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♦ Conclusions / outlook.

Outline

♦ Brief Intro’, the importance of uFCNC measurements.

♦ Third generation, covariant, flavor violation & the LHC.

♦ Generic & model independent bounds, covariant formalism.

♦                mixing, data & the SM.D − D̄

♦ Some model dependent info’.
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Why Up ?
♦ SM way to induce flavor conversion & CPV is unique.

9

FIG. 4: The schematic structure of the various ingredients that mediate flavor breaking within the SM.
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is mediated at least via one loop. This would not work as well since we can always rotate the down quark fields into

the mass basis and simultaneously rotate also the up type quarks (away from their mass basis) so that g±2 ∝ 13. These

manipulations define the interaction basis which is not unique [see Eq. (28)]. Therefore, the leading flavor invariant

spurion that mediates FCNC transition would have to involve the up type Yukawa spurion as well. A naive guess
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where it is understood that (AQu)kl is evaluated in the down quark mass basis (obviously tiny corrections of order

m2
u are neglected in the above). This expression captures the right flavor structure and is correct for large class of SM

extensions. However, it is actually incorrect in the SM case. The reason is that within the SM the flavor symmetries

are badly broken by the large top quark mass [26]. The SM corresponding amplitude consist of a rather non-trivial,

non-linear function of AQu instead of the above naive expression (see e.g[29] and Refs. therein), which assumes only

the simplest polynomial dependence of the spurions. The SM amplitude for ∆md is described via a box diagram and

two out of the four power of masses are cancelled, since they appear in the propagators.

C. The SM approximate symmetry structure

In the above we have considered the most general breaking pattern. However, as we have discussed the essence

of the flavor puzzle is the large hierarchies in the quark masses, the eigen values of YU,D and their approximate
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♦ Absence of observed deviation from SM predictions implies

severe bound on new physics (NP).

♦ Most of precise information involves K, B mesons, linked to 

down type FCNC.

♦ Most severe hierarchy problem is induced by the top sector, 

which is indeed extended in most of natural NP models.  
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Up flavor violation is interesting
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♦ Huge recent progress in measurement of mass splitting 

    & CP violation  (CPV) in the D system:

 Precision Measurements in D mixing
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We observe evidence for D0–D0 mixing by measuring the difference in apparent lifetime when a
D0 meson decays to the CP eigenstates K+K− and π+π−, and when it decays to the final state
K−π+. We find yCP = (1.31 ± 0.32(stat.) ± 0.25(syst.))%, 3.2 standard deviations from zero. We
also search for a CP asymmetry between D0 and D0 decays; no evidence for CP violation is found.
These results are based on 540 fb−1 of data recorded by the Belle detector at the KEKB e+e−

collider.

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Ff

The phenomenon of mixing between a particle and its
anti-particle has been observed in several systems of neu-
tral mesons [1, 2]: neutral kaons, B0

d, and most recently
B0

s mesons. In this paper we present evidence for D0–D0

mixing [3].

The time evolution of a D0or D0 is governed by the
mixing parameters x = (M1 − M2)/Γ and y = (Γ1 −
Γ2)/2Γ, where M1,2 and Γ1,2 are the masses and widths,
respectively, of the mass eigenstates, and Γ = (Γ1+Γ2)/2.
For no mixing, x = y = 0. Within the Standard Model
(SM) the rate of D-mixing is expected to be small due
to the near degeneracy of the s and d quark masses rel-
ative to the W mass, and the small value of the b quark
couplings. Predictions for x and y are dominated by
non-perturbative processes that are difficult to calculate
[4, 5]. The largest predictions are |x|, |y| ∼ O(10−2) [5].
Loop diagrams including new, as-yet-unobserved parti-
cles could significantly affect the experimental values [6].
CP -violating effects in D-mixing would be a clear signal
of new physics, as CP violation (CPV ) is expected to be
very small in the SM [7].

Both semileptonic and hadronic D decays have been
used to constrain x and y [1]. Here we study the decays to
CP eigenstates D0 → K+K− and D0 → π+π−; treating
the decay time distributions as exponential, we measure

the quantity

yCP =
τ(K−π+)

τ(K+K−)
− 1, (1)

where τ(K+K−) and τ(K−π+) are the lifetimes of D0 →
K+K− (or π+π−) and D0 → K−π+ decays [8]. It can
be shown that yCP = y cosφ− 1

2
AMx sin φ [9], where AM

parameterizes CPV in mixing and φ is a weak phase. If
CP is conserved, AM = φ = 0 and yCP = y. To date
several measurements of yCP have been reported [10]; the
average value is ∼2 standard deviations (σ) above zero.
Our measurement yields a nonzero value of yCP with
> 3σ significance. We also search for CPV by measuring
the quantity

AΓ =
τ(D0 → K−K+) − τ(D0 → K+K−)

τ(D0 → K−K+) + τ(D0 → K+K−)
; (2)

this observable equals AΓ = 1
2
AMy cosφ − x sin φ [9].

Our results are based on 540 fb−1 of data recorded
by the Belle experiment [11] at the KEKB asymmetric-
energy e+e− collider [12], running at the center-of-mass
(CM) energy of the Υ(4S) resonance and 60 MeV below.
To avoid bias, details of the analysis procedure were final-
ized without consulting quantities sensitive to yCP and
AΓ.

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 [1 − |q/p|(y cos φ − x sin φ)Γt] ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 [1 − |p/q|(y cos φ + x sin φ)Γt] . (13)

Ref. [1] uses parameters y′
± and x′2

± that correspond to the following combinations of

parameters:

y′
+ = |q/p|(y′ cos φ − x′ sin φ), x′

+ = |q/p|(x′ cos φ + y′ sin φ),

y′
− = |p/q|(y′ cos φ + x′ sin φ), x′

− = |p/q|(x′ cos φ − y′ sin φ). (14)

In the limit of CP conservation,

y′
+ = y′

− ≡ y′
0 =

(

Γ+ − Γ−

2Γ

)

cos δ −
(

m+ − m−

Γ

)

sin δ,

x′
+ = x′

− ≡ x′
0 =

(

Γ+ − Γ−

2Γ

)

sin δ +

(

m+ − m−

Γ

)

cos δ, (15)

where sub-indices +(−) in Γ± and m± denote the CP-even (-odd) mass eigenstate.

