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Complicated interactions
underlying 

short distance 
physics

showering
of the 
partons

hadronization 
of all partons

Underlying 
event

Multiple 
interactions
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Different distance scales
• Distance scale set by d∼1/s
• Distance scale set by d∼1/mJ

• Distance scale set by d∼1/Λ
• Various scales involved

Distance scale d∼1/Λ governed by non-perturbative physics

Not known how to calculate
Gluons can couple different distance scales to one another
Not clear how to isolate the perturbative piece

How can anything be calculated?
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Factorization

Separating physics from different distance scales crucial to 
allow theoretical predictions for any process

This has been major effort over past 30 years

Most trivial factorization separates partonic scattering 
from the parton distribution functions

Rigorous proofs exist only for the simplest processes 
(Drell-Yan ...)

Much work still invested in this direction

Effective field theory (SCET) has allowed new angle at this 
problem
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Obtain the required ingredients

Data Calculations Models

Extract 
expressions from 

data 

Calculate using 
expansion of 

QCD

Use more or less 
inspired models 

of QCD

PDF’s
Hadron decays

hard process
QCD radiation

Hadronization
Underlying event
Multi scattering

Best Good Worst

Tuesday, October 27, 2009



Christian Bauer LBNL, 9/24/09

Using Data
Measured BR’s used for unstable particles decay

PDF’s extracted using simple well understood processes

  σ(p+e-→X+e-)   =        fq          ⊗     σ(q+e-→q+e-)
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Figure 24: The reduced cross section σ̃(x, Q2) for a selection of HERA data and the structure
function F2(x, Q2) for a selection of fixed-target data. The curves represent σ̃(x, Q2), evaluated
at the HERA centre-of-mass energy, and so for the high x and low Q2 values corresponding to
fixed-target data, y is negligible and the curves effectively represent the required F2(x, Q2). The
normalisations of data sets are those in the best fit at NNLO, found in Table 3. These are very
similar to those at NLO, but at LO the HERA data would be 0.5–1% lower in general.
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Models
Hadronization, underlying event and multiple proton 
scatterings are all non-perturbative effects that can not 
be calculated

Not universal enough to extract from data

Need more or less motivated models that capture some 
basic properties of QCD and adjust free parameters in the 
model to measured distributions

For best tuning, make sure that data samples are not 
biased ⇒ min bias data

Very important to describe the physics, but need to 
remember that large uncertainties present

Tuesday, October 27, 2009
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Calculations

σ = ∫dPS |M|2

Calculation of the square 
of the amplitude. At 

higher orders need to 
perform loop integrals.

To obtain cross sections, 
need to integrate |M|2 

over phase space of final 
state particles. 

This is what I want to focus on in this talk
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Phase space integration
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Phase space integrals require high dimensional integrals

Only for very low multiplicity can perform by hand

Need numerical tools
⇒ Monte Carlo integration

Main bottleneck in calculations is the efficiency of the 
Monte Carlo integration

Singularities in |M|2 make MC integration inefficient

Phase space integration
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How to integrate simple 
2-dim gaussian distribution

Need to distribute points according to singularities

Phase space integration
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Importance sampling (VEGAS)
Start from uniform distribution of points

Rapid changes in weights ⇒ divide into smaller areas
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Better results, still inefficient for high multiplicity
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Multi-channel (MadEvent)

|M|2

Singularities as propagators go on-shell

+

2

≈ +

2 2

∑i|Mi|2
|Mi|2∑i

Integrate each term using singularity structure of |Mi|2
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Use Parton Shower (GenEvA)
Parton showers generate events with given kinematics

Kinematics correspond to point in phase space Φn

If one knows probability P(Φn) to generate phase space, 
can assign weight

w(Φn) = |M|2(Φn) / P(Φn)

Since parton shower reproduces singularity structure 
of QCD

w(Φn) = O(1)
Tuesday, October 27, 2009
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What are the difficulties?

Momentum is not 
conserved at 
leading order in 
parton shower
Need to make 
somewhat ad-hoc 
corrections
Can change the 
shape of 
distribution 
functions

Some issues with a 
PS implementation

-Start with single branch

EL,

ER,

E, t

-Add branching of left daughter
-will change values of EL and ER 

tL

-Add branching of right daughter
-will change values of EL and ER 
-might not be allowed given tL

tR

Tuesday, October 27, 2009



Christian Bauer Ringberg, 01/09/07

What are the difficulties?

Momentum is not 
conserved at 
leading order in 
parton shower
Need to make 
somewhat ad-hoc 
corrections
Can change the 
shape of 
distribution 
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5 Correct PS distribution
Our Distribution
PS with reshuffling

Some issues with 
PS implementation Changes distribution
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What are the difficulties?
Different parton shower histories can result in same 

point in phase space

Need to give different parton shower histories weights 
wi , such that ∑wi = 1

Have to make sure that these weights don’t spoil 
efficiency

and

Tuesday, October 27, 2009
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process MadEvent GenEvA process MadEvent GenEvA

LO 3 (fb) 216.71 ± 0.21 216.77 ± 0.22 LO 5 (ab) 2542 ± 3 2543 ± 3

uūg 86.62 ± 0.13 86.60 ± 0.18 uūggg 912 ± 2 912 ± 2

dd̄g 21.75 ± 0.07 21.55 ± 0.10 dd̄ggg 227.5 ± 0.9 228.3 ± 0.8

ss̄g 21.63 ± 0.06 21.73 ± 0.10 uūdd̄g 33.8 ± 0.2 34.3 ± 0.4

cc̄g 86.71 ± 0.13 86.70 ± 0.18 uūuūg 25.6 ± 0.2 25.7 ± 0.3

LO 4 (fb) 36.44 ± 0.04 36.49 ± 0.04 LO 6 (ab) 67.9 ± 0.3 68.0 ± 0.2

uūgg 14.00 ± 0.03 14.00 ± 0.02 uūgggg 22.41 ± 0.09 22.29 ± 0.12

dd̄gg 3.504 ± 0.013 3.511 ± 0.011 uūuūgg 1.117 ± 0.006 1.14 ± 0.03

uūdd̄ 0.175 ± 0.001 0.180 ± 0.003 uūuūuū 0.005 ± 0.001− 0.005 ± 0.001

uūuū 0.132 ± 0.001 0.132 ± 0.002 uūdd̄ss̄ 0.019 ± 0.001− 0.020 ± 0.005

TABLE I: Comparison of total cross sections between GenEvA and MadEvent. Both programs agree

