Top partners in Same–Sign Dileptons: A Strong Sector at the LHC

Andrea Wulzer

Based on 0909.3977, with J. Mrazek

Andrea Wulzer Top partners in Same–Sign Dileptons: A Strong Sector at the

イロン イヨン イヨン イヨン

Outline

Introduction Partial Compositeness Top Partners @ LHC Conclusions

Introduction

Partial Compositeness

Top Partners @ LHC

Conclusions

イロン イボン イヨン イヨン 三日

Why not a strong—sector EWSB ? (which would solve the Hierarchy Problem)

► EWPT:

Flavor:

Predictivity:

イロン イヨン イヨン イヨン

Why not a strong—sector EWSB ? (which would solve the Hierarchy Problem)

EWPT: generically too large S from strong sector simplest TC is ruled out some (not huge) fine-tuning will be needed

Flavor:

Predictivity:

イロト イポト イヨト イヨト

Why not a strong—sector EWSB ? (which would solve the Hierarchy Problem)

- EWPT: generically too large S from strong sector simplest TC is ruled out some (not huge) fine-tuning will be needed
- Flavor: hard to avoid low-scale FCNC almost solved by partial compositeness so-called RS-GIM mechanism

Predictivity:

・ 同 ト ・ ヨ ト ・ ヨ ト

Why not a strong—sector EWSB ? (which would solve the Hierarchy Problem)

- EWPT: generically too large S from strong sector simplest TC is ruled out some (not huge) fine-tuning will be needed
- Flavor: hard to avoid low-scale FCNC almost solved by partial compositeness so-called RS-GIM mechanism
- Predictivity: frustrating not to have definite predictions
 5d models provide a predictive framework
 "reasonable" deformations of a strong sector

イロト イポト イヨト イヨト

Partial Compositeness

(D. B. Kaplan; Contino, Sundrum,...)

In the "old times":

$$\mathcal{L}_q^{UV} = \frac{c}{\Lambda_{ETC}^{d-1}} \mathcal{O}_d \, \overline{q} q$$

In partial compositeness:

$$\mathcal{L}_{q}^{UV} = \frac{\lambda}{\Lambda_{UV}^{d-5/2}} \,\overline{q} \,\mathcal{O}_{d}^{(q)}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Partial Compositeness

(D. B. Kaplan; Contino, Sundrum,...)

In the "old times": $\mathcal{L}_q^{UV} = \frac{c}{\Lambda_{ETC}^{d-1}} \mathcal{O}_d \, \overline{q} q$

In partial compositeness:

$$\mathcal{L}_{q}^{UV} = \frac{\lambda}{\Lambda_{UV}^{d-5/2}} \,\overline{q} \,\mathcal{O}_{d}^{(q)}$$

In the IR, $(M_* \sim \text{TeV})$ elementary/composite mixings: $\overline{q}_L i \partial q_L + \overline{Q} i \partial Q - M_* \overline{Q} Q + \lambda_{IR} M_* \overline{q}_L Q + \dots$ The Partners:

Vector-like colored heavy fermions Q, B, T associated with $\mathcal{O}_d^{(q,b,t)}$

イロト イポト イラト イラト 一日

Small masses from small mixings: $\lambda_{IR}^{1,2} \ll 1$

Light families are almost elementary

イロト イヨト イヨト イヨト

æ

Small masses from small mixings:

 $\lambda_{I\!R}^{1,2} \ll 1$

Light families are almost elementary

All non–universal effects from λ_{IR} , RS–GIM suppression of FCNC Top partners strongly coupled to top quark

イロト イポト イヨト イヨト

Specific (5d) Models:

Higgsless: EWSB in the Strong Sector, 5d version of (large– N_c) TC, resonance scale $m_\rho \lesssim 2$ TeV, accidental cancellation in S

イロン イボン イヨン イヨン 三日

Specific (5d) Models:

Higgsless: EWSB in the Strong Sector, 5d version of (large– N_c) TC, resonance scale $m_\rho \lesssim 2$ TeV, accidental cancellation in S

A model for the Top Partners: (with Custodial SO(4)) Same as in (Contino, Servant) where pair production was studied

$$\boldsymbol{Q} = (\boldsymbol{2}, \boldsymbol{2})_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix}, \quad \widetilde{\boldsymbol{T}} = (\boldsymbol{1}, \boldsymbol{1})_{2/3}, \quad \mathcal{L}_{\boldsymbol{Y}} = \boldsymbol{Y}_t^* \operatorname{Tr} \left[\overline{\boldsymbol{Q}} \boldsymbol{H} \right] \widetilde{\boldsymbol{T}},$$

