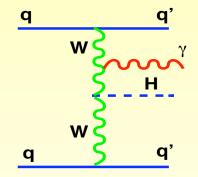
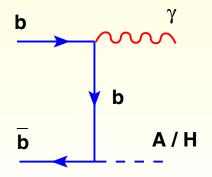
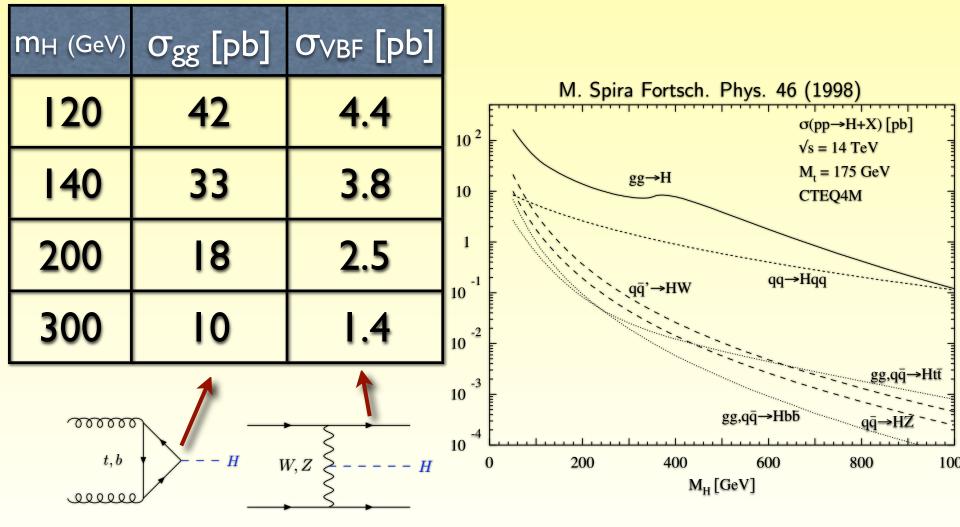
Asking for a high-p_T photon in Higgs production at LHC


focus on two processes:

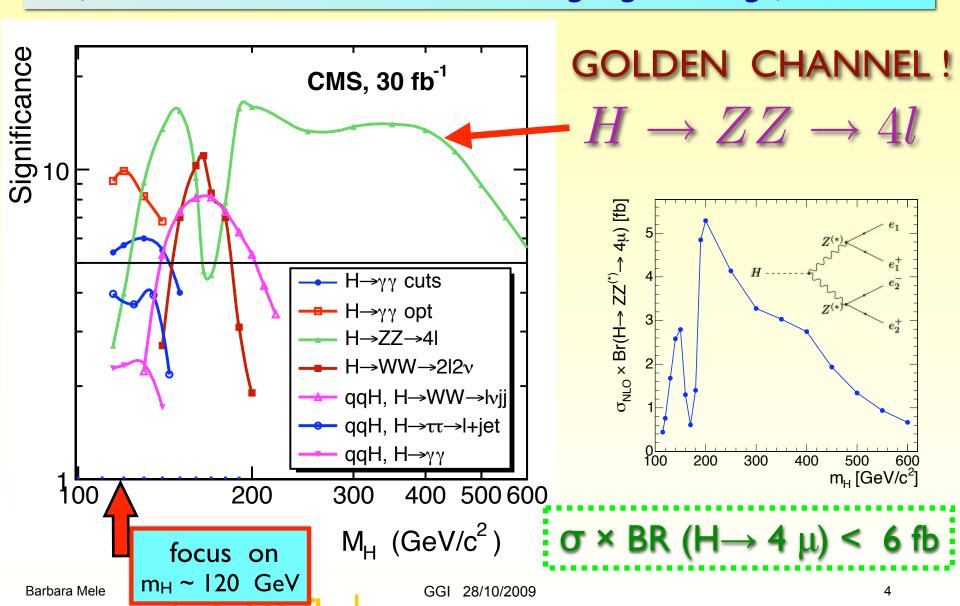
Gabrielli, Maltoni, B.M., M.Moretti, Piccinini, Pittau, NPB 781 (2007) 64


\rightarrow pp \rightarrow H / A (\rightarrow ττ) + γ

Gabrielli, B.M., Rathsman, PRD 77 (2008) 015007


(in the SM)

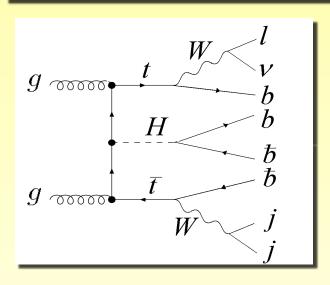
(in the MSSM)


HIGGS TOTAL CROSS SECTIONS

different final states !

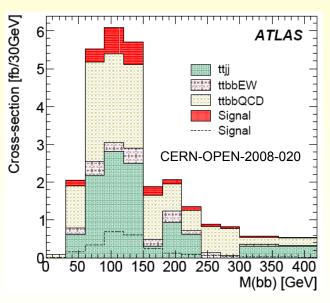
but interesting O's are of the order of few fb's

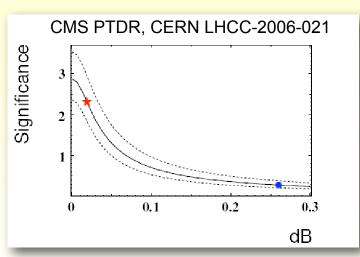
(after BR's + cuts for enhancing signal/bckg)


Hbb coupling dominant in light-H decay!

[BR(H→bb) ~ 70% at m_H ~ 120 GeV]

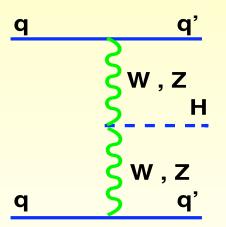
but QCD bb continuum tends to swamp any EW bb resonance at hadron colliders!