within statistical uncertainties (0.001− indicates an error too small to be reported by MadEvent).
In MadEvent, the relative uncertainty on each sample is roughly constant, whereas in GenEvA, less
populated channels are allowed to have higher relative uncertainty. This happens because the

ratio of various subprocesses is given in GenEvA by the QCD symmetry structures, and no extra
integration time is spend determining the ratio between different channels.

it breaks the reversibility of further truncation. That is, once truncation-prime is applied,
the probability for obtaining a set of four-vectors is extremely convoluted, and once can no
longer use the argument in Sec. 3D that reweighting can occur after hadronization.

7. RESULTS

In this section, we verify the GenEvA algorithm by comparing to simple, known tree-level
matrix elements. For this purpose, we use MadGraph [55] to get numerical Fortran HELAS
[56] routines for e+e− → n jets with 2 ≤ n ≤ 6. Because we are using the same matrix
element engine as MadEvent [8], we expect and observe that the two programs give identical
distributions. We then show rudimentary results on the LO/LL cross sections, with a more
thorough discussion given in the companion paper [1]. Finally, MadEvent offers a useful
benchmark to compare the efficiency of the GenEvA algorithm. We find that the GenEvA
efficiency is at or above MadEvent levels, and that GenEvA is more efficient at distributing
logarithmically-improved results than tree-level results.

A. Comparison with MadEvent

We can now compare the output of GenEvA with that of MadEvent [8] using the same
HELAS [56]/MadGraph [55] matrix elements. We consider the process e+e− → n partons,12

12 For simplicity, we are only including the diagrams with e+e− → γ∗ → partons. An intermediate Z-boson

could easily be included.

40

Verification of Phase Space
Use LO tree level matrix elements and compare output 

to other event generator (MadEvent)
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Verification of Phase Space
Use LO tree level matrix elements and compare output 

to other event generator (MadEvent)

Tuesday, October 27, 2009



Christian Bauer LBNL, 9/24/09

Comparison to MadEvent
ηeff Teff (msec) T0.9 (msec)

GenEvA LO 3 0.789 0.57 0.62
GenEvA LO/LL inc. 3 0.965 0.47 < 0.47

MadEvent 3 0.982 2.6 < 2.6
MadEvent uūg 0.994 3.0 < 3.0

GenEvA LO 4 0.525 1.7 2.2
GenEvA LO/LL inc. 4 0.713 1.3 1.5

MadEvent 4 0.809 11.1 11.4
MadEvent uūgg 0.752 5.4 5.7

GenEvA LO 5 0.390 10.0 15
GenEvA LO/LL inc. 5 0.557 8.6 10.8

MadEvent 5 0.843 62 64
MadEvent uūggg 0.833 27 27

GenEvA LO 6 0.298 160 250
GenEvA LO/LL inc. 6 0.396 150 230

MadEvent 6 0.809 1900 2300
MadEvent uūgggg 0.784 330 350

TABLE II: Comparison of the speed and efficiency between GenEvA and MadEvent. ηeff is the
statistical efficiency defined in Eq. (17), and Teff is the time required to create one statistical event.
T0.9 is the time to create one statistical event in a partially unweighted sample with ηeff(w0) = 0.9,
as defined in Eq. (19). Note that GenEvA performs better on Sudakov-improved (LO/LL) results
than on tree-level (LO) matrix elements. GenEvA is in all cases faster than MadEvent, in most
channels by a factor of a few, despite the fact that GenEvA’s efficiencies are lower since it is a
fixed-grid algorithm.

FIG. 19: Comparison of the weight distributions between GenEvA LO and LO/LL samples for 3-
to 6-parton matrix elements. Because the GenEvA phase space generator already includes leading-
logarithmic information, the LO/LL weight distributions are more strongly peaked at their average
weights. More importantly, there is a considerable suppression of the high-weight tail when going
from the LO to LO/LL samples. As expected, the effect of leading logarithms is less relevant
for the higher-multiplicity samples, as phase space suppression keeps the double-logarithms from
growing too large.

behavior, such that the resulting weights are expected to be uniform, giving rise to a high
statistical efficiency. To see this, consider the event weight given in Eq. (86). Since the split-
ting functions reproduce the tree-level matrix elements of QCD in the collinear limit, the
denominator has exactly the same singular behavior as the numerator, with no logarithmic
differences.

This increase in efficiency for LO/LL event generation can be seen in a few different ways,

41

GenEvA very competitive
with MadEvent, even 
without tuning shower 
for efficiency

GenEva beats MadEvent 
dramatically for LL 
improved results

MadEvent is worse for 
LL improved results, 
while GenEvA is better
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Calculation of |M|2
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Peturbative calculations
Calculations proceed by calculating Feynman diagrams

Example: pp → W j

Leading order:

At NLO need:

P.B. Arnold, M. Hall Reno / Wand Z production 

Ill if ill t iiiill 
L]. L 2 

39 

Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 
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us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 
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tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

P.B. Arnold, M. Hall Reno / Wand Z production 

Ill if ill t iiiill 
L]. L 2 

39 

Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 

v l  v2 v 3 v 4 v~ 

_ .iiiii.ii  iii..iiii L I ,  ......  i..L ILl ........ t Y  
v 6 v~ v 8 v 9 V]o vzz 

Fig. 2. Next-to-leading diagrams for qC t ~ g~,*. 

