Multi-particle production in the glasma at NLO and plasma instabilities

Raju Venugopalan Brookhaven National Laboratory

GGI, February 28th 2007

Talk based on:

 I) Multiparticle production to NLO: F. Gelis & R. Venugopalan, Nucl. Phys. A776, 135 (2006); Nucl. Phys. A779, 177 (2006).

II) *Plasma Instabilities:* P. Romatschke & R. Venugopalan, PRL 96: 062302 (2006); PRD 74:045011 (2006).

Recent lectures: F. Gelis and R. Venugopalan, hep-ph/0611157

Theme: deep connection between I) & II) in relation to thermalization of CGC -> QGP

Can we compute multiparticle production *ab initio* in heavy ion collisions ?

Framework: CGC- classical fields + strong sources

 $\alpha_S(Q_s) << 1$ $\rho \sim \frac{1}{g} \left(\equiv \frac{1}{\sqrt{\alpha_S}} \right) \gg 1$

Glasma (\Glahs-maa\): Noun: non-equilibrium phase between CGC & QGP

T.Lappi & L. McLerran; Kharzeev, Krasnitz, RV

Probability to produce n >> 1 particles in HI collisions:

P_n obtained from cut vacuum graphs in field theories with strong sources.

Gelis, RV

Systematic power counting for the average multiplicity

From Cutkosky's rules, sum of all Feynman tree diagrams

⇒ solution of classical equations of motion with *retarded b.c.*

Yang-Mills Equations for two nuclei

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_{1}^{a}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_{2}^{a}(x_{\perp})\delta(x^{+})$$
Kovner,McLerran,Weigert
Initial conditions
from matching
eqns. of motion
on light cone
$$\tau = \sqrt{2x^{+}x^{-}}; \eta = \frac{1}{2}\ln\left(\frac{x^{+}}{x^{-}}\right)$$

1

Lattice Formulation

Krasnitz, RV

D Hamiltonian in $A^{\tau} = 0$ gauge; per unit rapidity,

$$H = \frac{\tau}{2} \int d^2 r_{\perp} \left[p^{\eta} p^{\eta} + \frac{1}{\tau^2} E_r E_r + \frac{1}{\tau^2} (D_r \Phi) (D_r \Phi) + F_{xy} F_{xy} \right]$$

For ``perfect'' pancake nuclei, boost invariant configurations $A_r(\tau, \eta, r_{\perp}) = A_r(\tau, r_{\perp}) \; ; \; A_\eta(\tau, \eta, r_{\perp}) = \Phi(\tau, r_{\perp})$

□ Solve 2+1- D Hamilton's equations in real time for space-time evolution of glue in Heavy Ion collisions

$$E_{p} \frac{d\langle n \rangle_{LO}}{d^{3}p} = \frac{1}{16\pi^{3}} \lim_{x^{0}, y^{0} \to \infty} \int d^{3}x \, d^{3}y e^{ip \cdot (x-y)} (\partial_{x^{0}} - iE_{p}) (\partial_{y^{0}} + iE_{p})$$

$$\times \sum_{\text{phys.}\Lambda} \varepsilon_{\mu}^{\lambda}(p) \varepsilon^{\star \lambda}(p) A_{a}^{\mu}(x) A_{c}^{\nu}(y)$$

$$\stackrel{x^{\star}}{\longrightarrow} \sum_{\text{phys.}\Lambda} \varepsilon_{\mu}^{\lambda}(p) \varepsilon^{\star}(p) \varepsilon^{\star}(p) \varepsilon^{\star}(p) \varepsilon^{\star}(p) \varepsilon^{\star}(p)$$

$$\stackrel{x^{\star}}{\longrightarrow} \sum_{\mu} \varepsilon_{\mu}^{\lambda}(p) \varepsilon^{\star}(p) \varepsilon^{\star}(p)$$

II) Multiplicity at <u>next-to-leading order:</u> O (g^0)

Gluon pair production contribution

One loop corrections to classical field contribute at same order

Remarkably, both terms can be computed by solving eq. of motion for the *small fluctuations* about the classical background field with retarded b.c. - initial value problem Gelis+RV

Results same order in coupling as quark pair production contribution

Gelis,Kajantie,Lappi

NLO contributions may be essential to understand thermalization in heavy ion collisions

Also discussed in framework of Schwinger mechanism

Kharzeev, Levin, Tuchin

In the glasma, the classical, boost invariant E & B fields are purely longitudinal

Small (quantum/NLO) *"rapidity dependent*" fluctuations can grow exponentially and generate longitudinal pressure - may hold key to thermalization