Ref. [2] uses parameters yCP and AΓ that correspond to the following combinations of

parameters:2

yCP =
1

2
(|q/p| + |p/q|)y cos φ −

1

2
(|q/p|− |p/q|)x sinφ, (16)

AΓ =
1

2
(|q/p|− |p/q|)y cos φ −

1

2
(|q/p| + |p/q|)x sinφ. (17)

In the limit of CP conservation,

yCP =
Γ+ − Γ−

2Γ
,

AΓ = 0. (18)

III. INTERPRETING THE DATA (MODEL INDEPENDENTLY)

Ref. [2] gives the following results related to the SCS decays:

yCP = (1.31 ± 0.32 ± 0.25) × 10−2, (19)

AΓ = (0.01 ± 0.30 ± 0.15) × 10−2. (20)

Two straightforward statements follow from Eqs. (19) and (20):

2 In the notations of the PDG [11], yCP ≡ Y and AΓ ≡ −∆Y .

5

no direct CP violation.1 The effects of indirect CP violation can be parametrized in the

following way [10]:

λ−1
K+π−

= rd|p/q|e−i(δ+φ),

λK−π+ = rd|q/p|e−i(δ−φ),

λK+K− = −|q/p|eiφ, (9)

where rd is a real and positive dimensionless parameter, δ is a strong (CP conserving) phase,

and φ is a weak (CP violating) phase. The appearance of a single weak phase common to

all final states is related to the absence of direct CP violation, while the absence of a strong

phase in λK+K− is related to the fact that the final state is a CP eigenstate. CP violation

in mixing is related to

Am ≡
|q/p|2 − 1

|q/p|2 + 1
#= 0. (10)

CP violation in the interference of decays with and without mixing is related to sin φ #= 0. In

the limit of CP conservation, where the mass eigenstates are also CP eigenstates, choosing

φ = 0 is equivalent to defining |D1〉 = |D−〉 and |D2〉 = |D+〉, with D−(D+) being the CP-

odd (CP-even) state, that is, the state that does not (does) decay into K+K−. (Alternatively,

φ = π is also a legitimate choice in the CP conserving case; it simply identifies |D1〉 = |D+〉

and |D2〉 = |D−〉. The physical observable y cos φ remains unchanged under these alternative

conventions.)

For the analysis of the DCS decays, it is convenient to further define

x′ ≡ x cos δ + y sin δ,

y′ ≡ y cos δ − x sin δ. (11)

In the absence of direct CP violation, the expressions for the DCS decay rates (7) and for

the SCS decay rates (8) simplify:

Γ[D0(t) → K+π−] = e−Γt|AK−π+ |2

×
[

r2
d + rd|q/p|(y′ cos φ − x′ sin φ)Γt +

1

4
|q/p|2(y2 + x2)(Γt)2

]

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2 (12)

×
[

r2
d + rd|p/q|(y′ cos φ + x′ sin φ)Γt +

1

4
|p/q|2(y2 + x2)(Γt)2

]

,

1 In some supersymmetric models, SCS decays may exhibit comparable direct and indirect CP violations

[9].
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The average and the difference in mass and width are given by

m ≡
m1 + m2

2
, Γ ≡

Γ1 + Γ2

2
,

x ≡
m2 − m1

Γ
, y ≡

Γ2 − Γ1

2Γ
. (4)

The decay amplitudes into a final state f are defined as follows:

Af = 〈f |H|D0〉,

Af = 〈f |H|D0〉. (5)

We define λf :

λf =
q

p

Āf

Af

. (6)

We now write the approximate expressions for the time-dependent DCS and SCS decay

rates that are valid for time t ∼< 1/Γ. We take into account the experimental information

that x, y and tan θc (where θc is the Cabibbo angle) are small, and expand each of the rates

only to the order that is relevant to the BaBar and Belle measurements:

Γ[D0(t) → K+π−] = e−Γt|AK+π− |2|q/p|2

×
{

|λ−1
K+π−

|2 + [Re(λ−1
K+π−

)y + Im(λ−1
K+π−

)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2|p/q|2 (7)

×
{

|λK−π+ |2 + [Re(λK−π+)y + Im(λK−π+)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 {1 + [Re(λK+K−)y − Im(λK+K−)x]Γt} ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2
{

1 + [Re(λ−1
K+K−

)y − Im(λ−1
K+K−

)x]Γt
}

. (8)

Within the Standard Model, the physics of D0 − D0 mixing and of the tree level decays

is dominated by the first two generations and, consequently, CP violation can be safely

neglected (for reviews of charm physics, see [4, 5]). Indeed, CP violation in these processes

would constitute a signal for new physics [3, 6, 7]. In all ‘reasonable’ extensions of the

Standard Model, both the DCS [8] and the SCS [9] decays are still dominated by the Standard

Model CP conserving contributions. On the other hand, there could be new short distance,

possibly CP violating contributions to the mixing amplitude M12. Allowing for only such

CP violating effects of new physics, the picture of CP violation is simplified since there is

3
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We observe evidence for D0–D0 mixing by measuring the difference in apparent lifetime when a
D0 meson decays to the CP eigenstates K+K− and π+π−, and when it decays to the final state
K−π+. We find yCP = (1.31 ± 0.32(stat.) ± 0.25(syst.))%, 3.2 standard deviations from zero. We
also search for a CP asymmetry between D0 and D0 decays; no evidence for CP violation is found.
These results are based on 540 fb−1 of data recorded by the Belle detector at the KEKB e+e−

collider.

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Ff

The phenomenon of mixing between a particle and its
anti-particle has been observed in several systems of neu-
tral mesons [1, 2]: neutral kaons, B0

d, and most recently
B0

s mesons. In this paper we present evidence for D0–D0

mixing [3].

The time evolution of a D0or D0 is governed by the
mixing parameters x = (M1 − M2)/Γ and y = (Γ1 −
Γ2)/2Γ, where M1,2 and Γ1,2 are the masses and widths,
respectively, of the mass eigenstates, and Γ = (Γ1+Γ2)/2.
For no mixing, x = y = 0. Within the Standard Model
(SM) the rate of D-mixing is expected to be small due
to the near degeneracy of the s and d quark masses rel-
ative to the W mass, and the small value of the b quark
couplings. Predictions for x and y are dominated by
non-perturbative processes that are difficult to calculate
[4, 5]. The largest predictions are |x|, |y| ∼ O(10−2) [5].
Loop diagrams including new, as-yet-unobserved parti-
cles could significantly affect the experimental values [6].
CP -violating effects in D-mixing would be a clear signal
of new physics, as CP violation (CPV ) is expected to be
very small in the SM [7].

Both semileptonic and hadronic D decays have been
used to constrain x and y [1]. Here we study the decays to
CP eigenstates D0 → K+K− and D0 → π+π−; treating
the decay time distributions as exponential, we measure

the quantity

yCP =
τ(K−π+)

τ(K+K−)
− 1, (1)

where τ(K+K−) and τ(K−π+) are the lifetimes of D0 →
K+K− (or π+π−) and D0 → K−π+ decays [8]. It can
be shown that yCP = y cosφ− 1

2
AMx sin φ [9], where AM

parameterizes CPV in mixing and φ is a weak phase. If
CP is conserved, AM = φ = 0 and yCP = y. To date
several measurements of yCP have been reported [10]; the
average value is ∼2 standard deviations (σ) above zero.
Our measurement yields a nonzero value of yCP with
> 3σ significance. We also search for CPV by measuring
the quantity

AΓ =
τ(D0 → K−K+) − τ(D0 → K+K−)

τ(D0 → K−K+) + τ(D0 → K+K−)
; (2)

this observable equals AΓ = 1
2
AMy cosφ − x sin φ [9].

Our results are based on 540 fb−1 of data recorded
by the Belle experiment [11] at the KEKB asymmetric-
energy e+e− collider [12], running at the center-of-mass
(CM) energy of the Υ(4S) resonance and 60 MeV below.
To avoid bias, details of the analysis procedure were final-
ized without consulting quantities sensitive to yCP and
AΓ.