G1 G 2 G 3 G 4 

....... " ~i ~ [ IL~ i~2 ~ 
LU.* ,***,* t, 3 ° ' ~ 4  

G 5 G 6 G 7 G 8 

Fig. 3. Diagrams for qq --, gg3'*. 

scat ter ing.  The  d iagrams  H of fig. 5 are for qq scattering.  H 5 through H 8 should be 

inc luded  on ly  if ei ther the ini t ial  two quarks or final two quarks are identical .  

A f t e r  no t a t i ona l  pre l iminar ies  in sect. 2, we outl ine the ca lcula t ional  p rocedure  

us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 

fac to r i za t ion  to any other  scheme is descr ibed in sect. 4. In  sect. 5, we demons t r a t e  

tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

virtual

P.B. Arnold, M. Hall Reno / Wand Z production 

Ill if ill t iiiill 
L]. L 2 

39 

Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 

v l  v2 v 3 v 4 v~ 

_ .iiiii.ii  iii..iiii L I ,  ......  i..L ILl ........ t Y  
v 6 v~ v 8 v 9 V]o vzz 

Fig. 2. Next-to-leading diagrams for qC t ~ g~,*. 

G1 G 2 G 3 G 4 

....... " ~i ~ [ IL~ i~2 ~ 
LU.* ,***,* t, 3 ° ' ~ 4  

G 5 G 6 G 7 G 8 

Fig. 3. Diagrams for qq --, gg3'*. 

scat ter ing.  The  d iagrams  H of fig. 5 are for qq scattering.  H 5 through H 8 should be 

inc luded  on ly  if ei ther the ini t ial  two quarks or final two quarks are identical .  

A f t e r  no t a t i ona l  pre l iminar ies  in sect. 2, we outl ine the ca lcula t ional  p rocedure  

us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 

fac to r i za t ion  to any other  scheme is descr ibed in sect. 4. In  sect. 5, we demons t r a t e  

tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

real

Tuesday, October 27, 2009



Christian Bauer LBNL, 9/24/09

Logarithmic resummation
Perturbative expressions at higher order always 

contain logarithms of ratios of scales in the problem

Take example of pp → W+jets at small pT

dσ/dpT = N× [ 1 + αs L2 + αs L + αs

                    + αs2L4 + αs2L3 + αs2L2 + αs2L + αs2

                    + ... ]      L = Ln(pT/Q)

Presence of logarithms can clearly spoil perturbative 
expansion for large ratio pT/Q

Need to sum all large logarithmic terms

Tuesday, October 27, 2009
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Exclusive event generators
Most useful theoretical result for experimentalists is in 

the form of completely exclusive events

How precise can we make calculations in this form?

Need to generate events with many particles in the 
final state

Need to merge calculations with parton showers

Requiring such general results make calculations much 
more difficult

Tuesday, October 27, 2009
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Minimum accuracy required 
NLO accuracy

1.Required to have any idea of scale dependence
2.NLO corrections can be factor of 2 over LO

LL resummation

1.Required to be able to merge with parton shower
2.Unresummed Logarithms can completely destroy 
convergence of perturbation theory

Combination of these two is the goal

Tuesday, October 27, 2009
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Implementing NLO 
Calculations
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Infrared divergences
It is well known that both virtual and real 

contribution is IR divergent
virtual real

Note that real emission has different final state 
multiplicity than virtual graph

However, difference not detectable for kg⋄pq→0
due to finite resolution of any detector

IR div 
from 
kl→0

IR div 
from 

kg⋄pq →0
kl

kg

pq
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Analytical results
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Virtual contribution

Real contribution

Divergences cancel, finite pieces left over
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Infrared divergences
Problem is that IR divergences only cancel after phase 

space integration over real emission

Therefore, can not have fully exclusive events

Need to define exclusive cross section precisely
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Definition of exclusive x-section

in terms of the partonic cross sections,

dσexcl
n

dΦn
=

dσparton
n

dΦn
Rn(Φn) +

∑

m≥n+1

∫
dΦm

dσparton
m

dΦm

[
P incl(Φm,Φn)Rn(Φn)

−
∫

dΦn+1P
incl(Φm,Φn+1)Rn+1(Φn+1)P excl(Φn+1,Φn)

]
. (2.8)

This can be simplified greatly by making several choices for the projections and restrictions.
First, we set P excl = P incl,

P excl(Φn+1,Φn) = P incl(Φn+1,Φn) = δ
[
Φn − Φ̂n(Φn+1)

]
. (2.9)

In addition, for m ≥ n + 2, we use a recursive definition for the inclusive projections,

P incl(Φm,Φn) = δ
[
Φn − Φ̂n(Φm)

]
with Φ̂n(Φm≥n+1) = Φ̂n

[
Φ̂n+1(Φm)

]
. (2.10)

Furthermore, we use a recursive definition for the restriction function

Rn+1(Φn+1) = Rn
[
Φ̂n(Φn+1)

]
θ
[
t̂(Φn+1)− µ

]
. (2.11)

With these choices Eq. (2.8) becomes

dσexcl
n

dΦn
=

[
dσparton

n

dΦn
+

∑

m≥n+1

∫
dΦm

dσparton
m

dΦm
Jexcl(Φm,Φn;µ)

]
Rn(Φn) , (2.12)

where the exclusive “jet algorithm” is given by

Jexcl(Φm,Φn;µ) = δ
[
Φn − Φ̂n(Φm)

]
θ
[
t̂(Φ̂n+1(Φm)) < µ

]
. (2.13)

From Eqs. (2.12) and (2.13) we see explicitly that dσexcl
n only includes the singular region

of m-body phase space for m ≥ n + 1, which is isolated by the difference between the two
restrictions Rn and Rn+1 under the integral in Eq. (2.8).

