

Higgsless Vector Boson Fusion at the LHC beyond leading order

GGI Conference "The Search for New States and Forces of Nature", Florence

Christoph Englert | 29.10.2009

INSTITUTE FOR THEORETICAL PHYSICS

Outline

Overview over Higgsless Symmetry Breaking

Higgsless VBF signatures

based on CE, B. Jäger and D. Zeppenfeld JHEP 0903 (2009) 060 CE, B. Jäger, M. Worek and D. Zeppenfeld, Phys. Rev. D 80 (2009) 035027

EWSB & hierarchies via.....

i) SUSY

- ii) Technicolor
- iii) Extra dimensions

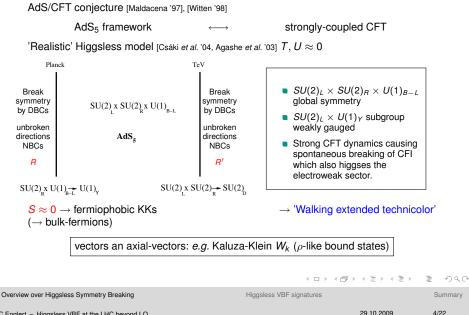
unresolved spacelike dimension(s)

[Arkani-Hamed, Dimopoulos, Dvali '98], [Randall, Sundrum '99]

<u>RS1</u>:

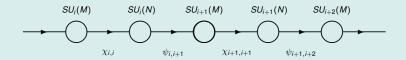
5*d* Einstein equations exhibit 4*d* Lorentz-invariant solution, S^1/\mathbb{Z}_2 orbifold \rightarrow slice of AdS₅ Planck TeV $ds^2 = \frac{R^2}{y^2} \left(g_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2 \right) \rightarrow m_{eff} = \frac{R}{y} m_0$ AdS

RS1 – bulk-gauging


[Pomarol et al. '99, '00], [Chang et al. '99],...

dictionary of duality via AdS/CFT

[Rattazzi, Zaffaroni et al. '00], [Arkani-Hamed et al. '00]


C.Englert – Higgsless VBF at the LHC beyond LO	29.10.2009	3/22
Overview over Higgsless Symmetry Breaking	Higgsless VBF signatures	Summary
	《 ㅁ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷	E OQC

AdS/CFT – Bulk-gauged RS1

C.Englert - Higgsless VBF at the LHC beyond LO

Notes on deconstruction

Connections with deconstruction

[Randall, Shadmi, Weiner '02]

- Seminal to continuum model-building (delocalization,...) [Chivukula et al. '05]
- Popular candidates to model higgsless LHC phenomenology [He et al. '08]
- Phenomenologically quite identical to continuum theory
 [Belyaev al. '09]

Drawbacks, model-building i	issues		
 3rd generation → new discove Tension between minimal mode 		[Csáki <i>et al. 06</i>] ta	
	[Barbieri, Pomarol, Rattaz		
	< □ > < 6		<i>n</i> q
erview over Higgsless Symmetry Breaking	Higgsless VBF signatures	s	Summar

O١

Higgsless ELW mass spectrum

• 5d gauge fields decompose under the unbroken 4d Lorentz group

$$oldsymbol{A}_M(x,y) = \left(oldsymbol{A}_{\mu}^k,oldsymbol{A}_5^k
ight) = 4d$$
 vectors \oplus 4 d scalars

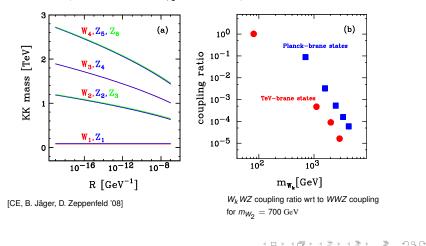
Action mixes 4d scalar and 4d vector (cf. SM)

$$S \supset \int d^4x \int_{R}^{R'} dy \frac{R}{y} \left\{ -\frac{1}{4} F^{a,\mu\nu} F^{a}_{\mu\nu} - \frac{1}{2} F^{a,\mu5} F^{a}_{\mu5} \right\}$$

- ∂ -conditions & gauge fixing $\Rightarrow A_5$ becomes the longitudinal component of A_{μ} , i.e. A_5 decouples in unitary gauge
 - \Rightarrow no scalars in theory's spectrum,

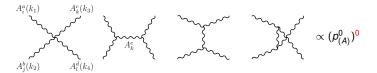
Gauge boson mass operator $\hat{m}^2 = y^{-1}\partial_y - \partial_y^2$

■ reg. SLP along additional dimension ⇒ KK decomposition of gauge fields,


e.g.
$$A^{3L}_{\mu}(x,y) = aZ^{(0)}_{\mu}(x) + \sum_{k\geq 1} \psi^B_k(y)Z^{(k)}_{\mu}(x)$$

massless mode

massive modes


The Higgsless model - masses & couplings

• Model is determined by a single parameter, chosen to be the localization of the UV brane R (T Parameter bound $\leq 10^{-7}$ GeV⁻¹).