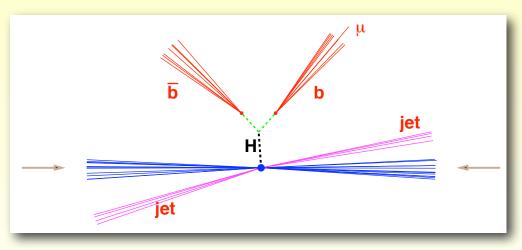

Can one constrain the Hbb coupling at all?


Constraining Hbb coupling for light H

most studied channel:

after including detector simulation, initial "optimistic" expectations vanished!

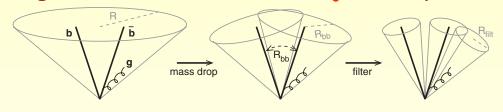

Also, an expected k~1.8 factor on bckgd at NLO*** makes everything even worse!


(***Bredenstein, Denner, Dittmaier, Pozzorini, arXiv:0905.0110)

Alternatives:

$$pp \rightarrow H (\rightarrow bb) + 2j$$
 (VBF fusion)

- light Jets with large invariant mass
- $p_{T}(j) \approx 40 \,\text{GeV}$
- widely separated in rapidity (forward/backward)
- Higgs decay products lying at intermediate rapidity


potential difficult to assess (4-jet final state...???)

Mangano, Moretti, Piccinini, Pittau, Polosa (2003)

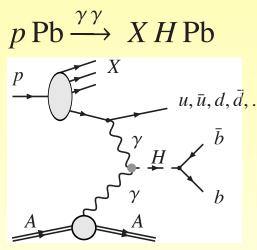
new strategy for $pp \rightarrow H (\rightarrow bb) W,Z (\rightarrow \ell\ell')$

- * increase (tiny) S/B for $pp \rightarrow HW(Z) \rightarrow bbll'$ by looking to events with very high-p_T H and W(Z) (p_T >200,300 GeV)
- → S/B improves (but O drops ...)!

challenge: high-p_T H→bb quite collimated → may give a single jet → using a (QCD-motivated) subjet analysis could help!

Jet definition	$\sigma_S/{ m fb}$	$\sigma_B/{ m fb}$	$S/\sqrt{B\cdot fb}$	
CA, $R = 1.2$, MD-F	0.57	0.51	0.80	
$K_{\perp}, R = 1.0, y_{\text{cut}}$	0.19	0.74	0.22	
SISCONE, $R = 0.8$	0.49	1.33	0.42	

TABLE I. Cross section for signal and the Z + jets background in the leptonic Z channel for $200 < p_{TZ}/\text{GeV} < 600$ and $110 < m_I/\text{GeV} < 125$, with perfect b-tagging; shown for our jet definition, and other standard ones at near optimal R values.



to be validated by complete detector simulation!

$\gamma\gamma$ collisions in p Pb \rightarrow p H (\rightarrow bb) Pb

d'Enterria and Lansberg arXiv:0909.3047

$$\begin{array}{cccc}
p & \text{Pb} \xrightarrow{\gamma \gamma} & p & H & \text{Pb} \\
\downarrow & & & & \\
\hline
p & & & & \\
p & & & & \\
\hline
p & & & & \\
\gamma & & & & \\
\hline
p & & & & \\
\gamma & & & & \\
\hline
p & & & & \\
\downarrow & & & \\
\hline
p & & & & \\
\uparrow & & & \\
\hline
p & & & \\
\uparrow & & & \\
\hline
p & & & \\
\uparrow & & & \\
\hline
p & & & \\
\downarrow & & \\
\hline
p & & & \\
\uparrow & & \\
\downarrow & & \\
\hline
p & & \\
\downarrow & & \\
\downarrow & \\$$

given $E_p \sim 7$ TeV (B~8.3 T) $u, \bar{u}, d, \bar{d}, \dots \rightarrow E_{N(Z, A)} \sim E_p \times Z/A$

$$\sqrt{s_{NN}} = 8.8 \text{ TeV.}$$

$$\mathcal{L}_{pPb} \sim 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$

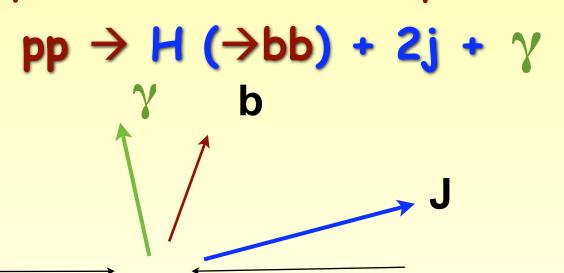
- o Pb increases γ flux (\sim Z²), and kills pile-up (low lumi)
- o p increases Y-flux end-point and lumi

 $m_H=120$ GeV Higgs observed with $S/JB \sim 3$ after 3-year run

GGI 28/10/2009

summing up

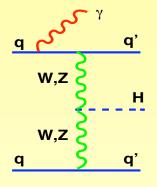
measurement of ghbb challenging at LHC!

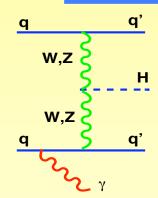

LHC potential not yet really established!

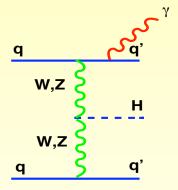
New Channel:

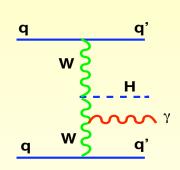
(Gabrielli, Maltoni, B.M., M. Moretti, Piccinini, Pittau, 2007)

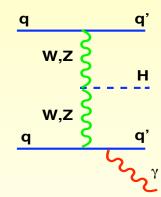
require a further central photon from VBF


increases triggering efficiency!


