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Introduction

Precision electroweak data elementary Higgs?

This talk: argue that strong electroweak dynamics
at TeV scale is very plausible



Tension in Model Building



Minimal Strong EW Breaking
Effective theory below TeV:

• Minimal flavor violation

• No new states below TeV (no Higgs)

• Custodial symmetry violated only by

• All allowed interactions strong at TeV (               )

0.2 0.4

data min TC
“Little hierarchy problem” 

is “          problem”



Sign of S Parameter
Hints that          :

• Data                in QCD

• Holographic models                 when calculable

• QCD theory:
Large      + vector meson dominance + 

Nothing known about non-QCD-like theories with 

Must explore experimentally (LHC, lattice?)



Phenomenology
No complete theory, use general physical arguments
to deduce signatures (c.f. exploration of GeV scale)

• Strong             scattering

• Narrow spin 0 resonances (Evans, Luty 2009)

at LHC for

2-body strong decays forbidden by isospin, parity, etc.
can be narrow

plausible

∆Leff =
1

Λd−1
t

(ψψc)(Qtc) + h.c. ⇒



Conformal Technicolor
Biggest model-building challenge: top quark

E.g. 

(c.f. “walking technicolor” 1980’s)

(Luty, Okui 2004)

Hierarchy problem:

in strongly-coupled theories

General conformal field theory:



Constraints on Dimensions
• Large    : 

(includes “holographic” 5D theories)

•           is weak-coupling limit: 

• Rigorous bounds:
(Rattazzi, Rychkov, Tonni, Vichi 2008; Rychkov, Vichi 2009)

So far only bound

• Lattice:

First measurement:             in QCD with 2 sextet fermions (DeGrand 2009)
Measure    by dependence on mass (Luty 2008)



Composite Higgs
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some of  which do not. As the reader will see, it is possible to lift this degeneracy 

so that the true g round  state o f  the theory has a condensate  point ing primarily in 

the SU(2) ! U(1) preserving direction, but with a small componen t  in the SU(2) x 

U(1) breaking direction. This is how one may  achieve two distinct scales in the 

theory:  the "condensa te"  scale Auc,  and the much  smaller weak scale at 250 GeV. 

To effect this, we need to exploit the properties o f  the weak forces. 

What  happens  when the weak gauge forces are turned on? In general they will 

lift the degeneracy of  the minima in the potential  for the ul t rafermion bilinear. 

Knowing  in what  direction the condensate  will align becomes  a dynamical  problem. 

In fact, it is well known that the weak gauge forces do not " l ike" to be broken,  and 

will lift the degeneracy in such a way that the condensate  will choose  the direction 

that preserves the weak gauge group [5]. It is possible, however,  to add another  

weak gauge force to the theory - another  U ( I )  for example - which counteracts  the 

self-preservation instincts o f  the SU(2) x U ( 1 )  interactions and causes the true 

min imum o f  the potential  to shift away from the SU(2) x U(1) conserving direction. 

I f  one now studies the physics o f  the pseudo-Golds tone  bosons  (PGB) by expanding 

about  the S U ( 2 )!U(1) (false) vacuum, one finds that one of  the PGBs wants to 

develop a VEV. That  VEV may be interpreted as the angle between the SU(2) x U(1) 

invariant vacuum one is expanding about,  and the true vacuum of  min imum energy. 

This is because the PGB fields are just the angular  variables a round  the circle o f  

nearly degenerate  minima. The situation is shown schematical ly in fig. 1. 

To prepare  a composi te  Higgs model  one has the following recipe: 

(i) Postulate the existence o f  some ultrafermions,  t ransforming under  the non- 

abelian UC groups Guc ,  as well as a flavor group G f  It is assumed that UC forces 

cause an ul t rafermion condensate  to form at a scale Auc,  breaking the flavor 

symmetry  down to some subgroup:  G I -  Fly, H y c  G~ 

SU(2)xU( )breaking 

SU(2)xU(1) 
preserving 

Fig. 1. Shown above is the circle of almost degenerate minima for the ultrafermion condensate, wiqth 
radius Auc. The true vacuum of a composite Higgs theory misaligns with the SU(2)x U(1) preserving 
direction by an angle 0. In the SU(2) x U(1) preserving basis, it looks like the PGB field ~, corresponding 
to angular excitations, has developed a VEV. The mass of the W is then characterized by the scale 

Au¢ sin O, and the shifted ~b-field (properly normalized) is the Higgs boson. 

(Dugan, Georgi, Kaplan 1984)

Higgs as composite pseudo Nambu-Goldstone boson
What if strong dynamics cannot give          ?