Overview over Higgsless Symmetry Breaking

The warped Higgsless model – Unitarity

Necessary SM sum rules for $\sqrt{s} \gg m_k$

[Birkedal, Perelstein, Matchev '04, Chivukula et al. '08]

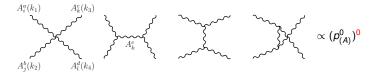
$$g_{W_1 W_1 W_1} W_1 = \sum_{k \ge 0} g_{W_1 W_1 Z_k}^2 \mathcal{O}(s)$$

$$4m_{W_1}^2 g_{W_1 W_1 W_1 W_1} = 3 \sum_{k \ge 1} m_{Z_k}^2 g_{W_1 W_1 Z_k}^2 \mathcal{O}(\sqrt{s})$$

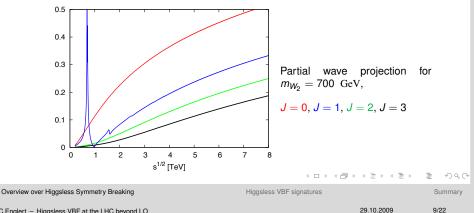
$$g_{W_1 W_1 Z_1 Z_1} = \sum_{k>1} g_{W_k W_1 Z_1}^2$$
 $\mathcal{O}(s)$

$$2(m_{Z_1}^2 + m_{W_1}^2)g_{W_1W_1Z_1Z_1} = \sum_{k\geq 1} g_{W_kW_1Z_1}^2 \left(3m_{W_k}^2 - \frac{(m_{Z_1}^2 - m_{W_1}^2)^2}{m_{W_k}^2}\right) \qquad \mathcal{O}(\sqrt{s})$$

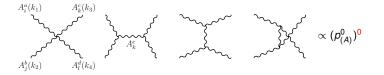
...obeyed as consequence of the regular SLP in the continuum $\sqrt{}$

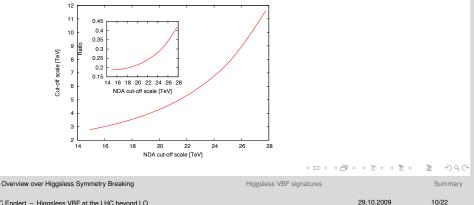

Summary

Higgsless VBF signatures

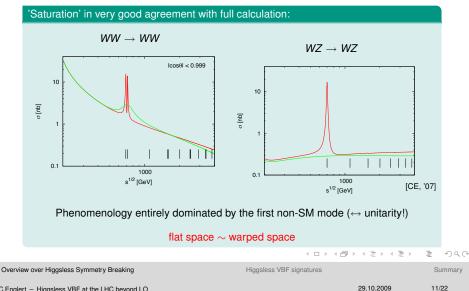

Overview over Higgsless Symmetry Breaking

C.Englert - Higgsless VBF at the LHC beyond LO


The warped Higgsless model – Unitarity


Unitarity violation postponed to several TeV (upper limit).

The warped Higgsless model – Unitarity

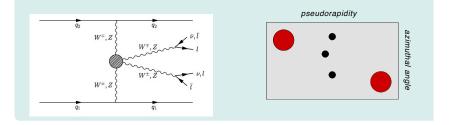

Extract upper limit on NDA O(1) determined from AdS₅

Higgsless WW, WZ cross sections

Phenomenology with W', Z' - saturated sum rules: W' is 'smoking gun'

[Birkedal, Perelstein, Matchev '04]

C.Englert - Higgsless VBF at the LHC beyond LO


VBF signatures in general

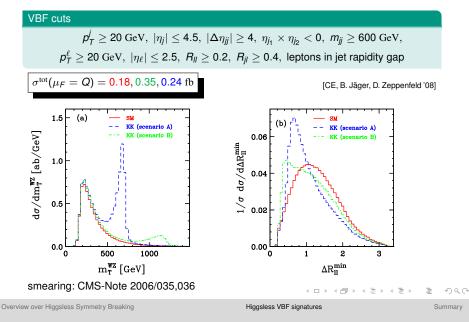
Weak Boson fusion processes access gauge boson scattering.

sensitivity to the mechanism of EWSB

Clean and distinct signatures of gold and silver plated modes at the LHC.

[Bagger et al. '94], [Rainwater, Zeppenfeld '99] cut on typical VBF signature highly reduces QCD backgrounds

VBF processes provide prominent discovery channels of extra vector bosons, especially for suppressed Drell-Yan production.