$m_H \text{ (GeV)}$	110	120	130	140
$\sigma(H\gamma jj)$ [fb]	67.4	64.0	60.4	56.1
$\mathcal{BR}(H o b\overline{b})$	0.770	0.678	0.525	0.341

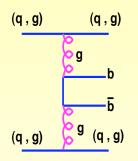

 $(\Delta R_{\gamma j} > 0.4, p_{\rm T}^{\gamma} \ge 20 \text{ GeV}, \text{ and } m_{jj} > 100 \text{ GeV})$

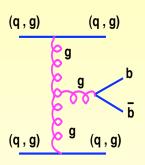

Barbara Mele GGI 28/10/2009 11

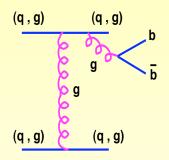


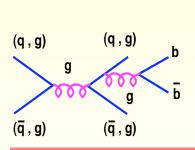
from naive QED scaling:

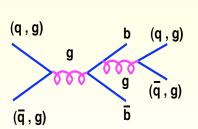
$$(S/\sqrt{B})|_{H\gamma jj} \sim \sqrt{\alpha} (S/\sqrt{B})|_{Hjj} \lesssim 1/10 (S/\sqrt{B})|_{Hjj}$$

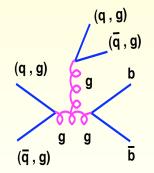

Actual S/JB much better than this !!!!

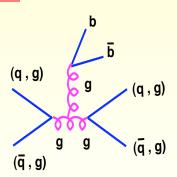

IRREDUCIBLE BCKGD


add a photon to


(gluons are idle!)



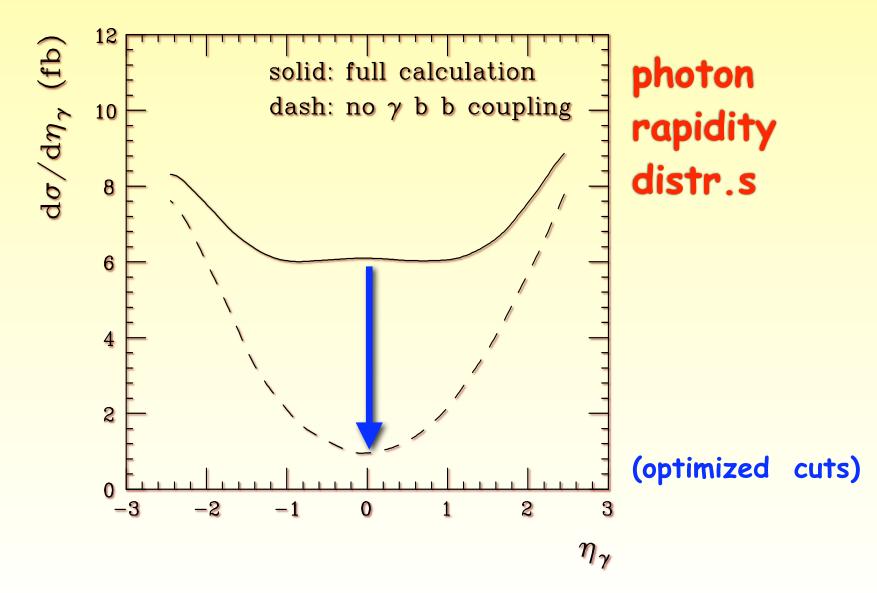




t,u-channel (most relevant!)

s-channel (suppressed at M_{jj} ~ 1TeV)

Also, destructive interf.s in central γ emissions off q_{in} and q_{fin} in a t-channel gluon diagram

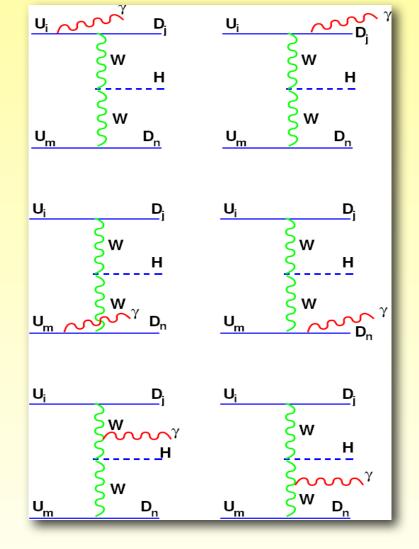

("coherence" effect)

bckg suppressed by requiring a central photon by O(1/10) compared to naive QED scaling!

(q,g) (q, g) (q,g) (q, g)(q,g) (q, g)(q, g)(q, g)(q, g)(q, g)(q, g)(q,g)(q,g)(q, g)(q,g) (q, g)(q, g)(q,g)

dominant contribut. (suppressed by b-quark electric charge)

switching off the ybb coupling in irred. bckg


what about signal?

W charged current spoils destructive interference at large angle!

(WW
$$\rightarrow$$
H)
$$\frac{\sigma^{(C)}(H\gamma jj)}{\sigma^{(C)}(Hjj)} = 0.013$$

but Z neutral current follows BCKG pattern !!!

(ZZ
$$ightarrow$$
H) $\dfrac{\sigma^{(N)}(H\gamma\,jj)}{\sigma^{(N)}(H\,jj)}=0.0016$

 $p_{\mathrm{T}}^{\gamma} \geq 20 \,\mathrm{GeV}$

 $|\eta_{\gamma}| \lesssim 2.5$ $\Delta R_{i\gamma} > 0.7$

Barbara Mele

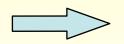
central photon singles out WW over ZZ fusion !!!

basic cuts:

EVENT SELECTION

$$p_{\rm T}^{j} \ge 30 \,{\rm GeV}, \quad p_{\rm T}^{b} \ge 30 \,{\rm GeV}, \quad \Delta R_{ik} \ge 0.7,$$

$$|\eta_{\gamma}| \le 2.5, \quad |\eta_b| \le 2.5, \quad |\eta_j| \le 5,$$


$$m_{jj} > 400 \,\text{GeV}, \quad m_H(1 - 10\%) \le m_{b\bar{b}} \le m_H(1 + 10\%),$$