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 [1 − |q/p|(y cos φ − x sin φ)Γt] ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 [1 − |p/q|(y cos φ + x sin φ)Γt] . (13)

Ref. [1] uses parameters y′
± and x′2

± that correspond to the following combinations of

parameters:

y′
+ = |q/p|(y′ cos φ − x′ sin φ), x′

+ = |q/p|(x′ cos φ + y′ sin φ),

y′
− = |p/q|(y′ cos φ + x′ sin φ), x′

− = |p/q|(x′ cos φ − y′ sin φ). (14)

In the limit of CP conservation,

y′
+ = y′

− ≡ y′
0 =

(

Γ+ − Γ−

2Γ

)

cos δ −
(

m+ − m−

Γ

)

sin δ,

x′
+ = x′

− ≡ x′
0 =

(

Γ+ − Γ−

2Γ

)

sin δ +

(

m+ − m−

Γ

)

cos δ, (15)

where sub-indices +(−) in Γ± and m± denote the CP-even (-odd) mass eigenstate.

Ref. [2] uses parameters yCP and AΓ that correspond to the following combinations of

parameters:2

yCP =
1

2
(|q/p| + |p/q|)y cos φ −

1

2
(|q/p|− |p/q|)x sinφ, (16)

AΓ =
1

2
(|q/p|− |p/q|)y cos φ −

1

2
(|q/p| + |p/q|)x sinφ. (17)

In the limit of CP conservation,

yCP =
Γ+ − Γ−

2Γ
,

AΓ = 0. (18)

III. INTERPRETING THE DATA (MODEL INDEPENDENTLY)

Ref. [2] gives the following results related to the SCS decays:

yCP = (1.31 ± 0.32 ± 0.25) × 10−2, (19)

AΓ = (0.01 ± 0.30 ± 0.15) × 10−2. (20)

Two straightforward statements follow from Eqs. (19) and (20):

2 In the notations of the PDG [11], yCP ≡ Y and AΓ ≡ −∆Y .
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no direct CP violation.1 The effects of indirect CP violation can be parametrized in the

following way [10]:

λ−1
K+π−

= rd|p/q|e−i(δ+φ),

λK−π+ = rd|q/p|e−i(δ−φ),

λK+K− = −|q/p|eiφ, (9)

where rd is a real and positive dimensionless parameter, δ is a strong (CP conserving) phase,

and φ is a weak (CP violating) phase. The appearance of a single weak phase common to

all final states is related to the absence of direct CP violation, while the absence of a strong

phase in λK+K− is related to the fact that the final state is a CP eigenstate. CP violation

in mixing is related to

Am ≡
|q/p|2 − 1

|q/p|2 + 1
#= 0. (10)

CP violation in the interference of decays with and without mixing is related to sin φ #= 0. In

the limit of CP conservation, where the mass eigenstates are also CP eigenstates, choosing

φ = 0 is equivalent to defining |D1〉 = |D−〉 and |D2〉 = |D+〉, with D−(D+) being the CP-

odd (CP-even) state, that is, the state that does not (does) decay into K+K−. (Alternatively,

φ = π is also a legitimate choice in the CP conserving case; it simply identifies |D1〉 = |D+〉

and |D2〉 = |D−〉. The physical observable y cos φ remains unchanged under these alternative

conventions.)

For the analysis of the DCS decays, it is convenient to further define

x′ ≡ x cos δ + y sin δ,

y′ ≡ y cos δ − x sin δ. (11)

In the absence of direct CP violation, the expressions for the DCS decay rates (7) and for

the SCS decay rates (8) simplify:

Γ[D0(t) → K+π−] = e−Γt|AK−π+ |2

×
[

r2
d + rd|q/p|(y′ cos φ − x′ sin φ)Γt +

1

4
|q/p|2(y2 + x2)(Γt)2

]

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2 (12)

×
[

r2
d + rd|p/q|(y′ cos φ + x′ sin φ)Γt +

1

4
|p/q|2(y2 + x2)(Γt)2

]

,

1 In some supersymmetric models, SCS decays may exhibit comparable direct and indirect CP violations

[9].

4

The average and the difference in mass and width are given by

m ≡
m1 + m2

2
, Γ ≡

Γ1 + Γ2

2
,

x ≡
m2 − m1

Γ
, y ≡

Γ2 − Γ1

2Γ
. (4)

The decay amplitudes into a final state f are defined as follows:

Af = 〈f |H|D0〉,

Af = 〈f |H|D0〉. (5)

We define λf :

λf =
q

p

Āf

Af

. (6)

We now write the approximate expressions for the time-dependent DCS and SCS decay

rates that are valid for time t ∼< 1/Γ. We take into account the experimental information

that x, y and tan θc (where θc is the Cabibbo angle) are small, and expand each of the rates

only to the order that is relevant to the BaBar and Belle measurements:

Γ[D0(t) → K+π−] = e−Γt|AK+π− |2|q/p|2

×
{

|λ−1
K+π−

|2 + [Re(λ−1
K+π−

)y + Im(λ−1
K+π−

)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2|p/q|2 (7)

×
{

|λK−π+ |2 + [Re(λK−π+)y + Im(λK−π+)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 {1 + [Re(λK+K−)y − Im(λK+K−)x]Γt} ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2
{

1 + [Re(λ−1
K+K−

)y − Im(λ−1
K+K−

)x]Γt
}

. (8)

Within the Standard Model, the physics of D0 − D0 mixing and of the tree level decays

is dominated by the first two generations and, consequently, CP violation can be safely

neglected (for reviews of charm physics, see [4, 5]). Indeed, CP violation in these processes

would constitute a signal for new physics [3, 6, 7]. In all ‘reasonable’ extensions of the

Standard Model, both the DCS [8] and the SCS [9] decays are still dominated by the Standard

Model CP conserving contributions. On the other hand, there could be new short distance,

possibly CP violating contributions to the mixing amplitude M12. Allowing for only such

CP violating effects of new physics, the picture of CP violation is simplified since there is

3

where rd is a real and positive dimensionless parameter, δf is a strong (CP conserving)

mode-dependent phase, and φ is a weak (CP violating) universal phase. Similar expressions

can be written to decays into any final state. The appearance of a single weak phase that is

common to all final states is related to the absence of direct CP violation, while the absence

of a strong phase in λK+K− is related to the fact that the final state is a CP eigenstate.

In our analysis we assume that effects of direct CP violation are negligibly small even in

the presence of new physics (NP). The question of NP contributions to direct CP violation

in the doubly Cabibbo suppressed decays was investigated in detail in [7, 8] and shown to be

indeed generically small. In some special cases it could reach order 30%. The singly Cabibbo

suppressed decays case was studied in [9]. Typically direct CP violation is suppressed, but

in special models (or corners of parameter space) it could be non-negligible. Experimental

constraints on direct CP violation in charm decays were analyzed by the heavy flavor aver-

aging group (HFAG) [10] and found to be of order one percent. Furthermore, the effect of

including direct CP violation on the NP contributions was recently considered in [11] and

shown to be subdominant.