The exclusive cross sections dσexcl
n ≡ dσexcl

n (µ) obviously depend on the resolution variable
t̂(Φn+1) and the resolution scale µ in Rn+1, which define the separation between the n-jet
and (n + 1)-jet parts of Φn+1. In the limit µ → ∞ (or more precisely µ > max[t̂(Φn+1)]),
we have dσexcl

n (µ → ∞) = dσincl
n , because in this limit the integral on the right-hand side of

Eq. (2.7) does not contribute.
The opposite limit µ → 0 is more subtle. Decreasing the resolution µ means that the n

jets described by dσexcl
n become more and more narrow. Since the observable On in Eq. (1.3)

is IR-safe, it can only be sensitive down to some scale µO, which one can think of as the
intrinsic resolution scale of the observable. Thus, if the resolution scale µ of the jets in dσexcl

n

is much smaller than the resolution scale µO of the observable, one expects that dσMC/dOn

in Eq. (1.3) correctly reproduces dσ/dOn in Eq. (1.2) up to corrections of O(µ/µO). While
this is the right intuitive picture, the precise argument why dσMC/dOn reproduces dσ/dOn

for small enough µ is more complicated, and we will come back to it in the following sections.

– 9 –

In the end, have exactly n final states

“Jet” defintion, 
ensuring that 

we have no more 
than n final 

state “particles”

Restriction, 
making sure 
that we don’t 

have less than n 
“particles”
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where Bn(Φn) is the tree-level (Born) contribution, Vn(Φn) is the one-loop virtual contri-
bution, and the ellipsis denote the two- and higher-loop contributions. Thus, Vn(Φn) and
Bn+1(Φn+1) are suppressed by one power of the coupling constant relative to Bn(Φn). To
simplify our notation, we keep all powers of the coupling constant implicit in these functions.

Inserting Eq. (4.1) into Eq. (1.2), we obtain the NLO expression for dσ/dOn,

dσ

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

]
f(Φn, On) +

∫
dΦn+1 Bn+1(Φn+1)f(Φn+1, On) . (4.2)

Similarly, from the definition of dσexcl
n at NLO in Eq. (2.27) we get

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + Vn(Φn) +

∫
dΦn+1 Bn+1(Φn+1)Jexcl(Φn+1,Φn, µn)

]
Rn(Φn) , (4.3)

where the exclusive jet function was given in Eq. (2.28):

Jexcl(Φn+1,Φn;µ) =
∑

i

wi
n+1 δ(Φn − Φi

n) θ(tin+1 < µ) . (4.4)

In Eqs. (4.2) and (4.3) we observe the usual complication arising in NLO calculations,
namely that the virtual contribution Vn(Φn) is IR divergent. This IR divergence is canceled
against the IR divergence coming from the integral over the singular region of Φn+1, where the
Born cross section Bn+1(Φn+1) diverges. To ensure the proper cancelation of IR divergences
in dσ/dOn, the measurement function must satisfy

lim
pi·pj→0

f(Φn, On) = 0 , lim
pi·pj→0

f(Φn+1, On) = f
(
Φn+1

∣∣
{pi,pj}→pi+pj

, On

)
. (4.5)

These IR-safety conditions are the direct analogs of those in Eqs. (2.3) and (2.4).
It is now straightforward to check that if the dσexcl

n are correct to NLO, we indeed
reproduce the correct NLO result for dσ/dOn from Eq. (1.3). Taking the difference between
dσ/dOn and dσMC/dOn expanded to NLO, we find

dσn

dOn

∣∣∣∣
NLO

− dσMC
n

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

][
1−Rn(Φn)

]
f(Φn, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
1−Rn(Φi

n)
]
f(Φi

n, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
f(Φn+1, On)− f(Φi

n, On)
][

1−Ri
n+1(Φn+1)

]
. (4.6)

To obtain the last term, we used Eq. (2.23). For small enough µ, all terms on the right-hand
side are suppressed, which we can see as follows. Note first that the resulting measurement
function appearing in the first two terms is IR safe, because the IR-safety properties of the
weights and projections in Eqs. (2.16) and (2.21) imply that

lim
pj ·pk→0

∑

i

wi
n+1

[
1−Rn(Φi

n)
]
f(Φi

n, On) =
[
1−Rn(Φjk

n )
]
f(Φjk

n , On) , (4.7)
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Calculate @ NLO

is given by the integral over the splitting function,

γn(µ) = −µ
∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) δ(tin+1 − µ) . (3.15)

The solution to the RGE in Eq. (3.14) is

dσLL
n (µ)
dΦn

=
dσLL

n (µ0)
dΦn

∆n(µ0, µ) , (3.16)

where the Sudakov factor ∆n(µ0, µ) is given by

∆n(µ0, µn) = exp
[∫ µn

µ0

dµ γn(µ)
]

= exp
[∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) θ(µ0 > tin+1 > µn)
]

. (3.17)

In the second step we assumed µ0 > µ to convert the integral limits into θ functions. Other-
wise, the choice of the initial scale µ0 is arbitrary.

In order to resum all the logarithmic terms in dσLL(µ) by this equation, one of course
needs a choice for µ0 such that the initial condition does not contain any large exclusive
logarithmic terms, ensuring that all logarithms in the exclusive cross section are generated by
the Sudakov factor. In other words, we need to identify a scale µ0, for which From Eq. (3.13)
it is immediately obvious that one can write

dσLL
n (tmax

n+1)
dΦn

Rn(Φn) =
dσincl

n

dΦn
. (3.18)

Since the inclusive cross section does not contain any exclusive logarithms, it immediately
follows that for the scale choice µ0 = tmax

n+1 there are no large logarithmic terms in dσLL
n (µ).

Putting all this information together, we can obtain a recursive formula

dσLL
n (µ)
dΦn

Rn(Φn) =
∑

i

wi
n−1

dσLL
n−1(tin−1)
dΦi

n−1

Qi(Φi
1) ∆n(tmax

n−1, µ) θ(tin−1 > µ)Rn−1(Φi
n−1) ,

(3.19)
where all large logarithmic terms are resummed at LL by the Sudakov factor ∆n. This is the
final result for the exclusive cross section with LL resummation.