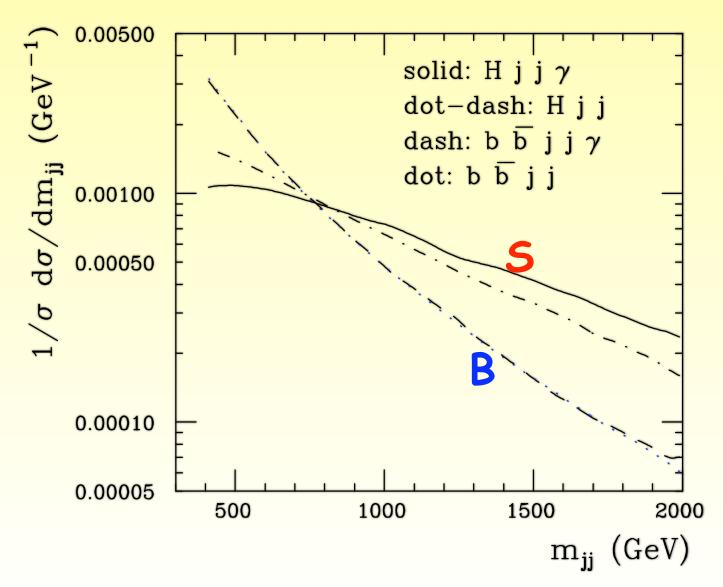
1)
$$p_{\rm T}^{\gamma} \ge 20 \,{\rm GeV}$$
,

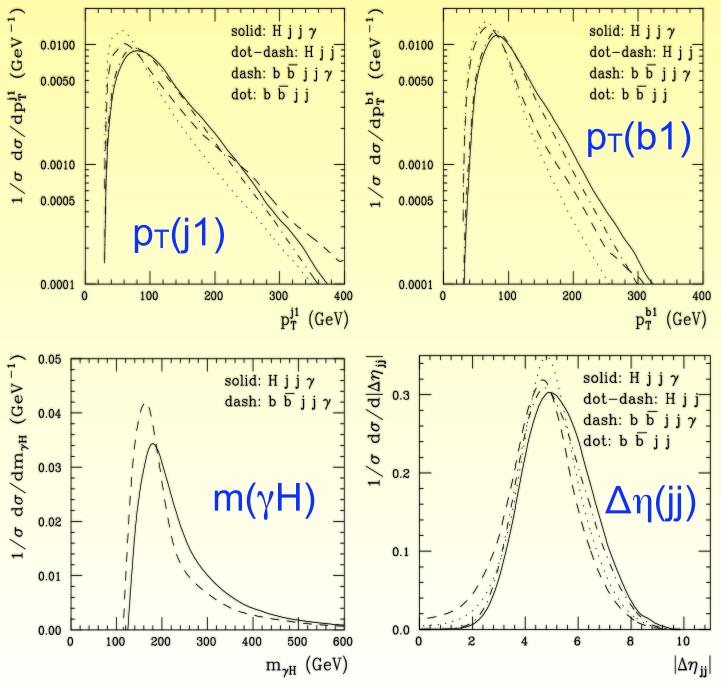
2)
$$p_{\rm T}^{\gamma} \ge 30 \,{\rm GeV},$$

then, look at distrib's:

$$\frac{d\sigma}{dm_{jj}}, \quad \frac{d\sigma}{dp_{\mathrm{T}}^{j1}}, \quad \frac{d\sigma}{dp_{\mathrm{T}}^{b1}}, \quad \frac{d\sigma}{dm_{\gamma H}}, \quad \frac{d\sigma}{|\Delta\eta_{jj}|},$$

\Longrightarrow add optimized cuts :


$$m_{jj} \ge 800 \,\text{GeV}, \quad p_{\text{T}}^{j1} \ge 60 \,\text{GeV}, \quad p_{\text{T}}^{b1} \ge 60 \,\text{GeV},$$


$$|\Delta \eta_{jj}| > 4$$
, $m_{\gamma H} \ge 160 \,\text{GeV}$, $\Delta R_{\gamma b/\gamma j} \ge 1.2$.

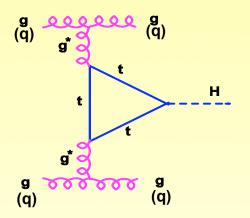
Mij distribution critical to enhance S/B

(even more than in plain VBF !!!)

irreducible b	ockgr O's	(optimized cuts) $p_{\mathrm{T}}^{\gamma} \geq 20\mathrm{GeV}$			
sub-processes	σ_i (pb)	σ_i/σ	σ_i^{γ} (fb)	$\sigma_i^\gamma/\sigma^\gamma$	
$gq \rightarrow b\bar{b}gq\left(\gamma\right)$	57.2(1)	55.3 %	17.3(1)	51.6 %	
$gg \rightarrow b\bar{b}gg(\gamma)$	25.2(1)	24.4~%	3.93(3)	11.7 %	
$qq' \rightarrow b\overline{b} qq' (\gamma)$	7.76(3)	7.5 %	4.04(2)	12.1 %	
$qq \rightarrow b\overline{b} qq (\gamma)$	6.52(2)	6.3 %	4.49(3)	13.4 %	
$q\bar{q}' \to b\bar{b} q\bar{q}' (\gamma)$	4.60(2)	4.4 %	2.28(2)	6.8 %	
$q\bar{q} \rightarrow b\bar{b}q\bar{q}(\gamma)$	2.13(2)	2.1 %	1.21(2)	3.6 %	
$gg \rightarrow b\bar{b}q\bar{q}(\gamma)$	0.0332(7)	0.03 %	0.124(3)	0.37 %	
$q\bar{q} \rightarrow b\bar{b}gg(\gamma)$	0.0137(2)	0.01 %	0.094(2)	0.28 %	
$q\bar{q} \rightarrow b\bar{b} q'\bar{q}' (\gamma)$	0.000080(3)	0.00007 %	0.00080(8)	0.002 %	

(m_H=120 GeV)

bckg(γ) / bckg ~ 33 fb / 103 pb ~ 1/3000 cf. signal(γ) / signal ~ 1/100


note: conservative choice of QCD scales in the bckg evaluation!