The experimental measurements of the various relevant D-decay rates can be used to

determine the values of the four parameters that are related to D0 −D0 mixing: x, y, |q/p|

and φ. Impressive progress in relevant measurements has been recently achieved in the

BaBar and Belle experiments. The information comes from a variety of final states of

neutral D-meson decays: K+K−
, π+π−, Kπ+π−, K�ν, K−π+

and K+π−. HFAG has fitted

the data, and obtained the following one sigma ranges [10]:

x = (1.00 ± 0.25)× 10
−2,

y = (0.77 ± 0.18)× 10
−2,

1− |q/p| = +0.06 ± 0.14,

φ = −0.05 ± 0.09, (2.8)

where φ is given in radians. These results imply the following:

1. The width-splitting and mass-splitting are at a level close to one percent.

2. CP violation is small.

We would now like to translate these statements, made for the parameters that are used to

describe the experimental results, to parameters that represent the theory input.
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The average and the difference in mass and width are given by
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The decay amplitudes into a final state f are defined as follows:

Af = 〈f |H|D0〉,

Af = 〈f |H|D0〉. (5)

We define λf :

λf =
q

p

Āf

Af

. (6)

We now write the approximate expressions for the time-dependent DCS and SCS decay

rates that are valid for time t ∼< 1/Γ. We take into account the experimental information

that x, y and tan θc (where θc is the Cabibbo angle) are small, and expand each of the rates

only to the order that is relevant to the BaBar and Belle measurements:

Γ[D0(t) → K+π−] = e−Γt|AK+π− |2|q/p|2

×
{

|λ−1
K+π−

|2 + [Re(λ−1
K+π−

)y + Im(λ−1
K+π−

)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2|p/q|2 (7)

×
{

|λK−π+ |2 + [Re(λK−π+)y + Im(λK−π+)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 {1 + [Re(λK+K−)y − Im(λK+K−)x]Γt} ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2
{

1 + [Re(λ−1
K+K−

)y − Im(λ−1
K+K−

)x]Γt
}

. (8)

Within the Standard Model, the physics of D0 − D0 mixing and of the tree level decays

is dominated by the first two generations and, consequently, CP violation can be safely

neglected (for reviews of charm physics, see [4, 5]). Indeed, CP violation in these processes

would constitute a signal for new physics [3, 6, 7]. In all ‘reasonable’ extensions of the

Standard Model, both the DCS [8] and the SCS [9] decays are still dominated by the Standard

Model CP conserving contributions. On the other hand, there could be new short distance,

possibly CP violating contributions to the mixing amplitude M12. Allowing for only such

CP violating effects of new physics, the picture of CP violation is simplified since there is
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♦ System parameters roughly determined (HFAG):
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If x is due to NP then it missed
a chance to revealed itself in O(1) CPV.☹
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∆F = 2 status Isidori, Nir, GP (10)

Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables

Re Im Re Im

(s̄LγµdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; �K

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; �K

(c̄LγµuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd ; SψKS

(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd ; SψKS

(b̄LγµsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

(t̄LγµuL)2

TABLE I: Bounds on representative dimension-six ∆F = 2 operators. Bounds on Λ are quoted assuming an

effective coupling 1/Λ2, or, alternatively, the bounds on the respective cij ’s assuming Λ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from ∆mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1

Λ2
NP

(QLi(XQ)ijγµQLj)(QLi(XQ)ijγ
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d
= λd, Y u

= V †λu, XQ = V †
d λQVd, (3.7)

where λQ is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics effects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle θc), while Vd depends on a

9
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explain this point.

Consider operators of the form
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Λ2
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µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):
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[More info’ in    c=1,  Golowich, et. al (09), Kagan & Sokolof (09)]

ces, that is, in the basis where the new operators are fla-
vor diagonal, the diagonalizing matrices of the Yukawa
couplings are at least as hierarchical as the CKM ma-
trix. This constitutes next-to-minimal minimal flavor vi-
olation (NMFV) [? ]. In this case there are new fla-
vor and CP violating parameters, so NMFV is almost
as generic as the class of models defined above by con-
ditions (I) and (II). However, our assumption of quasi-
alignment provides a useful way for “power counting” and
to estimate the size of the expected NP contributions.
Moreover it is also realized by many supersymmetric and
non-supersymmetric models (see [? ] for more details),
providing a powerful framework for model independent
analysis.

What is the expected size of the NP contribu-
tions? Four-fermion operators are generated when the
NP is integrated out at a scale of order ΛNMFV ∼
mX ∼ 3 TeV. Consider, for example, the opera-

tor
(

Q̄3Q3/ΛNMFV

)2
defined in the interaction basis

(gauge, Lorentz indices and O(1) coefficients are omit-
ted). In the mass basis, this operator contributes to
∆F = 2 processes as [(D∗

L)3i(DL)3j Q̄iQj/ΛNMFV]2 ∼
[(V ∗

CKM)3i(VCKM)3j Q̄iQj/ΛNMFV]2, where DL is the ro-
tation matrix of the down type doublet quarks. Com-
paring the NP contributions to the SM ones we find that
within the NMFV we expect

hNMFV
K,d,s ∼ O(1) . (3)

The magnitudes of hK,d,s are inversely proportional to
the cutoff of the theory and provide a measure of the
tuning in the model. Moreover, a connection between
ΛNMFV and mX relates this fine tuning to the one in
the Higgs sector. Consequently, just as in the case of
electroweak precision tests, any model of this class will
be disfavored if the constraints on the hK,d,s drop below
the 0.1 level.

Below we focus on NP in ∆F = 2 processes, which are
in general theoretically cleaner and have simpler opera-
tor structures. To constrain deviations from the SM in
these processes, the tree-level observables |Vub/Vcb| and
γ extracted from the CP asymmetry in B± → DK±

modes are crucial, because they are unaffected by NP.
We consider in addition the following observables: the
B0

q B̄0
q (q = d, s) mass differences, ∆mq; CP violation

in B0
q mixing, Aq

SL [? ]; the time dependent CP asym-
metries in B0

d decays, SψK and Sρρ,ππ,ρπ; and the time
dependent CP asymmetry in B0

s decay, Sψφ
1; the lifetime

difference between the CP -even and CP -odd Bs states,
∆ΓCP

s [? ]. (Of these, As
SL and Sψφ have not been mea-

sured, however, they will be important in the discussion
below.)

1 By Sψφ we mean the CP asymmetry divided by (1 − 2fodd
ψφ

) to

correct for the CP -odd ψφ fraction, which also equals −Sψη(′) .

The NP contributions to B0
d and B0

s mixing can be ex-
pressed in terms of four parameters, hq and σq defined

by M q
12 = (1 + hqe2iσq )M q,SM

12 , where M q,SM
12 is the dis-

persive part of the B0
q B̄0

q mixing amplitude in the SM.
(For a similar parameterization of NP in the K0 system,
see [? ].) Then the predictions for the above observables
are modified compared to the SM as follows:

∆mq = ∆mSM
q

∣

∣1 + hqe
2iσq

∣

∣,

SψK = sin
[

2β + arg
(

1 + hde
2iσd

)]

,

Sψφ = sin
[

2βs − arg
(

1 + hse
2iσs

)]

,

Aq
SL = Im

{

Γq
12/

[

M q,SM
12 (1 + hqe

2iσq )
]}

,

∆ΓCP
s = ∆ΓSM

s cos2
[

arg
(

1 + hse
2iσs

)]

. (4)

Here λ ≈ 0.23 is the Wolfenstein parameter, βs =
arg[−(VtsV ∗

tb)/(VcsV ∗
cb)] ≈ 1◦ is the angle of a squashed

unitarity triangle, and Γq
12 is the absorptive part of the

B0
q B̄0

q mixing amplitude, which is probably not signifi-

cantly affected by NP. (We neglect O
(

M2
W /Λ2

NMFV

)

cor-
rections due to NP contributions to SM tree-level ∆F = 1
processes; for a different approach, see [? ].)