Top loop



Precision Electroweak
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General Phenomenology

• Higgs with non-standard couplings
Suppressed standard model couplings (c.f. 2 Higgs model)

• New (strong?) physics at scale

Form of new physics depends on models...



Composite Top and Higgs
Composite fermions natural in “holographic” 5D models

Preserves EW
breaks EW

elementary

composite

Note: not minimal flavor violation!

L4 eff = λqqQ
c + λuu

cT + QcHT

〈H〉 ∼ sin θ



Precision Electroweak

αT ∼ Ncλ
4
u3 sin2 θ

αT

(
∆gZb̄b

gZb̄b

)2

∼ Nc

(
mt

Λ sin θ

)4

sin6 θ mt ∼ λq3λu3Λ sin θ

OK for sin θ ∼ 1
4

(Agashe, Contino, Pomarol 2005)



Elementary Top Quark
(Galloway, Evans, Luty, Tacchi, in preparation)
Minimal conformal technicolor is composite Higgs!

SU(2)CTC × SU(2)L × SU(2)R

minimal technicolor

χ ∼ (2, 1, 1)× 8

ψ ∼ (2, 2, 1),
ψc ∼ (2, 1, 2),

Ψ =
(

ψ
ψc

)
TEW =

(
tL

−tTR

)

∆L = ΨT mψΨ + χT mχχ

Breaks conformal invariance,
triggers chiral symmetry breaking

mψ =
(

mLε
mRε

)

︸ ︷︷ ︸

︸
︷︷

︸



Vacuum Alignment
〈ΨaΨb〉 = ΛdΦab

Φab = −Φba ⇒ SU(4)→ Sp(4)

Minimal conformal technicolor is composite Higgs!
(c.f. Katz, Nelson, Walker 2005)

General vacuum up to EW gauge transformations:

Φ =

(
cos θ ε sin θ

− sin θ − cos θ ε

)

0 ≤ θ ≤ π

Physical PNGB’s: h0, a



Technifermion Mass

Vm(θ) = am
Λ3

16π2
tr(mψΦ) + h.c.

∼ − cos θ

∆L = ΨT mψΨ + χT mχχ

important at weak scale

︸ ︷︷ ︸
mψ ∼ mχ ⇒

mψ

Breaks degeneracy
between           andθ = 0 π

θππ
2

Vm(θ)



Vacuum Potential
At, Am > 0

⇒ 0 < θ < π
2

V (θ)

θππ
2

V (θ) = − 1
2At sin2 θ −Am cos θ

At ∼
Ncm2

t Λ2

16π2

1
〈sin2 θ〉
︸ ︷︷ ︸

fixedmtm2
h0 = ctNcm

2
t ct ∼ 1

Higgs mass completely determined by top loop



Pseudo Phenomenology

⇒ a→ W+W−, ZZ, γZ

(           suppressed)γγ, t̄t

Decay:

a

ψ

WL a

aWL

Production:

⇒ σ(pp→ aa) ∼ 10 attobarn

Decays of heavy resonances?



Conclusions
• Strong dynamics at a TeV is a real possibility

• LHC phenomenology much less studied, needs work

CTC





Backup Slides



QCD Conformal Window 5

ficients A, b, and c in Eq. (8), all of which vanish in the
limit T/k → ∞.

In Fig. 2, we show the running coupling αs and its
critical value αcr for T = 130 MeV and T = 220 MeV
as a function of the regulator scale k. The intersection
point kcr between both marks the scale where the quark
dynamics become critical. Below the scale kcr, the sys-
tem runs quickly into the χSB regime. We estimate the
critical temperature Tcr as the lowest temperature for
which no intersection point between αs and αcr occurs.4

Compared to [8], we have further resolved the finite-T
Lorentz structure of the four-fermion couplings [30], re-
sulting in a slightly improved estimate for Tcr: we find
Tcr ≈ 172+40

−34 MeV for Nf = 2 and Tcr ≈ 148+32
−31 MeV for

Nf = 3 massless quark flavors in good agreement with
lattice simulations [33]. The errors arise from the ex-
perimental uncertainties on αs [16]. Dimensionless ratios
of observables are less contaminated by this uncertainty
of αs. For instance, the relative difference for Tcr for

Nf=2 and 3 flavors is T
Nf=2

cr −T
Nf=3

cr

(T
Nf=2

cr +T
Nf=3

cr )/2
= 0.150 . . .0.165

in reasonable agreement with the lattice value5 of ∼
0.121 ± 0.069.