Construct model of initial conditions with fluctuations:

i)
$$E_i(x_{\perp},\eta) = 0 + \delta E_i(x_{\perp},\eta)$$
 $A^i = \alpha_1^i + \alpha_2^i$
 $E_{\eta}(x_{\perp},\eta) = ig[\alpha_1^i, \alpha_2^i] + \delta E_{\eta}(x_{\perp},\eta)$ $A_{\eta} = 0$

ii) Method:

Generate random transverse configurations:

 $\langle \delta \bar{E}_i(x_\perp) \delta \bar{E}_j(y_\perp) \rangle = \delta_{ij} \delta(x_\perp - y_\perp)$

Generate Gaussian random function in \eta

$$\langle F(\eta)F(\eta')\rangle = \Delta^2\delta(\eta-\eta')$$

$$\delta E_i(x_{\perp},\eta) = \partial_{\eta} F(\eta) \,\delta \bar{E}_i(x_{\perp}) \; ; \; E_{\eta}(x_{\perp},\eta) = -F(\eta) \, D_i \delta \bar{E}_i(x_{\perp})$$

This construction explicitly satisfies Gauss' Law

Compute components of the Energy-Momentum Tensor

$$P_{\perp} = T^{xx} + T^{yy} = 2 \operatorname{Tr} \left[F_{xy}^2 + E_{\eta}^2 \right]$$

$$P_L = \tau^2 T^{\eta\eta} = \tau^{-2} \text{Tr} \left[F_{\eta i}^2 + E_i^2 \right] - \text{Tr} \left[F_{xy}^2 + E_{\eta}^2 \right]$$

 $\mathcal{H} = \tau T^{\tau\tau} \equiv \tau \left(P_{\perp} + P_L \right)$

Hard Loop prediction: Arnold, Lenaghan, Moore

$$|A(\tau)|^2 \propto \exp\left(\int_0^\tau d\tau' \gamma(\tau')\right) \to \exp\left(C\sqrt{g^2\mu\tau}\right)$$

Results from 3+1-D numerical simulations of Glasma exploding into the vacuum:

Non-Abelian Weibel instability seen for very small rapidity dependent fluctuations

Instability saturates at late times-possible non-Abelian saturation of modes ?

Fluctuations become of order of the background field when

Expect $C_1 \sim O(1)$

Our numerical simulations allowed much smaller values:

$$C_1 \sim O(10^{-8} - 10^{-20})$$

Hence the large times...

Distribution of unstable modes also similar to kinetic theory

Arnold, Lenaghan, Moore, Yaffe Romatschke, Strickland, Rebhan

Romatschke, RV

Very rapid growth in max. frequency when modes of transverse magnetic field become large -

```
Lorentz force effect on hard transverse mom. modes ?
```


Growth in longitudinal pressure...

Decrease in transverse pressure...

Same conclusion from Hard Loop study Romatschke-Rebhan

Comments:

a) Results very sensitive to spectrum of initial fluctuations- numerical results are for a first guess.

Recent WKB analysis of small fluctuations differs significantly...

$$\langle a_i(\eta, x_{\perp})a_j(\eta', x_{\perp}')\rangle = \frac{1}{\tau\sqrt{-(\partial_\eta/\tau)^2 - \partial_{\perp}^2}} \left(\delta_{ij} + \frac{\partial_i\partial_j}{(\partial_\eta/\tau)^2}\right) \delta(\eta - \eta')\delta^{(2)}(x_{\perp} - x_{\perp}')$$

$$\langle e_i(\eta, x_{\perp})e_j(\eta', x_{\perp}')\rangle = \tau\sqrt{-(\partial_\eta/\tau)^2 - \partial_{\perp}^2} \left(\delta_{ij} - \frac{\partial_i\partial_j}{(\partial_\eta/\tau)^2 + \partial_{\perp}^2}\right) \delta(\eta - \eta')\delta^{(2)}(x_{\perp} - x_{\perp}')$$

Comments:

b) Understanding high energy factorization (analogous to proofs of collinear factorization) will be important for full NLO estimate Gelis, Lappi, RV

Summary and Outlook

Outlined an algorithm to systematically compute particle production in AA collisions to NLO

Pieces of this algorithm already exist:

- Pair production computation of Gelis, Lappi and Kajantie very similar
- Likewise, the 3+1-D computation of Romatschke and RV + 3+1-D computations of Lappi

Result should include

- All leading log small x evolution effects
- NLO contributions to particle production
- Very relevant for studies of energy loss, thermalization, topological charge, at early times
- Relation to kinetic theory formulation at late times
 in progress (Gelis, Jeon, RV, in preparation)

EXTRA SLIDES

Growth rate proportional to plasmon mass...