Looking at Eq. (??) one notices a fundamental differ-
ence between the Bd and Bs systems. The SM contri-
butions affecting the Bd system are related to the non-
degenerate unitarity triangle. Thus the determination of
hd, σd is strongly correlated with that of the Wolfenstein
parameters, ρ̄, η̄. On the other hand the unitarity trian-
gle relevant for the Bs system is nearly degenerate and
therefore the determination of hs, σs is almost indepen-
dent of ρ̄, η̄.

Figure ?? shows the allowed hs, σs parameter space
without (left) and with (right) the measurement of ∆ms

in Eq. (??) and the bound on ∆ΓCP
s , using the CKMfitter

package [? ].2 We used the constraint on the ratio

∆md

∆ms
=

∣

∣

∣

∣

1 + hde2iσd

1 + hse2iσs

∣

∣

∣

∣

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 mBd

mBs

ξ2 , (5)

which is theoretically cleaner than either ∆md or ∆ms.
Since ∆md depends on hd, σd, ρ̄, η̄, in order to produce
the above plots these parameters were scanned over. We
can easily see that the new measurement excludes a large
part of the previously allowed parameter space. The ex-
cluded region around hs = 1 and σs = 90◦ would give
cancelling contributions to ∆ms. The decrease in CL
around hs = 1 is due to the ∆ΓCP

s constraint, which is
useful at present, largely because its central value dis-
favors any deviation from the SM. After a year of LHC
data, the bound from this quantity will probably be less
important, because of theoretical uncertainties.

2 Unless otherwise stated, the input parameters are as in [? ].
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ces, that is, in the basis where the new operators are fla-
vor diagonal, the diagonalizing matrices of the Yukawa
couplings are at least as hierarchical as the CKM ma-
trix. This constitutes next-to-minimal minimal flavor vi-
olation (NMFV) [? ]. In this case there are new fla-
vor and CP violating parameters, so NMFV is almost
as generic as the class of models defined above by con-
ditions (I) and (II). However, our assumption of quasi-
alignment provides a useful way for “power counting” and
to estimate the size of the expected NP contributions.
Moreover it is also realized by many supersymmetric and
non-supersymmetric models (see [? ] for more details),
providing a powerful framework for model independent
analysis.

What is the expected size of the NP contribu-
tions? Four-fermion operators are generated when the
NP is integrated out at a scale of order ΛNMFV ∼
mX ∼ 3 TeV. Consider, for example, the opera-

tor
(

Q̄3Q3/ΛNMFV

)2
defined in the interaction basis

(gauge, Lorentz indices and O(1) coefficients are omit-
ted). In the mass basis, this operator contributes to
∆F = 2 processes as [(D∗

L)3i(DL)3j Q̄iQj/ΛNMFV]2 ∼
[(V ∗

CKM)3i(VCKM)3j Q̄iQj/ΛNMFV]2, where DL is the ro-
tation matrix of the down type doublet quarks. Com-
paring the NP contributions to the SM ones we find that
within the NMFV we expect

hNMFV
K,d,s ∼ O(1) . (3)

The magnitudes of hK,d,s are inversely proportional to
the cutoff of the theory and provide a measure of the
tuning in the model. Moreover, a connection between
ΛNMFV and mX relates this fine tuning to the one in
the Higgs sector. Consequently, just as in the case of
electroweak precision tests, any model of this class will
be disfavored if the constraints on the hK,d,s drop below
the 0.1 level.

Below we focus on NP in ∆F = 2 processes, which are
in general theoretically cleaner and have simpler opera-
tor structures. To constrain deviations from the SM in
these processes, the tree-level observables |Vub/Vcb| and
γ extracted from the CP asymmetry in B± → DK±

modes are crucial, because they are unaffected by NP.
We consider in addition the following observables: the
B0

q B̄0
q (q = d, s) mass differences, ∆mq; CP violation

in B0
q mixing, Aq

SL [? ]; the time dependent CP asym-
metries in B0

d decays, SψK and Sρρ,ππ,ρπ; and the time
dependent CP asymmetry in B0

s decay, Sψφ
1; the lifetime

difference between the CP -even and CP -odd Bs states,
∆ΓCP

s [? ]. (Of these, As
SL and Sψφ have not been mea-

sured, however, they will be important in the discussion
below.)

1 By Sψφ we mean the CP asymmetry divided by (1 − 2fodd
ψφ

) to

correct for the CP -odd ψφ fraction, which also equals −Sψη(′) .

The NP contributions to B0
d and B0

s mixing can be ex-
pressed in terms of four parameters, hq and σq defined

by M q
12 = (1 + hqe2iσq )M q,SM

12 , where M q,SM
12 is the dis-

persive part of the B0
q B̄0

q mixing amplitude in the SM.
(For a similar parameterization of NP in the K0 system,
see [? ].) Then the predictions for the above observables
are modified compared to the SM as follows:

∆mq = ∆mSM
q

∣

∣1 + hqe
2iσq

∣

∣,

SψK = sin
[

2β + arg
(

1 + hde
2iσd

)]

,

Sψφ = sin
[

2βs − arg
(

1 + hse
2iσs

)]

,

Aq
SL = Im

{

Γq
12/

[

M q,SM
12 (1 + hqe

2iσq )
]}

,

∆ΓCP
s = ∆ΓSM

s cos2
[

arg
(

1 + hse
2iσs

)]

. (4)

Here λ ≈ 0.23 is the Wolfenstein parameter, βs =
arg[−(VtsV ∗

tb)/(VcsV ∗
cb)] ≈ 1◦ is the angle of a squashed

unitarity triangle, and Γq
12 is the absorptive part of the

B0
q B̄0

q mixing amplitude, which is probably not signifi-

cantly affected by NP. (We neglect O
(

M2
W /Λ2

NMFV

)

cor-
rections due to NP contributions to SM tree-level ∆F = 1
processes; for a different approach, see [? ].)

Looking at Eq. (??) one notices a fundamental differ-
ence between the Bd and Bs systems. The SM contri-
butions affecting the Bd system are related to the non-
degenerate unitarity triangle. Thus the determination of
hd, σd is strongly correlated with that of the Wolfenstein
parameters, ρ̄, η̄. On the other hand the unitarity trian-
gle relevant for the Bs system is nearly degenerate and
therefore the determination of hs, σs is almost indepen-
dent of ρ̄, η̄.

Figure ?? shows the allowed hs, σs parameter space
without (left) and with (right) the measurement of ∆ms

in Eq. (??) and the bound on ∆ΓCP
s , using the CKMfitter

package [? ].2 We used the constraint on the ratio

∆md

∆ms
=

∣

∣

∣

∣

1 + hde2iσd

1 + hse2iσs

∣

∣

∣

∣

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 mBd

mBs

ξ2 , (5)

which is theoretically cleaner than either ∆md or ∆ms.
Since ∆md depends on hd, σd, ρ̄, η̄, in order to produce
the above plots these parameters were scanned over. We
can easily see that the new measurement excludes a large
part of the previously allowed parameter space. The ex-
cluded region around hs = 1 and σs = 90◦ would give
cancelling contributions to ∆ms. The decrease in CL
around hs = 1 is due to the ∆ΓCP

s constraint, which is
useful at present, largely because its central value dis-
favors any deviation from the SM. After a year of LHC
data, the bound from this quantity will probably be less
important, because of theoretical uncertainties.