4. NLO

4.1 Next-To-Leading Fixed Order Calculation

In this section we will obtain explicit expressions for the exclusive MC cross sections, dσexcl
n ,

at next-to-leading order in perturbation theory. At NLO, we write the partonic cross sections
dσparton

n as
dσparton

n

dΦn
= Bn(Φn) + Vn(Φn) + · · · , (4.1)

– 16 –

Include both Born and Virtual term

Define
VS = V + ∫S        BS = B - S

where Bn(Φn) is the tree-level (Born) contribution, Vn(Φn) is the one-loop virtual contri-
bution, and the ellipsis denote the two- and higher-loop contributions. Thus, Vn(Φn) and
Bn+1(Φn+1) are suppressed by one power of the coupling constant relative to Bn(Φn). To
simplify our notation, we keep all powers of the coupling constant implicit in these functions.

Inserting Eq. (4.1) into Eq. (1.2), we obtain the NLO expression for dσ/dOn,

dσ

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

]
f(Φn, On) +

∫
dΦn+1 Bn+1(Φn+1)f(Φn+1, On) . (4.2)

Similarly, from the definition of dσexcl
n at NLO in Eq. (2.27) we get

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + V S

n (Φn) +
∫

dΦn+1 BS
n+1(Φn+1)Jexcl(Φn+1,Φn, µn)

]
Rn(Φn) , (4.3)

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + Vn(Φn)±

∫
dΦn+1 Sn+1(Φn+1)Jexcl(Φn+1,Φn, µn)Rn(Φn) , (4.4)

where the exclusive jet function was given in Eq. (2.28):

Jexcl(Φn+1,Φn;µ) =
∑

i

wi
n+1 δ(Φn − Φi

n) θ(tin+1 < µ) . (4.5)

In Eqs. (4.2) and (4.4) we observe the usual complication arising in NLO calculations,
namely that the virtual contribution Vn(Φn) is IR divergent. This IR divergence is canceled
against the IR divergence coming from the integral over the singular region of Φn+1, where the
Born cross section Bn+1(Φn+1) diverges. To ensure the proper cancelation of IR divergences
in dσ/dOn, the measurement function must satisfy

lim
pi·pj→0

f(Φn, On) = 0 , lim
pi·pj→0

f(Φn+1, On) = f
(
Φn+1

∣∣
{pi,pj}→pi+pj

, On

)
. (4.6)

These IR-safety conditions are the direct analogs of those in Eqs. (2.3) and (2.4).
It is now straightforward to check that if the dσexcl

n are correct to NLO, we indeed
reproduce the correct NLO result for dσ/dOn from Eq. (1.3). Taking the difference between
dσ/dOn and dσMC/dOn expanded to NLO, we find

dσn

dOn

∣∣∣∣
NLO

− dσMC
n

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

][
1−Rn(Φn)

]
f(Φn, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
1−Rn(Φi

n)
]
f(Φi

n, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
f(Φn+1, On)− f(Φi

n, On)
][

1−Ri
n+1(Φn+1)

]
. (4.7)

To obtain the last term, we used Eq. (2.23). For small enough µ, all terms on the right-hand
side are suppressed, which we can see as follows. Note first that the resulting measurement
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is given by the integral over the splitting function,

γn(µ) = −µ
∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) δ(tin+1 − µ) . (3.15)

The solution to the RGE in Eq. (3.14) is

dσLL
n (µ)
dΦn

=
dσLL

n (µ0)
dΦn

∆n(µ0, µ) , (3.16)

where the Sudakov factor ∆n(µ0, µ) is given by

∆n(µ0, µn) = exp
[∫ µn

µ0

dµ γn(µ)
]

= exp
[∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) θ(µ0 > tin+1 > µn)
]

. (3.17)

In the second step we assumed µ0 > µ to convert the integral limits into θ functions. Other-
wise, the choice of the initial scale µ0 is arbitrary.

In order to resum all the logarithmic terms in dσLL(µ) by this equation, one of course
needs a choice for µ0 such that the initial condition does not contain any large exclusive
logarithmic terms, ensuring that all logarithms in the exclusive cross section are generated by
the Sudakov factor. In other words, we need to identify a scale µ0, for which From Eq. (3.13)
it is immediately obvious that one can write

dσLL
n (tmax

n+1)
dΦn

Rn(Φn) =
dσincl

n

dΦn
. (3.18)

Since the inclusive cross section does not contain any exclusive logarithms, it immediately
follows that for the scale choice µ0 = tmax

n+1 there are no large logarithmic terms in dσLL
n (µ).

Putting all this information together, we can obtain a recursive formula

dσLL
n (µ)
dΦn

Rn(Φn) =
∑

i

wi
n−1

dσLL
n−1(tin−1)
dΦi

n−1

Qi(Φi
1) ∆n(tmax

n−1, µ) θ(tin−1 > µ)Rn−1(Φi
n−1) ,

(3.19)
where all large logarithmic terms are resummed at LL by the Sudakov factor ∆n. This is the
final result for the exclusive cross section with LL resummation.

4. NLO

4.1 Next-To-Leading Fixed Order Calculation

In this section we will obtain explicit expressions for the exclusive MC cross sections, dσexcl
n ,

at next-to-leading order in perturbation theory. At NLO, we write the partonic cross sections
dσparton

n as
dσparton

n

dΦn
= Bn(Φn) + Vn(Φn) + · · · , (4.1)
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where Bn(Φn) is the tree-level (Born) contribution, Vn(Φn) is the one-loop virtual contri-
bution, and the ellipsis denote the two- and higher-loop contributions. Thus, Vn(Φn) and
Bn+1(Φn+1) are suppressed by one power of the coupling constant relative to Bn(Φn). To
simplify our notation, we keep all powers of the coupling constant implicit in these functions.