Furthermore, we compute the critical temperature for
the case of many massless quark flavors Nf, see Fig. 3.
We observe an almost linear decrease of the critical
temperature for increasing Nf with a slope of ∆Tcr =
T (Nf) − T (Nf + 1) ≈ 24 MeV for small Nf. In addition,
we find a critical number of quark flavors, N cr

f = 12,
above which no chiral phase transition occurs. This re-
sult for N cr

f agrees with other studies based on the 2-loop
β function [29]; however, the precise value of N cr

f is ex-
ceptionally sensitive to the 3-loop coefficient which can
bring N cr

f down to N cr
f & 10+1.6

−0.7 [27]. Since we do not
consider our truncation to be sufficiently accurate for a
precise estimate of this coefficient, our study does not
contribute to a reduction of the current error on N cr

f .
Instead, we would like to emphasize that the flatten-
ing shape of the phase boundary near N cr

f is a generic
prediction of the IR fixed-point scenario: here, the sym-
metry status of the system is governed by the fixed-point
regime where dimensionful scales such as ΛQCD lose their
importance [8]. In any case, since N cr

f is smaller than
Na.f.

f = 11
2 Nc = 16.5, our study provides further evi-

dence for the existence of a regime where QCD is chiral
symmetric but is still asymptotically free.

4 Strictly speaking, this is a sufficient but not a necessary criterion
for chiral-symmetry restoration. In this sense, our estimate for
Tcr is an upper bound for the true Tcr. Small corrections to this
estimate could arise, if the quark dynamics becomes uncritical
again by a strong decrease of the gauge coupling towards the IR.

5 The large uncertainty on the lattice value arises from the fact
that the statistical errors on the Nf = 2 and Nf = 3 results for
Tcr are uncorrelated.
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FIG. 3: Chiral-phase-transition temperature Tcr versus the
number of massless quark flavors Nf. In the dashed-line re-
gion, we expect UA(1)-violating operators to become quan-
titatively important. The flattening at Nf ! 10 is a conse-
quence of the IR fixed-point structure [8].

IV. CONCLUSION

In summary, we have determined the χSB phase
boundary in QCD in the plane of temperature and flavor
number. Our quantitative results are in accord with lat-
tice simulations for Nf = 2, 3. For larger Nf, we observe
a linear decrease of Tcr, leveling off near N cr

f owing to the
IR fixed-point structure of QCD. Our results are based
on a consistent operator expansion of the QCD effective
action that can systematically be generalized to higher
orders.

The qualitative validity and the quantitative conver-
gence of this expansion are naturally difficult to analyze
in this strongly-coupled gauge system, particularly for
the gluonic sector. The fact that our truncation results in
a stable RG flow at strong interactions is already a highly
non-trivial check that any ansatz which misses the true
degrees of freedom generically fails. A more quantitative
evaluation of the validity of our expansion will require
the inclusion of higher-order operators in the covariant
gradient expansion as well as higher-order ghost terms.
An inclusion of operators that distinguish between elec-
tric and magnetic sectors at finite T , e.g., (uµFµν)2 with
the heat-bath four-velocity uµ, should facilitate to dis-
tinguish between differing coupling strengths in the two
sectors, as done in [25] using an ansatz inspired by hard
thermal loop computations.

We observe an improved control over the truncation in
the quark sector at least for the chirally symmetric phase,
which suffices to trace out the phase boundary. Quanti-
tatively, this has been confirmed by a stability analysis
of universal quantities such as N cr

f under a variation of
the regulator in [27] which gives strong support to the
point-like truncation of the quark self-interactions. Qual-
itatively, the reliability of the quark truncation can also

(Braun, Gies 2007)
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the continuum, it is designated

σ(s, g2(L)) = g2(sL), (9)

where s is the step size. On the lattice, a/L terms are also
present; one defines Σ(s, g2(L), a/L) similarly, so that it
reduces to σ(s, g2(L)) in the continuum limit:

σ(s, g2(L)) = lim
a→0

Σ(s, g2(L), a/L) (10)

First, a value u = g2(L) is chosen. Several ensembles with
different values of a/L are then generated, with β ≡ 6/g2

0
tuned using our interpolating function Eq. (7) so that the

measured value of g2(L) = u on each. Then for each β,
a second ensemble is generated with larger spatial extent,