Barbara Mele GGI 28/10/2009 20

 Θ requirement of a central photon also suppresses contamination from $g^*g^* \to H jj \gamma$

(induced by top loop)

("bckg" to Higgs via VBF)

$$\Theta$$
 σ (H γ jj) g^*g^* →H ~ 8×10^{-4} σ (H jj) g^*g^* →H Θ σ (H γ jj) ~ 8×10^{-4} σ (H jj) g^*g^* →H

$$\Theta$$
 σ (H γ jj) g^*g^* →H ~ 0.21 fb
 Θ σ (H γ jj) ~ 0.21 fb
(basic cuts, j) ~ 0.21 fb

negligible!

$O's: pp \rightarrow H \gamma j j vs irrid. bckgr$

PDF: CTEQ5L

(ALPGEN + MADEVENT)

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
$\sigma[H(\to b\bar b)\gamma jj]$	$20~{ m GeV}$	3.59(7) fb	2.92(4) fb	1.98(3) fb
	$30~{\rm GeV}$	2.62(3) fb	2.10(2) fb	1.50(3) fb
$\sigma[bar{b}\gamma jj]$	$20~{ m GeV}$	33.5(1) fb	37.8(2) fb	40.2(1) fb
	$30 \; \mathrm{GeV}$	25.7(1) fb	27.7(1) fb	28.9(2) fb
$\sigma[H(\to b\bar b)jj]$		320(1) fb	254.8(6) fb	167.7(3) fb
$\sigma[bar{b}jj]$		103.4(2) pb	102.0(2) pb	98.4(2) pb

for m_H=120 GeV

 $S/B(\gamma) \sim 1/10 \sim 30 S/B_0!$

 $\epsilon_b=60\%$ (b tagging eff.) $\epsilon_{bar{b}}\simeq70\%$ (finite m_{bb} resolution)

cf. S/B (gg \rightarrow H \rightarrow $\gamma\gamma$) ~ 1/20

4	L=100 fb ⁻¹	$p_{ m T}^{\gamma,cut}$	$m_H = 120 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 140 \text{ GeV}$
	$S/\sqrt{B} _{H\gamma jj}$	$20~{ m GeV}$	2.6	2.0	1.3
	$S/\sqrt{B} _{H\gamma jj}$	$30~{\rm GeV}$	2.2	1.7	1.2
	$S/\sqrt{B} _{Hjj}$		3.5	2.8	1.9

Barbara Mele GGI 28/10/2009 22

Nevents for red. vs irred. bckgs (mH=120 GeV)

$$\epsilon_b = 60\%$$

$$\epsilon_{b\bar{b}} \simeq 70\%$$

L=100 fb⁻¹

(signal)

(irred)

(red.)

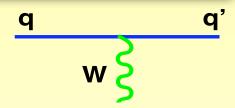
	$p_{\mathrm{T}}^{\gamma} \geq 20 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{\gamma} \geq 30 \; \mathrm{GeV}$
$pp \to \gamma H(\to b\bar{b}) + 2j$	90	66
$pp \rightarrow \gamma b\bar{b} + 2j$	1206	925
$pp \rightarrow \gamma + 4j$	23	17
$pp \rightarrow b\bar{b} + 3j$	440	324
$pp \rightarrow 5j$	14	11
S/\sqrt{B}	2.2	1.8

$$\varepsilon_{\rm fake} = 1\%$$

eff for mistagging light-jet as a b-jet

$$\varepsilon_{\gamma i} = 1/5000$$

γj rejection factor <a>



irred. bckg is dominant!

(CMS can do better than this!)

Parton shower effects and central-jet veto help S/B

no color exchanged in the signal between up and down fermionic lines

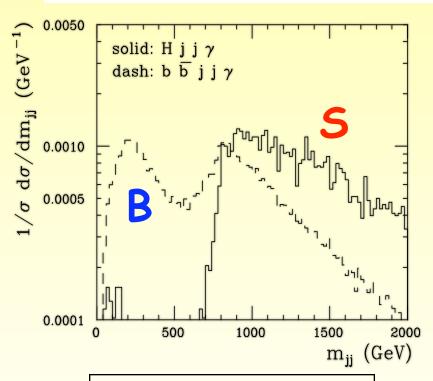
on the contrary, in bckg t-channel virtual gluons

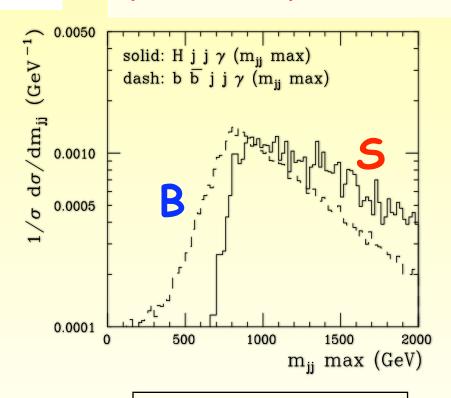
- higher-order QCD radiation much more relevant for bckg than for signal!
- Θ in bckg, m_{jj} and $|\Delta\eta_{jj}|$ for light tagging jets expected to decrease with respect to partonic configurations

ALPGEN + HERWIG

jet cone as in GETJET
$$p_{\mathrm{T}}^{j}>20\,\mathrm{GeV}$$
 $|\eta_{j}|<5$ $R=0.7$