Inserting Eq. (4.1) into Eq. (1.2), we obtain the NLO expression for dσ/dOn,

dσ

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

]
f(Φn, On) +

∫
dΦn+1 Bn+1(Φn+1)f(Φn+1, On) . (4.2)

Similarly, from the definition of dσexcl
n at NLO in Eq. (2.27) we get

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + V S

n (Φn) +
∫

dΦn+1 BS
n+1(Φn+1)Jexcl(Φn+1,Φn, µn)

]
Rn(Φn) , (4.3)

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + Vn(Φn)−

∫
dΦn+1 Sn+1(Φn+1)Jexcl(Φn+1,Φn, µn)Rn(Φn) , (4.4)

where the exclusive jet function was given in Eq. (2.28):

Jexcl(Φn+1,Φn;µ) =
∑

i

wi
n+1 δ(Φn − Φi

n) θ(tin+1 < µ) . (4.5)

In Eqs. (4.2) and (4.4) we observe the usual complication arising in NLO calculations,
namely that the virtual contribution Vn(Φn) is IR divergent. This IR divergence is canceled
against the IR divergence coming from the integral over the singular region of Φn+1, where the
Born cross section Bn+1(Φn+1) diverges. To ensure the proper cancelation of IR divergences
in dσ/dOn, the measurement function must satisfy

lim
pi·pj→0

f(Φn, On) = 0 , lim
pi·pj→0

f(Φn+1, On) = f
(
Φn+1

∣∣
{pi,pj}→pi+pj

, On

)
. (4.6)

These IR-safety conditions are the direct analogs of those in Eqs. (2.3) and (2.4).
It is now straightforward to check that if the dσexcl

n are correct to NLO, we indeed
reproduce the correct NLO result for dσ/dOn from Eq. (1.3). Taking the difference between
dσ/dOn and dσMC/dOn expanded to NLO, we find

dσn

dOn

∣∣∣∣
NLO

− dσMC
n

dOn

∣∣∣∣
NLO

=
∫

dΦn
[
Bn(Φn) + Vn(Φn)

][
1−Rn(Φn)

]
f(Φn, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
1−Rn(Φi

n)
]
f(Φi

n, On)

+
∫

dΦn+1 Bn+1(Φn+1)
∑

i

wi
n+1

[
f(Φn+1, On)− f(Φi

n, On)
][

1−Ri
n+1(Φn+1)

]
. (4.7)

To obtain the last term, we used Eq. (2.23). For small enough µ, all terms on the right-hand
side are suppressed, which we can see as follows. Note first that the resulting measurement
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is given by the integral over the splitting function,

γn(µ) = −µ
∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) δ(tin+1 − µ) . (3.15)

The solution to the RGE in Eq. (3.14) is

dσLL
n (µ)
dΦn

=
dσLL

n (µ0)
dΦn

∆n(µ0, µ) , (3.16)

where the Sudakov factor ∆n(µ0, µ) is given by

∆n(µ0, µn) = exp
[∫ µn

µ0

dµ γn(µ)
]

= exp
[∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) θ(µ0 > tin+1 > µn)
]

. (3.17)

In the second step we assumed µ0 > µ to convert the integral limits into θ functions. Other-
wise, the choice of the initial scale µ0 is arbitrary.

In order to resum all the logarithmic terms in dσLL(µ) by this equation, one of course
needs a choice for µ0 such that the initial condition does not contain any large exclusive
logarithmic terms, ensuring that all logarithms in the exclusive cross section are generated by
the Sudakov factor. In other words, we need to identify a scale µ0, for which From Eq. (3.13)
it is immediately obvious that one can write

dσLL
n (tmax

n+1)
dΦn

Rn(Φn) =
dσincl

n

dΦn
. (3.18)

Since the inclusive cross section does not contain any exclusive logarithms, it immediately
follows that for the scale choice µ0 = tmax

n+1 there are no large logarithmic terms in dσLL
n (µ).

Putting all this information together, we can obtain a recursive formula

dσLL
n (µ)
dΦn

Rn(Φn) =
∑

i

wi
n−1

dσLL
n−1(tin−1)
dΦi

n−1

Qi(Φi
1) ∆n(tmax

n−1, µ) θ(tin−1 > µ)Rn−1(Φi
n−1) ,

(3.19)
where all large logarithmic terms are resummed at LL by the Sudakov factor ∆n. This is the
final result for the exclusive cross section with LL resummation.

4. NLO

4.1 Next-To-Leading Fixed Order Calculation

In this section we will obtain explicit expressions for the exclusive MC cross sections, dσexcl
n ,

at next-to-leading order in perturbation theory. At NLO, we write the partonic cross sections
dσparton

n as
dσparton

n

dΦn
= Bn(Φn) + Vn(Φn) + · · · , (4.1)
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This gives

integrable. This allows us to write

dσexcl
n

dΦn

∣∣∣∣
NLO

= Rn(Φn)
{

Bn(Φn) + V S
n (Φn, µ)

+
∫

dΦ′
n+1

∑

i

[
wiBn+1(Φ′

n+1)− Si
n+1(Φn+1)

]
δ
[
Φn − Φi

n

]
θ
[
tin < µ

]}
, (4.12)

where we have defined

V S
n (Φn, µ) = Vn(Φn) +

∑

i

∫
dΦn+1 Si

n+1(Φn+1) δ
[
Φn − Φi

n

]
θ
[
tin+1 < µ

]
. (4.13)

Since for each i = k the subtraction Sk
n+1 reproduces the singular behavior of Bn+1 in the

corresponding singular region of phase space, and in that singular region of phase space the
weights satisfy wi = δik, the difference inside the square brackets of the second line is IR
finite over all of Φn+1. Due to the θ-function, the integration region vanishes as µ → 0, and
one therefore obtains that the second line is power suppressed in µ. Thus, we can write at
fixed order

dσexcl
n

dΦn

∣∣∣∣
NLO

=
[
Bn(Φn) + V S

n (Φn, µ)
]
Rn(Φn) +O(µ) . (4.14)