L → sL. The measured value of g2(sL) on the larger
lattice is exactly Σ(s, u, a/L). Extrapolation in a/L to

the continuum then gives us the value of σ(s, u). Using
the value of σ(s, u) as the new starting value, this process
may then be repeated indefinitely, until we have a series of

continuum running couplings with their scale ranging from

L to snL. In this paper, we take s = 2.
Our results for Nf = 12 continuum running are pre-

sented in Fig. 1. We take L0 to be the scale at which

g2(L) # 1.6, a relatively weak coupling. The points

shown are for values of L/L0 increasing by factors of

two. The step-scaling procedure leading to these points

involves stepping L/a from 4 → 8, 6 → 12, 8 → 16,
and 10 → 20, and then extrapolating Σ(2, u, a/L) to the
continuum limit assuming that O(a2/L2) terms dominate.
Various sources of systematic error must be accounted

for. The interpolating function Eq. (7) may not contain

enough terms to capture the true form of g2(L) at large
L where there is sparse data, and although the O(a/L)
terms are expected to be small, ignoring them completely

in the continuum extrapolation may introduce a small sys-

tematic effect. In addition, a few simulations that had run at

least 20% of their target length, but were not yet completed,

were included in the fit. The statistical error in g2(L) for
these cases was likely underestimated. Here we provide

an estimate of our systematic error by varying our con-

tinuum extrapolation method between extremes. Inspec-

tion of Σ(2, u, a/L) as a function of a/L indicates that

dropping the step from 4 → 8 and performing a constant
extrapolation underestimates the true continuum running,

while performing a linear fit to all four steps gives an over-

estimate. These define the upper and lower bounds of the

shaded region in Fig. 1, which we take to be a conservative

estimate of the overall systematic error.

The observed IRFP for Nf = 12 agrees within the
estimated systematic-error band with three-loop perturba-

tion theory in the SF scheme. An important feature for

Nf = 12 is that the interpolating curves are anchored by
values of g2(L) that are also above the IRFP. For β ≤ 4.4,
g2(L) is large, decreasing as L/a increases with fixed β.
In the step-scaling function, values of u in this range lead
toΣ(2, u, a/L) < u as a/L → 0. This behavior is similar
to that found in Ref. [19] forNf = 16, and consistent with
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FIG. 1: Continuum running coupling from step scaling for Nf =
12. The statistical error on each point is smaller than the size of
the symbol. Systematic error is shown in the shaded band.

approaching the IRFP from above in the continuum limit.

In a future paper, we will exhibit both the step-scaling re-

sults and the continuum evolution in this region.

Our results forNf = 8 continuum running are presented
in Fig. 2, starting at a scale L0 where g2(L) # 1.6, and
exhibiting points with statistical error bars for values of

L/L0 increasing by factors of two. The three step-scaling

procedures are the same as in the Nf = 12 case. Step-
ping L/a from 4 → 8, 6 → 12, 8 → 16 and 10 → 20
with quadratic extrapolation again provides the points with

statistical error bars, and the other two procedures define

the upper and lower bounds of the systematic-error band.

For comparison, we have also shown the results of two-

and three-loop perturbation theory up to g2 # 10, beyond
which there is no reason to trust the perturbative expansion.

TheNf = 8 running coupling shows no evidence for an
IRFP, or even an inflection point, up through values exceed-

ing 14. The points with statistical errors begin to increase
above three-loop perturbation theory well before this value.

This behavior is similar to that found for the quenched the-

ory [20] and for Nf = 2 [16], although, as expected, the
rate of increase is slower than in either of these cases. The

coupling strength reached for Nf = 8 exceeds rough es-
timates of the strength required to trigger dynamical chiral

symmetry breaking [21, 22, 23], and therefore also confine-

ment. This conclusion must be confirmed by simulations

of physical quantities such as the quark-antiquark potential

and the chiral condensate at zero temperature.

To conclude, we have provided evidence from lattice

simulations that for an SU(3) gauge theory with Nf

Dirac fermions in the fundamental representation, the value

Nf=8 lies outside the conformal window, and therefore
leads to confinement and chiral symmetry breaking; while

Nf=12 lies within the conformal window, governed by an
IRFP. We stress that these conclusions do not depend cru-

cially on the L/a = 4 data, which are of limited use in
the SF scheme [6]. Thus the lower end of the conformal

(Appelquist, Fleming, Neil 
2008)

• Schrödinger functional

Lattice studies           

• Deconfinement transition

• Schrödinger functional

(Nc = 3)



Light Flavor?
Generate 4-fermion interactions with SUSY

(Dine, Kagan, 1990)

ψ

ψc

Q

uc

Hu

broken at >∼ 10 TeV

⇒ minimal flavor violation

But: theory must be conformal at SUSY breaking scale
Also solves SUSY flavor problem!

Model-building in progress...
(with Galloway, Evans, Tacchi)