2 different algorithms for jets:


a₁-highest and second highest p_T with p_T(j₁)> 60 GeV p_T(j₂)> 30 GeV

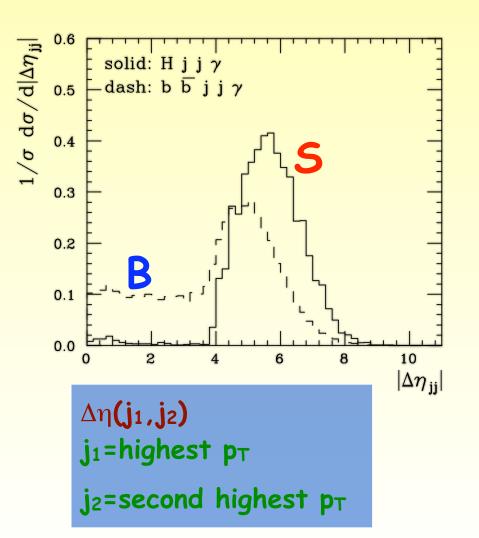

a₂-pair of jets with highest invariant mass, pT(j₁)> 60 GeV pT(j₂)> 30 GeV

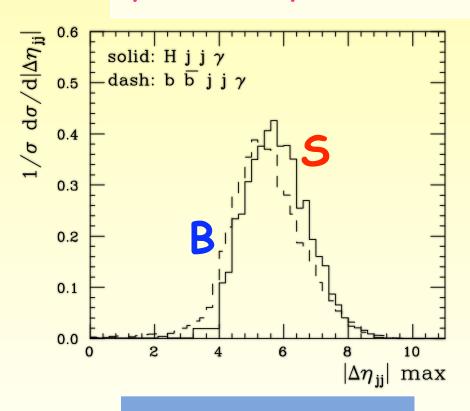
distributions after parton shower

(j_1,j_2) invariant mass distribution

p_{T1} > 60 GeV,p_{T2} >30 GeV

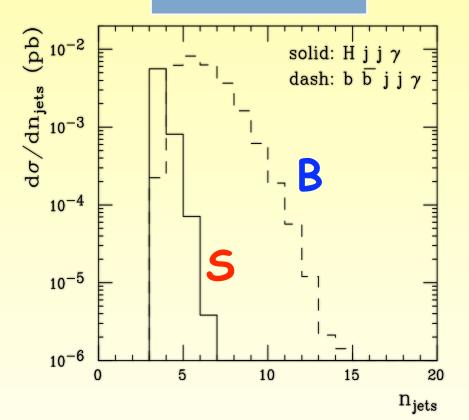
a₁

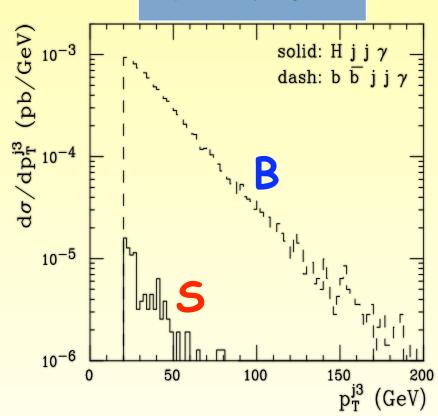

m(j₁,j₂) j₁=highest p_T j₂=second highest p_T


Q2

 $max[m(j_1,j_2)]$ among all jets

(j₁, j₂) rapidity difference distribution





 $\begin{array}{l} \text{max}[\Delta\eta(\textbf{j_1},\textbf{j_2})] \text{ among} \\ \text{all jets} \end{array}$

jet multiplicity distribution

 p_T distribution of the third highest p_T jet

COMBINING ALL:

⇒ bckg drops by a factor ~ 4 (signal almost unaffected!) $\Rightarrow_{\text{factor}} \sim 2 \text{ gain in } S/JB !$ $S/JB \sim 5 \text{ (mH=120 GeV)}!$

what if $\gamma \rightarrow W$? pp $\rightarrow HW jj$

Rainwater (2001) Ballestrero, Bevilacqua, Maina "BBM" (2008)

- Solution constraining by coupling by coupling by could also help in constraining by coupling
- Solution constraints applied to charged lepton) for $m_H=120$ GeV, we get:

$$\sigma(H\gamma jj) \sim 4.4 \times \sigma(HWjj)$$
 $v = e, \mu$

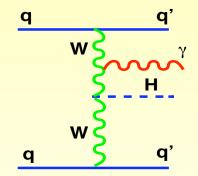
@ "BBM" obtains $S/\sqrt{B} \sim 1.8$ at parton level ($S/B \sim 1/25$) (L=100 fb⁻¹, m_H= 120 GeV)

summary on pp \rightarrow H (\rightarrow bb) 2j + γ

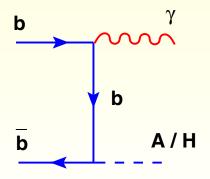
- measurement of ghbb not yet established at LHC
- \bigcirc pp \rightarrow H jj + γ offers
 a) trigger on γ b) improved S/B
- 9 5//B ~ 2.5 at parton level \rightarrow 5//B ~ 5 expected after central-jet veto , (L=100 fb⁻¹, m_H= 120 GeV)
- could provide a new independent test of Hbb and HWW couplings (sensitivity to HZZ drops)!
- Θ if problems with $H \to \gamma \gamma$, could even have a crucial role in light Higgs searches!
- \bigcirc pp \rightarrow H jj + γ deserves complete detector effect simulation . . . (now ongoing in both ATLAS and CMS)

Barbara Mele GGI 28/10/2009 30

focus on two processes:

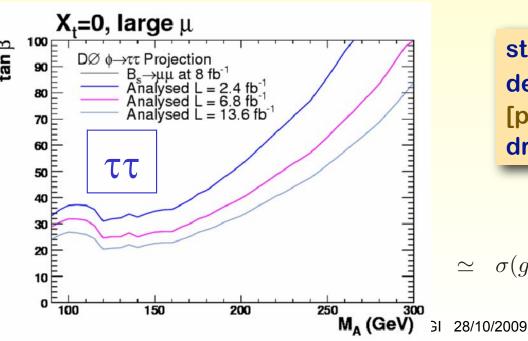

$$→ pp → H (→ bb) 2j + γ$$

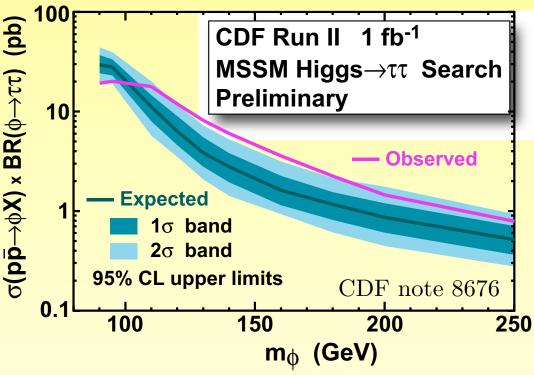
Gabrielli, Maltoni, B.M., M.Moretti, Piccinini, Pittau, NPB 781 (2007) 64


$$\rightarrow$$
 pp \rightarrow H / A (\rightarrow ττ) + γ

Gabrielli, B.M., Rathsman, PRD 77 (2008) 015007

(in the SM)