2 Unless otherwise stated, the input parameters are as in [? ].
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ces, that is, in the basis where the new operators are fla-
vor diagonal, the diagonalizing matrices of the Yukawa
couplings are at least as hierarchical as the CKM ma-
trix. This constitutes next-to-minimal minimal flavor vi-
olation (NMFV) [? ]. In this case there are new fla-
vor and CP violating parameters, so NMFV is almost
as generic as the class of models defined above by con-
ditions (I) and (II). However, our assumption of quasi-
alignment provides a useful way for “power counting” and
to estimate the size of the expected NP contributions.
Moreover it is also realized by many supersymmetric and
non-supersymmetric models (see [? ] for more details),
providing a powerful framework for model independent
analysis.

What is the expected size of the NP contribu-
tions? Four-fermion operators are generated when the
NP is integrated out at a scale of order ΛNMFV ∼
mX ∼ 3 TeV. Consider, for example, the opera-

tor
(

Q̄3Q3/ΛNMFV

)2
defined in the interaction basis

(gauge, Lorentz indices and O(1) coefficients are omit-
ted). In the mass basis, this operator contributes to
∆F = 2 processes as [(D∗

L)3i(DL)3j Q̄iQj/ΛNMFV]2 ∼
[(V ∗

CKM)3i(VCKM)3j Q̄iQj/ΛNMFV]2, where DL is the ro-
tation matrix of the down type doublet quarks. Com-
paring the NP contributions to the SM ones we find that
within the NMFV we expect

hNMFV
K,d,s ∼ O(1) . (3)

The magnitudes of hK,d,s are inversely proportional to
the cutoff of the theory and provide a measure of the
tuning in the model. Moreover, a connection between
ΛNMFV and mX relates this fine tuning to the one in
the Higgs sector. Consequently, just as in the case of
electroweak precision tests, any model of this class will
be disfavored if the constraints on the hK,d,s drop below
the 0.1 level.

Below we focus on NP in ∆F = 2 processes, which are
in general theoretically cleaner and have simpler opera-
tor structures. To constrain deviations from the SM in
these processes, the tree-level observables |Vub/Vcb| and
γ extracted from the CP asymmetry in B± → DK±

modes are crucial, because they are unaffected by NP.
We consider in addition the following observables: the
B0

q B̄0
q (q = d, s) mass differences, ∆mq; CP violation

in B0
q mixing, Aq

SL [? ]; the time dependent CP asym-
metries in B0

d decays, SψK and Sρρ,ππ,ρπ; and the time
dependent CP asymmetry in B0

s decay, Sψφ
1; the lifetime

difference between the CP -even and CP -odd Bs states,
∆ΓCP

s [? ]. (Of these, As
SL and Sψφ have not been mea-

sured, however, they will be important in the discussion
below.)

1 By Sψφ we mean the CP asymmetry divided by (1 − 2fodd
ψφ

) to

correct for the CP -odd ψφ fraction, which also equals −Sψη(′) .

The NP contributions to B0
d and B0

s mixing can be ex-
pressed in terms of four parameters, hq and σq defined

by M q
12 = (1 + hqe2iσq )M q,SM

12 , where M q,SM
12 is the dis-

persive part of the B0
q B̄0

q mixing amplitude in the SM.
(For a similar parameterization of NP in the K0 system,
see [? ].) Then the predictions for the above observables
are modified compared to the SM as follows:

∆mq = ∆mSM
q

∣

∣1 + hqe
2iσq

∣

∣,

SψK = sin
[

2β + arg
(

1 + hde
2iσd

)]

,

Sψφ = sin
[

2βs − arg
(

1 + hse
2iσs

)]

,

Aq
SL = Im

{

Γq
12/

[

M q,SM
12 (1 + hqe

2iσq )
]}

,

∆ΓCP
s = ∆ΓSM

s cos2
[

arg
(

1 + hse
2iσs

)]

. (4)

Here λ ≈ 0.23 is the Wolfenstein parameter, βs =
arg[−(VtsV ∗

tb)/(VcsV ∗
cb)] ≈ 1◦ is the angle of a squashed

unitarity triangle, and Γq
12 is the absorptive part of the

B0
q B̄0

q mixing amplitude, which is probably not signifi-

cantly affected by NP. (We neglect O
(

M2
W /Λ2

NMFV

)

cor-
rections due to NP contributions to SM tree-level ∆F = 1
processes; for a different approach, see [? ].)

Looking at Eq. (??) one notices a fundamental differ-
ence between the Bd and Bs systems. The SM contri-
butions affecting the Bd system are related to the non-
degenerate unitarity triangle. Thus the determination of
hd, σd is strongly correlated with that of the Wolfenstein
parameters, ρ̄, η̄. On the other hand the unitarity trian-
gle relevant for the Bs system is nearly degenerate and
therefore the determination of hs, σs is almost indepen-
dent of ρ̄, η̄.

Figure ?? shows the allowed hs, σs parameter space
without (left) and with (right) the measurement of ∆ms

in Eq. (??) and the bound on ∆ΓCP
s , using the CKMfitter

package [? ].2 We used the constraint on the ratio

∆md

∆ms
=

∣

∣

∣

∣

1 + hde2iσd

1 + hse2iσs

∣

∣

∣

∣

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 mBd

mBs

ξ2 , (5)

which is theoretically cleaner than either ∆md or ∆ms.
Since ∆md depends on hd, σd, ρ̄, η̄, in order to produce
the above plots these parameters were scanned over. We
can easily see that the new measurement excludes a large
part of the previously allowed parameter space. The ex-
cluded region around hs = 1 and σs = 90◦ would give
cancelling contributions to ∆ms. The decrease in CL
around hs = 1 is due to the ∆ΓCP

s constraint, which is
useful at present, largely because its central value dis-
favors any deviation from the SM. After a year of LHC
data, the bound from this quantity will probably be less
important, because of theoretical uncertainties.

2 Unless otherwise stated, the input parameters are as in [? ].
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Two gen’ flavor structure (no CPV)
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simultaneously! Nir (07); Blum et. al. (09).
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CPV,                , yield strong constraint on

Constraining the flavor structure with CPV

(sin γ = v̂2)

3

where

v̂′ =







cos 2θc 0 − sin 2θc

0 1 0

sin 2θc 0 cos 2θc






v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1−3 plane where,
without loss of generality, YdY

†
d and YuY †

u reside. This
can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
{

X
[

YdY
†
d , YuY †

u

]}

(21)

= i(y2
s − y2

d)(y2
c − y2

u)Λ12 sin 2θc v̂2.

Using this parametrization, we obtain

zK
1 = Λ2

12(v̂1 − iv̂2)
2, (22)

zD
1 = Λ2

12(cos 2θcv̂1 − sin 2θcv̂3 − iv̂2)
2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin γ ≡ v̂2 ⊂ [0, 1], (24)

sin α ≡
v̂1

√

v̂2
1 + v̂2

3

⊂ [−1, 1].

In terms of α and γ, we obtain

|zK
1 | = Λ2

12

[

cos2 γ sin2 α + sin2 γ
]

, (25)

|zD
1 | = Λ2

12

[

cos2 γ sin2(α − 2θc) + sin2 γ
]

,

Im(zK
1 ) = −Λ2

12 sin α sin 2γ,

Im(zD
1 ) = −Λ2

12 sin(α − 2θc) sin 2γ.

