--bs describe all gauge invariant on-

shell nontrivial derivatives for a massless field of spin s.
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Klein-Gordon equation

Minkowski space in Cartesian coordinates: hf, = 02,

To unfold spin-0 massless field, introduce infinite set of O-forms

b
Cal...an — C(al---an) ) Ui CCbca3...an = 0.

Unfolded KG equation
dCal...CLn — thalanb
This system is consistent: since RO A RS = —hREARD

d?Cay.an = —h" AR Cyy e = 0 (n=0,1,...)
The first two equations
8fnC — Cn, anCm — Cmfn,,

imply Cpm = 0n,0mC.
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Tracelessness of Cy,
OC(x) = 0.
All other equations:
Cay...apn = Oaq - - - 0a,C

Ca;y...an. S€t of all on-mass-shell nontrivial derivatives of C(x).

d =1 : two independent components qg(t) = C(t), p(t) = Cn(t)

rank » > 1 traceless tensors are zero

Any coordinates in Minkowski space

d— Do =d~+ wg, D=0, Do(h) = 0.
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