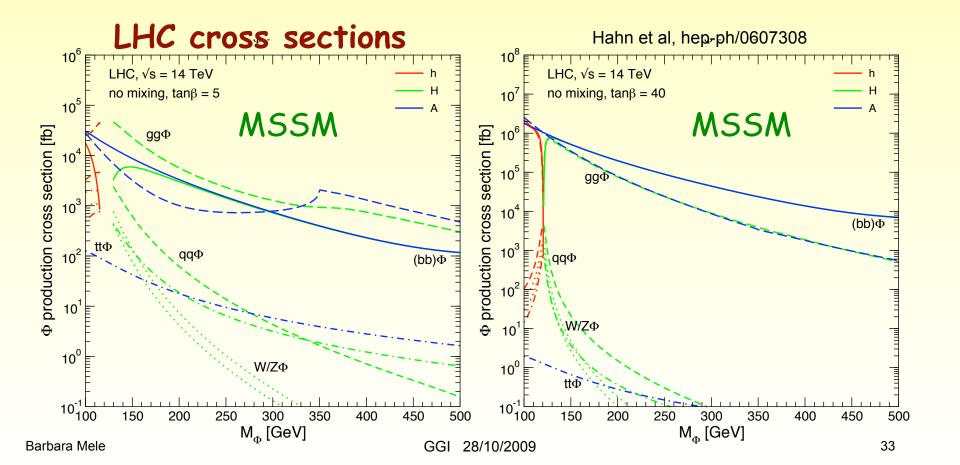

(in the MSSM)



Search for a MSSM Higgs at TeVatron

$$p \bar{p} \to \phi \to \tau^+ \tau^-$$
$$\phi = \{h, H, A\}$$

robust prediction in H/A→ τ⁺τ⁻ channel!


strong SUSY parameter
dependence in Rad. Corrs (∆b)
[present in H/A→ bb channel]
drops in H/A→ T⁺T⁻ channel:

$$\sigma(gg, b\bar{b} \to A) \quad \text{BR}(A \to \tau^+\tau^-)$$

$$\simeq \quad \sigma(gg, b\bar{b} \to A)_{\text{SM}} \frac{\tan^2 \beta}{(1 + \Delta_b)^2} \frac{(1 + \Delta_b)^2}{(1 + \Delta_b)^2 + 9}$$

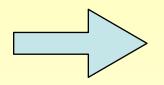
at large $\tan \beta = v_2/v_1$ enhanced couplings to down quarks and leptons!

in MSSM $\sigma(b\bar{b}\to A/H)\approx\sigma(gg\to A/H)$ (at moderate tanß, too) [in SM $\sigma(b\bar{b}\to h)\ll\sigma(gg\to h)$]

$$b \bar b \to A/H$$
 sensitive to Y_{bbA/H} coupling and to b-quark parton densities

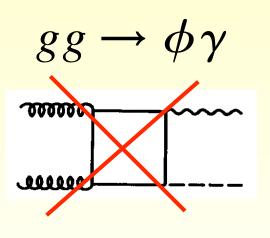
in b-quark parton density presently derived perturbatively by g(x)!

[no direct measurement of b(x)] $\Rightarrow \Delta g(x)$ propagates to $\Delta b(x)$


in SM one plans to determine b(x) studying $bg op bZ/b\gamma$

 $b\bar{b} \to h$ would be more sensitive to b(x), but swamped by $gg \to h$

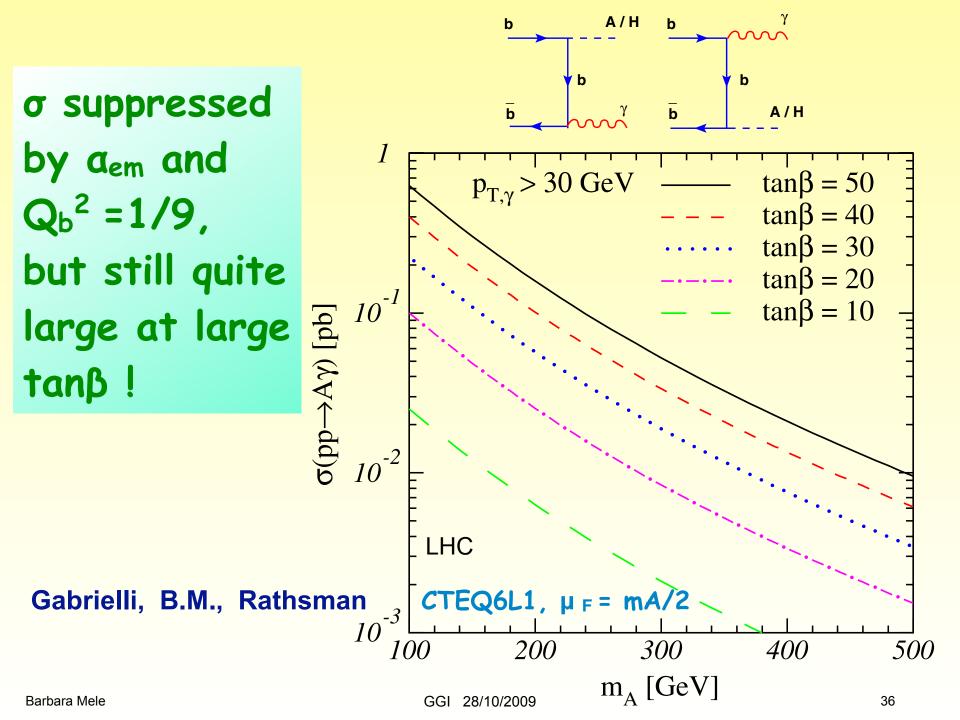
Barbara Mele GGI 28/10/2009 34


in MSSM
$$\sigma(b\bar{b} \to A/H) \approx \sigma(gg \to A/H)$$

but how to disentangle bb from gg?