As a first check of our results, note that when we take
γ = 0, we reproduce Eq. (13). (The identification of α
with 2θd is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest Λ12-bound as a function of sin γ
is presented in Fig. 1.

At 0.03 ∼< | sin γ| ∼< 0.98, the constraints from the CPV

observables are dominant, and the combination of zIK
exp

and zID
exp is responsible for the unavoidable bound on Λ12.

Defining

rI
KD ≡ zIK

exp/zID
exp, (26)

the weakest bound on Λ12 corresponds to

tan α =
rI
KD sin 2θc

1 + rI
KD cos 2θc

, (27)

and is given by

Λ2
12 ≤

zID
exp

sin 2θc sin 2γ

√

1 + rI2
KD + 2rI

KD cos 2θc. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin α ≈ 0.014 and it is given by

Λ12 ≤
4.8 × 10−4

√
sin 2γ

(

ΛNP

1 TeV

)

. (29)

Eq. (29) explains the sin γ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0 −D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2γ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For ΛNP ≤ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10−3). With loop suppression of
order λ12 ∼ α2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0−K0 mixing and of D0−D0 mix-
ing is provided by supersymmetry. Any supersymmetric
model generates the operator (6) via box diagrams with
intermediate gluinos and squark-doublets. The various
factors that enter zK

1 and zD
1 can be identified as follows:

ΛNP = m̃Q ≡ (mQ̃1
+ mQ̃2

)/2,

λ2
12 =

α2
s

54
g(m2

g̃/m̃2
Q),

δ12 = (mQ̃2
− mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ≤ 1 TeV, and
mg̃ ≈ m̃Q (which gives λ12 ≈ 0.014), leads to

mQ̃2
− mQ̃2

mQ̃1
+ mQ̃2

≤

{

0.034 maximal phases

0.27 vanishing phases
(31)

We conclude that if squarks and gluinos are lighter than
TeV, then the first two squark doublets should be degen-
erate to, at least, order ten percent. (Previous studies of
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FIG. 1: The weakest Λ12-bound as function of sin γ.
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CPV,                , strongly constrains

Constraining the flavor structure with CPV

(sin γ = v̂2)

Thursday, March 25, 2010



CPV,                , strongly constrains

Constraining the flavor structure with CPV

(sin γ = v̂2)

No bound is obtained in the 
absence of D system data!!

Thursday, March 25, 2010



Covariant, basis independent, 
description of flavor violation

2 x [Gedalia, Mannelli, GP (10)]
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Can be understood in a covariant, basis 
independent manner (needed for 3gen’)

is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an assumption-free

manner, based on third generation ∆F = 1 decays. Sec. 5 similarly deals with ∆F = 2 processes

involving the third generation quarks. For the latter two sections, current experimental data is used

for the down sector constraints, while the up sector bounds are mostly based on LHC prospects.

Secs. 6 and 7 present concrete examples for the application of the analysis to supersymmetry and

warped extra dimension, respectively. Finally, we conclude in Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining new

physics, as a result of the richer experimental data. Any hermitian traceless 2 × 2 matrix can be

expressed as a linear combination of the Pauli matrices σi. This combination can be naturally

interpreted as a vector in three dimensional real space, which applies to Ad and Au. We can

then define a length of such a vector, a scalar product, a cross product and an angle between two

vectors, all of which are basis-independent
1
:

| �A| ≡
�

1

2
tr(A2) , �A · �B ≡ 1

2
tr(AB) , �A× �B ≡ − i

2
[A,B] ,

cos(θAB) ≡
�A · �B
| �A|| �B|

=
tr(AB)�

tr(A2)tr(B2)
.

(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced

by a new physics source. Consider a dimension six SU(2)L-invariant operator, involving only quark

doublets,

z1

Λ2
NP

O1 =
1

Λ2
NP

�
Qi(XQ)ijγµQj

� �
Qi(XQ)ijγ

µ
Qj

�
, (4)

where ΛNP is some high energy scale. XQ is a traceless hermitian matrix, transforming as an

adjoint of SU(3)Q (or SU(2)Q for two generations), so it “lives” in the same space as Ad and Au.
2

In the down sector for example, the operator above is relevant for flavor violation through K0−K0

mixing. To analyze its contribution, we define a covariant basis for each sector, with the following

unit vectors

Âu,d ≡
Au,d

|Au,d|
, Ĵ ≡ Ad ×Au

|Ad ×Au|
, Ĵu,d ≡ Âu,d × Ĵ . (5)

Then the contribution of the operator in Eq. (4) to∆c, s = 2 processes is given by the misalignment

between XQ and Au,d, which is equal to

���zD,K
1

��� =
���XQ × Âu,d

���
2
. (6)

This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be un-

derstood as follows: We can choose an explicit basis, for example the down mass basis, where Ad

is proportional to σ3. ∆s = 2 transitions are induced by the off-diagonal element of XQ, so that��zK1
�� = |(XQ)12|2. Furthermore, |(XQ)12| is simply the combined size of the σ1 and σ2 components

of XQ. Its size is given by the length of XQ times the sine of the angle between XQ and Ad (see

Fig 1). This is exactly what Eq. (6) describes.

1The factor of −i/2 in the cross product is required in order to have the standard geometrical interpretation��� �A× �B
��� = | �A|| �B| sin θAB , with θAB defined through the scalar product as in Eq. (3).

2This operator can always be written as a product of two identical adjoints, as explained in Appendix A.

3

Two generation case:
♦ Any Hermitian 2x2 matrix => expressed as sum of Pauli matrices.

♦ A matrix corresponds to a vector in SU(2) space.

♦ Can define set of operations, like scalar product and cross product:

♦ The SM basic vectors:
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Covariant basis, 2 gen’
♦ Define a covariant, physical, basis using the SM basis vectors:

♦ Up,down flavor violation is misalignment between SM mass basis 

unit vector & new sources of flavor breaking:

(say in                                           )
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Covariant basis, 2 gen’
♦ Define a covariant, physical, basis using the SM basis vectors:

♦ Up,down flavor violation is misalignment between SM mass basis 

unit vector & new sources of flavor breaking:

(say in                                           )
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Covariant basis, CPV
♦ CPV in              :∆F = 2

Thursday, March 25, 2010



Covariant basis, CPV
♦ CPV in              :∆F = 2

♦ Deriving a robust bound:

Previous result reproduced- XJ = Λ12 sin γ tanα = XJd

XJ

Thursday, March 25, 2010



Covariant basis - physical interpretation

♦ The axis    is the 2-gen’ “Jarlskog”:
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Covariant basis - physical interpretation

♦ The axis    is the 2-gen’ “Jarlskog”:
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Covariant basis - physical interpretation

♦ The axis    is the 2-gen’ “Jarlskog”:

Note that - Au,d · Ĵ = 0 ⇔ no CPV within SM.

♦ The axes    i  dials CPV in                 (new model indep’ condition):∆F = 2

Gedalia, Mannelli, GP (10)
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NMFV, Intermediate Summary

– p. 16(i) Minimal flavor violation (MFV); 
(ii) SUSY; 
(iii) Randall-Sundrum (RS).