Describes a Composite-Higgs OR just the Goldstones:

$$\boldsymbol{H} = \begin{bmatrix} h_d^{\dagger} & h_u \\ -h_u^{\dagger} & h_d \end{bmatrix} = \frac{\boldsymbol{v}}{\sqrt{2}} \boldsymbol{U} \simeq \begin{bmatrix} \frac{1}{\sqrt{2}} \left(\boldsymbol{v} - i\varphi_0 \right) & \varphi_+ \\ -\varphi_- & \frac{1}{\sqrt{2}} \left(\boldsymbol{v} + i\varphi_0 \right) \end{bmatrix}$$

(4月) (4日) (4日)

A model for the Top Partners: (with Custodial SO(4)) Same as in (Contino, Servant) where pair production was studied

$$oldsymbol{Q} = (\mathbf{2}, \mathbf{2})_{2/3} = \left[egin{array}{cc} T & T_{5/3} \ B & T_{2/3} \end{array}
ight], \quad \widetilde{T} = (\mathbf{1}, \mathbf{1})_{2/3}, \quad \mathcal{L}_Y = Y_t^* \mathrm{Tr} \left[\overline{Q} H
ight] \widetilde{T},$$

Describes a Composite–Higgs OR just the Goldstones:

$$H = \begin{bmatrix} h_d^{\dagger} & h_u \\ -h_u^{\dagger} & h_d \end{bmatrix} = \frac{v}{\sqrt{2}} U \simeq \begin{bmatrix} \frac{1}{\sqrt{2}} (v - i\varphi_0) & \varphi_+ \\ -\varphi_- & \frac{1}{\sqrt{2}} (v + i\varphi_0) \end{bmatrix}$$

Mixing: $\begin{pmatrix} q_L \\ Q_L \end{pmatrix} \rightarrow \begin{pmatrix} \cos \varphi_q q_L + \sin \varphi_q Q_L \\ \cos \varphi_q Q_L - \sin \varphi_q q_L \end{pmatrix}$ (same for $t_R - \widetilde{T}_R$)

(4月) (4日) (4日)

We find the Top Yukawa: $y_t = Y_t^* \sin \varphi_q \sin \varphi_t$ And verteces with t and W_L :

$$\mathcal{L} \subset -\lambda_B \varphi_+ \overline{t}_R B + \lambda_T \varphi_- \overline{t}_R T_{5/3}$$
$$\lambda_B = \sin \varphi_t \cos \varphi_q Y_t^* \quad \lambda_T = \sin \varphi_t Y_t^* > y_t$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

We find the Top Yukawa: $y_t = Y_t^* \sin \varphi_q \sin \varphi_t$ And verteces with t and W_L :

$$\mathcal{L} \subset -\lambda_B \varphi_+ \overline{t}_R B + \lambda_T \varphi_- \overline{t}_R T_{5/3}$$
$$\lambda_B = \sin \varphi_t \cos \varphi_q Y_t^* \quad \lambda_T = \sin \varphi_t Y_t^* > y_t$$

Available parameter space is model-dependent. However:

- 1. N_c will have to be small, $\widehat{S} \simeq \frac{m_w^2}{16\pi^2 v^2} \xi N_c$
- 2. $\sin \varphi_q$ affects b_L couplings (not \overline{Zbb}), e.g. Δm_B , better small

We find the Top Yukawa: $y_t = Y_t^* \sin \varphi_q \sin \varphi_t$ And verteces with t and W_L :

$$\mathcal{L} \subset -\lambda_B \varphi_+ \overline{t}_R B + \lambda_T \varphi_- \overline{t}_R T_{5/3}$$
$$\lambda_B = \sin \varphi_t \cos \varphi_q Y_t^* \quad \lambda_T = \sin \varphi_t Y_t^* > y_t$$

Available parameter space is model-dependent. However:

1. N_c will have to be small, $\widehat{S} \simeq \frac{m_w^2}{16\pi^2 v^2} \xi N_c$ 2. $\sin \varphi_q$ affects b_L couplings (not $Z\overline{b}b$), e.g. Δm_B , better small Reasonable: $\begin{cases} N_c \le 10 \Rightarrow Y_t^* = \frac{4\pi}{\sqrt{N_c}} \ge 4\\ \sin \varphi_q \le \sin \varphi_t \end{cases} \Rightarrow \lambda_{B,T} \ge \sqrt{3}, 2 \end{cases}$

イロト イポト イラト イラト 一日

Production:

・ロン ・回と ・ヨン・

æ

Production Xsect:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Signal: $pp \rightarrow I^{\pm}I^{\pm} + \not \in_T + jets$