ask for a high p_T photon!

$$\phi = \{h, H, A\}$$


by C-parity

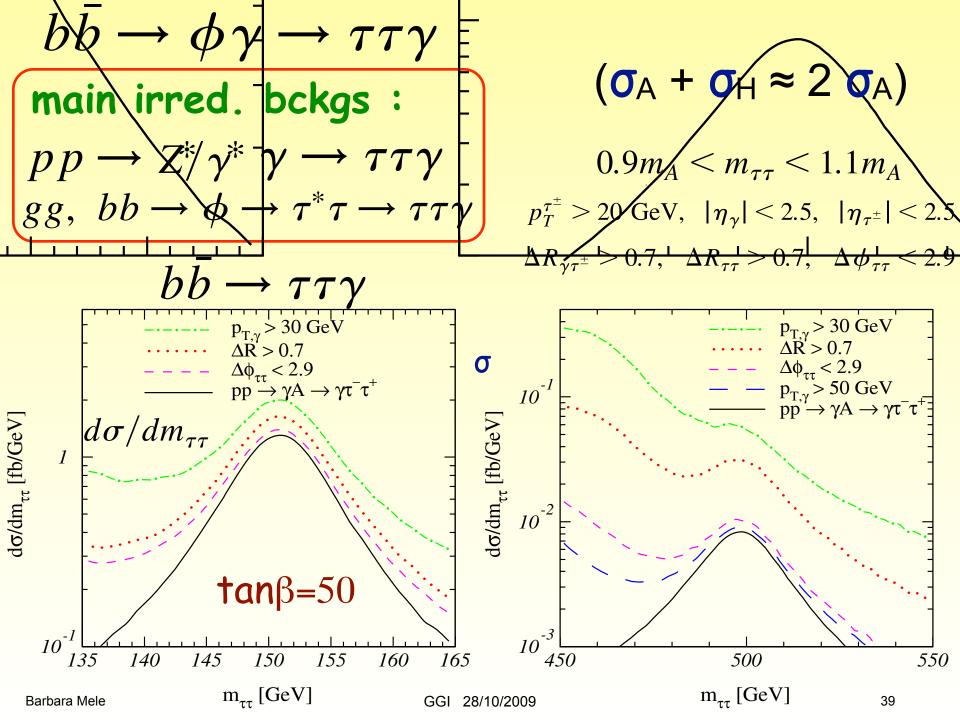
$$b\bar{b} \rightarrow \phi \gamma$$

$$b \rightarrow A/H \quad b \rightarrow \gamma$$

$$b \rightarrow b \rightarrow b \rightarrow A/H$$

only contribution to $pp \rightarrow \phi \gamma$

we consider : $b\bar{b} \rightarrow \phi \gamma \rightarrow \tau \tau \gamma$


 $BR(A/H \rightarrow \tau\tau) \simeq 10\%$ for large tanß, almost insensitive to m_H

- irreducible BCKGs have EW origin (manageable!)
- tau-tau signature extensively studied in SM and MSSM (can help in Higgs discovery)

Note: the complete tau-tau invariant mass can be fully reconstructed, provided the two taus are neither back-to-back nor collinear in lab frame (due to undetected neutrinos)

a large-p_T photon naturally satisfies the above condition!

- Large SUSY radiative corrections on b-Yukawa factorizes, residual dependence is small
- in MSSM, mA ~ mH (at large tanβ)
 gives a factor 2 of enhancement in the x-section
- assumed tau-pair efficiency = 0.2
 comes from
- $au o \ell \, \nu_{ au} \nu_{\ell} \ (35\%)$ [D efficiency = 90% $au o h
 u \ (50\%)$ ID efficiency = 25% double hadronic decays contribute with 0.016 to 0.2

$$pp \rightarrow \tau^{+}\tau^{-}\gamma$$
 $(\sigma_{A} + \sigma_{H} \approx 2 \sigma_{A})$
 $n(S) \Rightarrow b\bar{b} \rightarrow \phi \gamma \rightarrow \tau \tau \gamma$
 $n(B) \Rightarrow \text{irred. bckgs}$

$\tan \beta$	20		30)	40		50	
m_A	σ_S (fb)	\mathcal{S}						
150	5.58	7.3	12.5	13	22.1	19	34.5	24
200	3.00	5.3	6.81	9.5	12.3	14	19.9	18
300	0.727	2.4	1.67	4.5	3.08	6.7	5.03	9.1
500	0.0981	0.72	0.238	1.5	0.456	2.4	0.768	3.4

$$\epsilon_{\tau\tau} \simeq 0.2$$

$$\mathcal{L} = 100 \text{ fb}^{-1}$$

 $S = n(S)/\sqrt{n(S) + n(B)} \gtrsim 5$ for $m_A \lesssim 300$ GeV and $\tan \beta \gtrsim 30$

Barbara Mele GGI 28/10/2009 40

comments on $pp \rightarrow H/A (\rightarrow \tau\tau) + \gamma$

- cross section varies by 20% within LHAPDF; actual uncertainty on b(x) could well be larger than that (see e.g. Thorne, arXiv:0711.2986)
- Θ Hbb coupling (tanβ) can be determined via complementary processes (gg \to bbH/A); then $b\bar{b} \to \phi \gamma$ cleaner probe of b(x) densities
- needs inclusion of QCD corrections
 (Carloni Calame, Gabrielli, BM, Piccinini, in progress)
- needs full exp simulation to assess its actual potential