5. Matching

5.1 Combining NLO and LL by matching

In this section, we will improve on LL result of the last section, such that the cross sections are
correct to NLO accuracy if they are expanded to fixed order in perturbation theory. We will
start again from the relation between the MC cross-section and the exclusive cross-secctions
defined in (??)

dσMC
n (µn, µn−1)

dΦn
≡

∑

i

[
dσexcl

n (µn)
dΦn

]

i

Θ(t(i)n−1 > µn−1) . (5.1)

In order to combine the LL resummation with the fixed order NLO calculation, we make the
following Ansatz for the exclusive cross-section

[
dσexcl

n (µn)
dΦn

]

i

=

(
dσMC

n−1(t
(i)
n−1)

dΦ(i)
n−1

Q(i)
n (Φ(i)

1 ) + M (i)
n (Φn)

)
∆Q

n (t(i)n−1, µn) Θ(t(i)n−1 > µn) +M
(i)
n (Φn) .

(5.2)
If we set the coefficients M in

n and M
in
n to zero, we regain the LL result derived in the previous

section. As long as these coefficients do not have any large leading logarithmic dependence,
this result therefore retains the correct LL behavior, but the matching coefficients can now be
adjusted order by order in perturbation theory to make the differential cross section agree with
the fixed order results. Note that there is a separate matching coefficient for each branching
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Can extract this from programs such as Blackhat etc

Note that σnexcl depends on scale μ
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Resummation of Logs
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Logarithms related to IR divergences in theory
Divergences from loop integrations

Divergences from phase space integrations

Restrictions on phase space give rise to logarithmic 
remainders 0<kg<μ ⇒ -1/ε + log(μ)

σV + σR = log(μ) + ...

∫dkl (kl-Q)-1-ε = 1/ε + ...
0

∞

∫dkg (kg)-1-ε = - 1/ε + ...
0

1

Logarithmic resummation

Tuesday, October 27, 2009



Christian Bauer LBNL, 9/24/09

Relating IR and UV divergences
Effective theories are defined to reproduce the IR 

physics of underlying theory

If EFT only contains no intrinsic mass scales, it only 
depends on ΛIR and ΛUV

In pure dim-reg ΛIR→0 and ΛUV→∞

No scale in problem ⇒ result in EFT is 0

⇒ Log(ΛIR) = - Log(ΛUV)

IR dependence of full theory can be extracted from 
UV dependence of EFT
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Sum logs using RG Equations

3.2 Derivation of LL Result for dσexcl
n

The inclusive cross sections dσincl
n contain Sudakov double logarithms of kinematic invariants

∼ ln2 tin/Q. These inclusive logarithms become large close to the singular region of phase
space where at least one of the tin becomes much less than Q and need to be resummed.
Physically, these logarithms arise from phase space restrictions on the integral over additional
real emissions, which by definition have to happen below the emission scale of the resolved
emissions. In addition, the exclusive cross section dσexcl

n (µ) also contains large exclusive
double logarithms of the scale µ that arise from integrating over the singular regions of Φn+1

with an explicit cut on the resolution variable for each singular region with t̂in < µ.
Following the discussion of the previous section, we can sum these logarithms by writing

a differential equation for dσexcl
n (µ) and solving this equation with the appropriate boundary

condition. To derive the differential equation, we start from the definition of dσexcl
n (µ) given

in Eq. (2.7). We use the well-known soft-collinear factorization of the cross sections which
states that in a soft-collinear region, the (n+1)-body cross section can be factorized into the
product of an n-body cross section and an appropriate singular function,

[
dσincl

n+1

dΦn+1

]

i

=
dσLL

n (µF )
dΦi

n
Qi(Φi

1, µF )Ri
n+1(Φn+1) , (3.12)

where dσincl
i was defined in Eq. (??) (TODO) The “splitting function” Qi(Φi

1, µF ) has the TODO: Need to
add an equation
defining this after
Eq. (24)

same singular behavior as dσincl
n+1 in the limit tin+1 → 0. Since the splitting function only

needs to describe the singular behavior of phase space in each singular region, it can be
chosen to only depend on Φi

1, with the remaining function describing the non-singular part
of the matrix element as depending only on Φi

n. Using this result together with the definition
for the exclusive projection given in Eq. (2.25) we find

dσLL
n (µ)
dΦn

Rn(Φn) =
dσincl

n

dΦn
−

∫
dΦn+1

∑

i

dσLL
n (µF )
dΦi

n
wi

n+1 Qi(Φi
1, µF )

×δ(Φn − Φi
n) θ(Λ > tin+1 > µ) Rn(Φn) . (3.13)

Now we are ready to take the derivative with respect to µ to obtain an RGE for the
exclusive cross section. As discussed in Section 3.1, we need a homogeneous differential
equation to allow for a resummation of logarithmic terms. This can be achieved, by choosing
the factorization scale for each singular region to be µF = tin+1. We find

µ
d
dµ

dσLL
n (µ)
dΦn

= −µ

∫
dΦn+1

∑

i

dσLL
n (tin+1)
dΦn

wi
n+1 Qi(Φi

1) δ(Φn − Φi
n) δ(tin+1 − µ)

= γn(µ)
dσLL

n (µ)
dΦn

, (3.14)

where we have suppressed the dependence of the splitting function on the factorization scale
tin+1 and in the last step we introduced the anomalous dimension γn(µ) of dσexcl

n (µ), which
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is given by the integral over the splitting function,

γn(µ) = −µ
∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) δ(tin+1 − µ) . (3.15)

The solution to the RGE in Eq. (3.14) is

dσLL
n (µ)
dΦn

=
dσLL

n (µ0)
dΦn

∆n(µ0, µ) , (3.16)

where the Sudakov factor ∆n(µ0, µ) is given by

∆n(µ0, µn) = exp
[∫ µn

µ0

dµ γn(µ)
]

= exp
[∑

i

∫
dΦi

1 wi
n+1 Q(Φi

1) θ(µ0 > tin+1 > µn)
]

. (3.17)

In the second step we assumed µ0 > µ to convert the integral limits into θ functions. Other-
wise, the choice of the initial scale µ0 is arbitrary.