- ► Hard Isolated $I^{\pm}I^{\pm}$: $p_T > 10$ GeV, $\Delta R(LJ) > 0.4$ ($\eta < 2.5$)
- One very hard I^{\pm} (harder for $T_{5/3}$ than for $B_{1/3}$)
- Large $H_T = \sum_{J,L,\not\in_T} |P_T|$

Signal: $pp \rightarrow I^{\pm}I^{\pm} + \not \in_T + \text{ jets}$

- ▶ Hard Isolated $I^{\pm}I^{\pm}$: $p_T > 10$ GeV, $\Delta R(LJ) > 0.4$ ($\eta < 2.5$)
- One very hard I^{\pm} (harder for $T_{5/3}$ than for $B_{1/3}$)

• Large
$$H_T = \sum_{J,L,\notin_T} |P_T|$$

Only relevant for $M \lesssim 2\text{TeV}$ (pay leptonic BR of $\frac{2}{9} \cdot \frac{2}{9} \cdot \frac{6}{9} \simeq 0.03$)

Backgrounds:

- The $I^{\pm}I^{\pm}$ Background:
 - 1. $W^{\pm}W^{\pm}$
 - 2. $W^{\pm}W^{\pm}W^{\mathrm{a}ny}$ (enhanced by $W^{\pm}H$)
 - 3. $W^{\pm}t\overline{t}$
 - 4. $W^{\pm}W^{\mp}t\bar{t}$ (again enhanced by Higgs)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Backgrounds:

• The $I^{\pm}I^{\pm}$ Background:

- 1. $W^{\pm}W^{\pm}$
- 2. $W^{\pm}W^{\pm}W^{any}$ (enhanced by $W^{\pm}H$)
- 3. $W^{\pm}t\overline{t}$
- 4. $W^{\pm}W^{\mp}t\bar{t}$ (again enhanced by Higgs)

► The $l^{\pm}l^{\pm}l^{any,lost}$ Background: $(p_T(l) < 5 \text{ GeV}, \eta(l) > 2.5)$

- 1. $W^{\pm}Z$ (1/20 to lose the lepton, but bigger that $W^{\pm}W^{\pm}$)
- 2. $(H > W^{\pm}W^{\mp})Z$ (subdominant w.r.t. $W^{\pm}H$)

Backgrounds:

• The $I^{\pm}I^{\pm}$ Background:

- 1. $W^{\pm}W^{\pm}$
- 2. $W^{\pm}W^{\pm}W^{any}$ (enhanced by $W^{\pm}H$)
- 3. $W^{\pm}t\overline{t}$
- 4. $W^{\pm}W^{\mp}t\bar{t}$ (again enhanced by Higgs)

► The $l^{\pm}l^{\pm}l^{any,lost}$ Background: $(p_T(l) < 5 \text{ GeV}, \eta(l) > 2.5)$

- 1. $W^{\pm}Z$ (1/20 to lose the lepton, but bigger that $W^{\pm}W^{\pm}$)
- 2. $(H > W^{\pm}W^{\mp})Z$ (subdominant w.r.t. $W^{\pm}H$)
- The $I^{\pm}I^{\mp}$ Background (ch. misid 10^{-2}):
 - 1. $W^{\pm}W^{\mp}$
 - 2. $t\overline{t}$
 - 3. $Z^*/\gamma*$ (invariant mass cut $m_{II} > 120$ GeV, killed by $\not\!\!\!E_T$)

Simulation:

MADGRAPH/MADEVENT with MLM matching, showering with PYTHIA.

Discovery results from Parton Level (plus hard jets) calculation.

・ロト ・回ト ・ヨト ・ヨト

Simulation:

MADGRAPH/MADEVENT with MLM matching, showering with PYTHIA.

Discovery results from Parton Level (plus hard jets) calculation.

One detector disturbance included (crucial for Z^*/γ^*):

$$\sigma(\vec{\not{\!\!\! E_T}}) = \kappa \sqrt{\sum_{J,L} |p_T|}$$

 $\kappa_{\rm ATLAS}=$ 0.47, $\kappa_{\rm CMS}=$ 0.97, we take $\kappa=1.0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Optimized Cuts:

Cut	Mass, [TeV]	$p_T(L1)$, [GeV]	H_T , [GeV]	<i>∉</i> ₇ , [GeV]
soft	0.5	60	500	50
medium	1.0	100	1000	50
hard	1.5	200	1200	100
max	2.0	250	1600	100

For *B* and $T_{5/3}$, $\lambda_{T,B} = 3$:

Mass, [TeV]	$L_{ m discovery}$, [fb ⁻¹]	# signal	# background
0.5	0.024	5	0
1.0	1.103	8	2
1.5	26.40	17	11
2.0	326.7	28	31

For only *B*, $\lambda_B = 3$:

Mass, [TeV]	$L_{ m discovery}$, [fb ⁻¹]	# signal	# background
0.5	0.076	8	2
1.0	4.3	16	11
1.5	82	30	37
2.0	637	39	61

Andrea Wulzer Top partners in Same–Sign Dileptons: A Strong Sector at the

・ロト ・回ト ・ヨト ・ヨト

For *B* and $T_{5/3}$, $\lambda = 2$: 90fb⁻¹ for 1.5 TeV

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

For *B* and $T_{5/3}$, $\lambda = 2$: 90fb⁻¹ for 1.5 TeV

Most pessimistic case (in our model):

 $\frac{M_T}{M_B} = \frac{\lambda_B}{\lambda_T} = \cos \varphi_q \implies B \text{ heavy and decoupled if } \sin \varphi_q \text{ large}$ As if $T_{5/3}$ only, $\lambda = 2$: 470fb⁻¹ for 1.5 TeV

Maximum reach around 1.3 TeV, 90fb^{-1}

Discovering Top Partners in the excess:

- ▶ Identify SM particles: leptonic W's by m_{T2} , had. t (eff. 60%)
- ▶ Measure (+,+) (−,−) Asymmetry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Discovering Top Partners in the excess:

- ▶ Identify SM particles: leptonic W's by m_{T2} , had. t (eff. 60%)
- ▶ Measure (+, +) (−, −) Asymmetry
- ► Tag a Forward Jet:

W of low virtuality, $p_T(J) \lesssim m_W$, $E \gtrsim 1$ TeV $\Rightarrow \eta \sim 3$

イロト イポト イヨト イヨト

Main background to Forward Jet is ISR, (eff. of 65%, fake of 20%)

Andrea Wulzer

Top partners in Same–Sign Dileptons: A Strong Sector at the

æ

Measure the Mass:

For the $T_{5/3}$: ▶ If pair produced reconstruct the hadronic $T_{5/3}$: $W^- \rightarrow hadrons$ $\bar{T}_{5/3}$ $\rightarrow \bar{b}$ hadrons 00000 $T_{5/3}$ ā ▶ If singly produced use m_T : $\not\models_T$ for ν 's transv. energies W_t^+ $T_{5/3}$ g00000 $\bar{t} \rightarrow \bar{b}$ hadrons (本間) (本語) (本語)

For the **B**: • If singly produced use m_{T2} for t and B W_L^+ $\rightarrow l^+ \nu_l$ $\bar{B}_{1/3}$ $\rightarrow \bar{b}$ hadrons g000000 $t \rightarrow l^+ \nu_l b$ If pair produced ? $\rightarrow l^+ \nu_l$ q $\bar{B}_{1/3}$ $\rightarrow \bar{b}$ hadrons 00000 $\rightarrow l^+ \nu_i b$ $B_{1/3}$ \bar{q} $W^- \rightarrow hadrons$

<ロ> (日) (日) (日) (日) (日)

æ

Alternative: reconstruct ν 's with MAOS (Cho, Choi, Kim, Park)

イロト イヨト イヨト イヨト

Example:

$$M_T = 1.0 \text{ TeV}, \ M_{B_{1/3}} = 0.8 \text{ TeV}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Top Partners are signatures of Partial Compositeness
- Discovered in same-sign dileptons for $M \lesssim 1.5$ TeV
- Possible to measure couplings and masses

イロン イヨン イヨン イヨン

- Top Partners are signatures of Partial Compositeness
- Discovered in same-sign dileptons for $M \lesssim 1.5$ TeV
- Possible to measure couplings and masses
- Relevant for Higgsless where the resonance scale is low Also for Composite-Higgs (Contino, Da Rold, Pomarol) : Partners in [0.5, 1.5] are the best signature of the scenario.

イロト イポト イラト イラト 一日

Single/Pair
$$\simeq \frac{\lambda^2}{4\pi} \cdot \alpha_W / \alpha_S$$
 (phase space) $\simeq 1/10$

Compensated by parton lumionsities

・ロト ・回 ト ・ヨト ・ヨト

æ

◆□ → ◆□ → ◆注 → ◆注 → □ □

LHC @ 10 TeV:

Mass, [TeV]	$L_{ m discovery}$, [fb ⁻¹]	# signal	# background
0.5	0.072	5	0
1.0	5.5	9	3
1.5	210	22	19

To be compared with 7 TeV:

Mass, [TeV]	$L_{ m discovery}$, [fb ⁻¹]	# signal	# background
0.5	0.024	5	0
1.0	1.103	8	2
1.5	26.40	17	11
2.0	326.7	28	31

<ロ> (四) (四) (注) (注) (三)