- ▲日 > ▲ 国 > ▲ B > ■ B

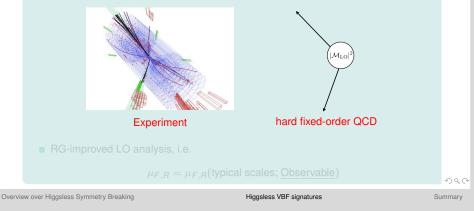
Overview over Higgsless Symmetry Breaking	Higgsless VBF signatures		Summary
C.Englert – Higgsless VBF at the LHC beyond LO		29.10.2009	12/22

Higgsless WWjj signatures

VBF cuts $p_T' \ge 20 \text{ GeV}, \ |\eta_i| \le 4.5, \ |\Delta \eta_{ii}| \ge 4, \ \eta_{i_1} \times \eta_{i_2} < 0, \ m_{ii} \ge 600 \text{ GeV},$ $p_T^{\ell} \ge 20 \text{ GeV}, \ |\eta_{\ell}| \le 2.5, \ R_{ll} \ge 0.2, \ R_{il} \ge 0.4$, leptons in jet rapidity gap $\sigma^{\rm tot}(\mu_F = Q) = 1.70, 2.28, 2.03 \, {\rm fb}$ [CE, B, Jäger, D, Zeppenfeld '08] 0.04 (a) (b) dσ/dp^{max}[ab/GeV] (scenario A) KK (scenario A) 10 (K (scenario B) KK (scenario B) $1/\sigma d\sigma/d\phi_{\rm II}$ 0.03 0.02 0 ° 0.01 200 400 2 3 p_{T.iet} [GeV] φı smearing: CMS-Note 2006/035.036 ▲ 同 ▶ → 目 nac 3 Overview over Higgsless Symmetry Breaking Higgsless VBF signatures Summary

Higgsless W^+Zjj signatures

NLO-QCD?!

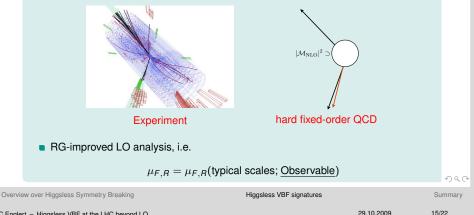

Why NLO corrections

- LO = "Order of magnitude approximation" \leftrightarrow scale dependence (lower bound on uncertainty!)
- \blacksquare Hadron-colliders \rightarrow total QCD quantum corrections are sizable 2
- Differential QCD-corrections even more important:

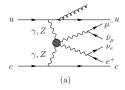
differential shapes determined @NLO, jet-definition,...

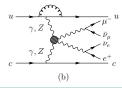
15/22

29.10.2009



NLO-QCD?!


Why NLO corrections


- LO = "Order of magnitude approximation" ↔ scale dependence (lower bound on uncertainty!)
- Hadron-colliders \rightarrow total QCD quantum corrections are sizable 2
- Differential QCD-corrections even more important:

differential shapes determined @NLO, jet-definition,...

Higgsless signatures @ NLO-QCD

Anatomy of NLO-QCD corrections

Handle IR-divergencies à la Catani-Seymour

('external' QCD – no gluon tower) [Catani, Seymour '96], [KLN '62 '64]

$$\sigma^{\text{NLO}} = \sigma^{\text{LO}} + \underbrace{\int_{n+1} (d\sigma^{\text{R}} - d\sigma^{\text{A}})}_{\text{finite} \sim (\mathbf{a})} + \underbrace{\int_{n} \left(d\sigma^{\text{Virt}} + \int_{1} d\sigma^{\text{A}} \right)}_{\text{finite} \sim (\mathbf{b})}$$

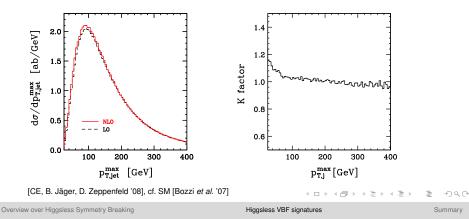
Subtraction term reproduces IR-divergencies of the real emission matrix element

$$d\sigma^{\rm Virt} \sim |\mathcal{M}_B|^2 \, \frac{\alpha_s(\mu_R)}{\pi} \, \left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \, \Gamma(1+\epsilon) \left[-\frac{C_F}{\epsilon^2} - \frac{\gamma_q}{\epsilon}\right] + 2\,\mathrm{Re}\left[\widetilde{\mathcal{M}}_{\rm V}\mathcal{M}_{\rm B}^*\right]$$

Loop corrections in terms of process-universal building blocks [Jäger, Oleari, Zeppenfeld '06] [Campanario, CE, Spannowsky, Zeppenfeld '09]