In order to resum all the logarithmic terms in dσLL(µ) by this equation, one of course
needs a choice for µ0 such that the initial condition does not contain any large exclusive
logarithmic terms, ensuring that all logarithms in the exclusive cross section are generated by
the Sudakov factor. In other words, we need to identify a scale µ0, for which From Eq. (3.13)
it is immediately obvious that one can write

dσLL
n (tmax

n+1)
dΦn

Rn(Φn) =
dσincl

n

dΦn
. (3.18)

Since the inclusive cross section does not contain any exclusive logarithms, it immediately
follows that for the scale choice µ0 = tmax

n+1 there are no large logarithmic terms in dσLL
n (µ).

Putting all this information together, we can obtain a recursive formula

dσLL
n (µ)
dΦn

Rn(Φn) =
∑

i

wi
n−1

dσLL
n−1(tin−1)
dΦi

n−1

Qi(Φi
1) ∆n(tmax

n−1, µ) θ(tin−1 > µ)Rn−1(Φi
n−1) ,

(3.19)
where all large logarithmic terms are resummed at LL by the Sudakov factor ∆n. This is the
final result for the exclusive cross section with LL resummation.

4. NLO

4.1 Next-To-Leading Fixed Order Calculation

In this section we will obtain explicit expressions for the exclusive MC cross sections, dσexcl
n ,

at next-to-leading order in perturbation theory. At NLO, we write the partonic cross sections
dσparton

n as
dσparton

n

dΦn
= Bn(Φn) + Vn(Φn) + · · · , (4.1)
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Solve to find

Δn = Sudakov factor

Resums all logarithms of μ

Derive RG Equation, by taking μ d/dμ
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Resumming kinematic logs
Many scales in problem, such as different values of pT

For universal result, want to resum ratios of all scales

For very particular choice of Jexcl, possible to write the 
result as

σn(μ1,μ2,...) = σn(Q) Δn(Q,μ1) Δn(Q,μ1) ...

Possible to sum all logarithms in the exclusive cross 
sections
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Combining NLO and LL results
Schematically, write

σnexcl = σnLL + Mn 
Determine matching coefficient Mn by requiring correct 

NLO expression when expanded

possibility in, and that the cascade result takes a recursive form. Also, to get a true cascade
is important that the matching coefficient M in

n is multiplied by the Sudakov factor ∆Q
n .

Before discussing the matching conditions, it is important to first specify the splitting
functions used in Eq. (??). In the parton shower, the only constraints on the splitting func-
tions are that they need to reproduce the combined soft-collinear limit of the Born-level cross
section. For example, in [?] we used the full Born-level cross section to define the splitting
functions, and while this did result in simple expressions for the resummed exclusive cross
sections, the Sudadov integrals could only be calculated analytically in the simplest cases.
Thus, we wish to choose splitting functions and phase space boundaries such that the Sudakov
factors in Eq. (??) have closed form expressions.

Moreover, in order to avoid double counting, it is important that the sum over in for the
shower histories is the same sum as the sum over in in the subtractions. Similarly, the in-th
subtraction must use the same phase space projections and restrictions as the in-th parton
splitting function. It is therefore highly convenient to use splitting functions derived from the
subtractions, namely:

Qin
n−1→n(Φin

n−1) =
Sin

n (Φn)
Bn−1(Φin

n−1)
. (5.3)

We will see that the Sudakov factor derived from this splitting function does indeed have a
closed form expression.

Now we can specify the matching criteria for the NLO cascade. At Born order in the
αs expansion, the cascade cross section σcascade

n should be equal Bn. Recalling the argument
from Eq. (??) on how to avoid double counting, we must take

[
dσcascade

n (µn)
dΦn

](0)

in

= Bn(Φn)
Sin

n (Φn)
Sn(Φn)

. (5.4)

At the next order in αs, we have more freedom to specify how the cross section V S
n is divided

up among the branching possibilities. The simplest choice for the matching criteria is
[
dσcascade

n (µn)
dΦn

](1)

in

= V S
n (Φn, µn)

Sin
n (Φn)

Sn(Φn)
, (5.5)

where we have dropped integral over BS
n+1 terms per the discussion in Eq. (??).

It is now a straightforward exercise to calculate the matching coefficients.

M in,(0)
n (Φn) = Sin

n (Φn)
(

Bn(Φn)
Sn(Φn)

− 1
)

, (5.6)

M in,(1)
n (Φn) = Sin

n

(
V S

n (Φn, µn)
Sn(Φn)

−
V S

n−1(Φ
in
n−1, t

in
n )

Bn−1(Φin
n−1)

−∆(1)
n (tinn , µn)

)
. (5.7)

This is the main result of this paper.
A few comments about this result. Note that the V S

n−1(Φ
in
n−1, t

in
n ) term is calculated with

a restriction scale tinn . We argued that we could drop the contribution from BS
n+1 if the
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Everything can be calculated analytically
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Status of the work?
Have all the analytical results 
worked out in detail for e+e-

Working on the implementation with 
Pythia parton shower

Working on the extension to allow for 
hadron colliders

Finished implementation in C++ code

Will be interesting to see how well it works!
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Conclusions
SM predictions need to include many effects to give 
adequate predictions for experimental observables

In order to compare with data, need exclusive events, 
distributed in phase space according to SM predictions

New ideas in phase space generation can remove major 
bottleneck in efficiency of calculations

Combination of NLO calculations with generic LL 
resummation is becoming reality

Look forward to testing these theoretical ideas 
against real data from the LHC
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