Overview over Higgsless Symmetry Breaking

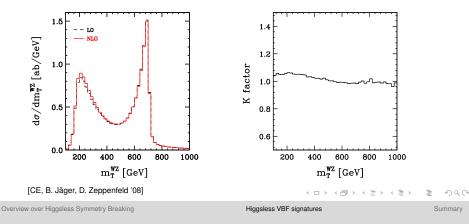
」 Summary


C.Englert - Higgsless VBF at the LHC beyond LO

29.10.2009

Higgsless signatures @ NLO-QCD

Total NLO correction for W^+Zjj with leptonic decay: $\sigma^{\rm NLO}/\sigma^{\rm LO}$


Scale μ	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]	K factor]
$(m_W + m_Z)/2$	0.359	0.355	0.989	
Q	0.349	0.356	1.020	← RG improvement!?
m_{W_2}	0.283	0.346	1.223	

Higgsless signatures @ NLO-QCD

Total NLO correction for W^+Zjj with leptonic decay: $\sigma^{\rm NLO}/\sigma^{\rm LO}$

Scale μ	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]	K factor	
$(m_W + m_Z)/2$	0.359	0.355	0.989	
Q	0.349	0.356	1.020	← RG improvement!?
m_{W_2}	0.283	0.346	1.223	

Can we separate the signal from the background?

• VBF provides clean enough signatures to cope with very general BSM-EWSB

[Bagger et al. '94 '95]

Dedicated refinement of the analysis for all channels @ LHC

[CE, Jäger, Worek, Zeppenfeld '08]

Signal procs	background procs
$egin{aligned} & ho p ightarrow W^{\pm} Z j j ightarrow 3 \ell p_T j j j \ & ho p ightarrow W^+ W^- j j ightarrow 2 \ell p_T j j j \ & ho p ightarrow Z Z j j ightarrow 4 \ell p_T j j \end{aligned}$	$t\overline{t} + jets$ QCD $pp \rightarrow VVjj$ incl. leptonic decays

taking into account

- full matrix elements for signal and backgrounds
- double jet tagging
- full off-shell effects & leptonic final states

- b-tag efficiencies,
- RG improvements

イロト イポト イヨト イヨト

nan

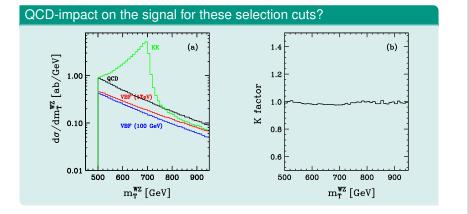
-

 Overview over Higgsless Symmetry Breaking
 Higgsless VBF signatures
 Summary

 C.Englert - Higgsless VBF at the LHC beyond LO
 29.10.2009
 19/22

Can we separate the signal from the background?

Process	σ_S	σ_B	S/B	S/\sqrt{B}	$S/\sqrt{S+B}$	$N_{ m signal}^{SM}$	$N_{\rm bkgd.}$
$W^{\pm}Zjj$ $W^{+}W^{-}jj$	$0.68 \\ 0.40$	0.39 0.78	$1.7 \\ 0.5$	18.9 7.9	11.4 6.4	204 120	117 234
$\begin{array}{c} ZZjj \rightarrow 4\ell jj \\ ZZjj \rightarrow 2\ell 2\nu jj \end{array}$	$0.009 \\ 0.05$	0.021 0.10	$0.4 \\ 0.5$	1.1 2.7	0.9 2.2	$\frac{3}{15}$	6 30


@300 fb⁻¹

LHC is highly sensitive to the scenario!

Combined analysis of VBF @ LHC sheds light on EWSB

		▶ < Ē > < Ē >	三 うく(~
verview over Higgsless Symmetry Breaking	Higgsless VBF signatures		Summary
Englert – Higgsless VBF at the LHC beyond LO		29.10.2009	20/22

Can we separate the signal from the background?

C.Englert – Higgsless VBF at the LHC beyond LO

Overview over Higgsless Symmetry Breaking

Higgsless VBF signatures

29.10.2009 2

Summary

Higgsless EWSB defines phenomenologically appealing BSM scenarios

If VBF phenomenologically dominates (fermiophobic KKs), the signatures are

- (i) clearly visible and perturbatively stable,
- (ii) largely independent of the fermionic sector,
- (iii) rather model independent
- Additional KKs generically too weakly coupled \rightarrow no 'd > 4' VBF-proof

The MC Code is publicly available at

[Arnold et al., '08]

= nar

http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/

and features all the stuff you need

(GNU-build system, libraries, LHA, manual, ...)

イロト イポト イヨト イヨト

 'Use your own scenario' switch — plug in your scenario and get differential NLO-QCD cross sections