CPV in D0 − D̄0 mixing,
model dependent implications:

Ciuchini, et al. (07); Csaki, et al. (08); Kagan, et al. (09); Gedalia, et al. (09,10,10); Blum, et al. (09); Buras et. al.; 
Csaki, et al. (09); Bauer, et al. (09); Bigi, et al. (09); Altmannshofer, et al. (09,10); Blanke, et al. (09); Crivellin & 
Davidkov (10).
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Minimal flavor violation (MFV)
General MFV (GMFV) vs. Linear MFV (LMFV):

Volanksy, et. al (09); Gedalia, et. al (09).

Large tan β ⇒ CPV.
LMFV: If dominated by ∼ YdY

†
d asym’ is known.

GMFV: Otherwise
�

n yn
b need to be resummed ⇒ loss of predictive power.
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Minimal flavor violation (MFV)
General MFV (GMFV) vs. Linear MFV (LMFV):

Volanksy, et. al (09); Gedalia, et. al (09).

No C
PV No CPV

Large tan β ⇒ CPV.
LMFV: If dominated by ∼ YdY

†
d asym’ is known.

GMFV: Otherwise
�

n yn
b need to be resummed ⇒ loss of predictive power.

Determining what “phase” 
describes nature yield 

microscopic info’.
Well beyond the LHC reach!
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SUSY

♦ Alignment models [O(1) phase]:  

Gedalia, et. al (09).

First bound => up squark doublets, 1TeV;

Second => average of the doublet & singlet mass splitting.

6

FIG. 3: Correlations between dn and Sf (left), dn and aSL (middle) and aSL and Sf (right) in SUSY alignment models. Gray
points satisfy the constraints (8)-(10) while blue points further satisfy the constraint (11) from φ. Dashed lines stand for the
allowed range (18) for Sf .

In the left and middle plots of fig. 3, we show the cor-

relation between dn and Sf as well as dn and aSL.

As discussed in the previous sections, the CPV ob-

servables Sf and aSL are generated by the imaginary

part of the D0 − D̄0
mixing amplitude ImM12 ∼

Im
�
(δLu )21(δ

R
u )21

�
. At the same time, also the hadronic

EDMs are generated by means of the up-quark (C)EDM

d(c)u ∼ ImM�
12

∼ Im
�
(δLu )21(δ

R
u )

∗
21

�
.

Examples of relevant Feynman diagrams contributing

toD0−D̄0
mixing and to the up quark (C)EDM in SUSY

alignment models are shown in fig. 2.

Even if the CP violating source is the same, dn and

Sf cannot be exactly correlated. The reason is twofold:

i) dn ∼ ImM�
12

while the relevant phase for Sf is φ =

Arg(q/p) with q/p defined in eq. (5), ii) while d(c)u is sensi-

tive toAc (see eq. (28)), ImM�
12

is not (see eq. (27)). Even

if the natural value for Ac is Ac ∼ mg̃, m̃Q, there are cor-

ners of the SUSY parameter space where Ac � mg̃, m̃Q

(remember that within the CMSSM-like spectrum, which

we assume, Ac ≈ 0.65 A0 − 2.8 M1/2).

However, interestingly enough, large values for Sf and

aSL necessarily imply a lower bound for the neutron EDM

dn >∼ 10
−(28−29)e cm, that is an experimentally interest-

ing level for the expected future experimental resolutions.
3

Similarly, according to eq. (30), it turns out that

the corresponding lower bound for dHg is dHg
>∼

10
−(30−31)e cm.

In summary the most peculiar predictions for the

SUSY Abelian models of table I are:

3 Similarly, in ref. [45] we pointed out that, in the context of the
flavour blind MSSM (FBMSSM), large (non-standard) CP vio-
lating effects for b → s transitions, like the CP asymmetries in
Bd → φKS and b → sγ, unambiguously predict a lower bound
for the electron and neutron EDMs (as well as for the mercury
EDM) in the reach of the future experimental sensitivities.

• Natural solution of the SUSY flavour problem

thanks to small (most probably undetectable) ef-

fects in the down quark sector, i.e. in K0 − K̄0
,

B0 − B̄0
and B0

s − B̄0

s mixings.
4

• Experimentally visible CP violating effects in D0−
D̄0

mixing, as the time dependent CP asymmetry

in decays to CP eigenstates Sf and the semileptonic

asymmetry aSL.

• Large values for the hadronic EDMs, in the reach of

the future experimental sensitivities, generated by

the up-quark (C)EDM. Hence, a correlated study

of several hadronic EDMs, with different sensitivity
to the up-quark (C)EDM would provide a crucial

tool to probe SUSY alignment models.

• A lower bound for the EDM of hadronic systems

(like the neutron EDM and the mercury EDM), in

the reach of future experimental sensitivities, for

given large (non-standard) values of Sf and aSL.

VI. CONCLUSIONS

Within the SM, CP violating effects in D meson sys-

tems are predicted to be highly suppressed at the level

of O((VcbVub)/(VcsVus)) ∼ 10
−3

. Therefore, any experi-

mental evidence for CP violation inD0−D̄0
mixing above

the per mill level would unambiguously point towards a

NP effect.

4 An exception to these findings arises, for example, in the context
of the Abelian flavour model proposed in ref. [46], which does
not belong to the class of the Abelian flavour models of table I.
As thoroughly discussed in ref. [1], the model of ref. [46] predicts,
in addition to large NP effects in D0 − D̄0 mixing, also large NP
effects for b → s transitions.

♦ Possible correlation with EDM’s:  

Altmannshofer, et. al (09).

Crivellin & Davidkov (10).

♦ A “sweet spot” could exist where bounds are weaker:

At the lowest order in QCD, we obtain the following results for the Wilson coeffi-
cients:

C1 = −
α2

s

216m2
q̃

(

24 x f6(x) + 66 f̃6(x)
) (

δd
12

)2

LL
,

C2 = −
α2

s

216m2
q̃

204 x f6(x)
(

δd
12

)2

RL
,

C3 =
α2

s

216m2
q̃

36 x f6(x)
(

δd
12

)2

RL
,

C4 = −
α2

s

216m2
q̃

[

(

504 x f6(x) − 72 f̃6(x)
) (

δd
12

)

LL

(

δd
12

)

RR

−132 f̃6(x)
(

δd
12

)

LR

(

δd
12

)

RL

]

,

C5 = −
α2

s

216m2
q̃

[

(

24 x f6(x) + 120 f̃6(x)
) (

δd
12

)

LL

(

δd
12

)

RR

−180 f̃6(x)
(

δd
12

)

LR

(

δd
12

)

RL

]

,

C̃1 = −
α2

s

216m2
q̃

(

24 x f6(x) + 66 f̃6(x)
) (

δd
12

)2

RR
,

C̃2 = −
α2

s

216m2
q̃

204 x f6(x)
(

δd
12

)2

LR
,

C̃3 =
α2

s

216m2
q̃

36 x f6(x)
(

δd
12

)2

LR
, (2.4)

where x = m2
g̃/m

2
q̃ and the functions f6(x) and f̃6(x) are given by:

f6(x) =
6(1 + 3x) lnx + x3 − 9x2 − 9x + 17

6(x − 1)5
,

f̃6(x) =
6x(1 + x) ln x − x3 − 9x2 + 9x + 1

3(x − 1)5
. (2.5)

In the absence of the O(αs) corrections to the matching, we interpret the Ci given above
as coefficients computed at the large energy scale MS ∼ mq̃ ∼ mg̃, i.e. Ci ≡ Ci(MS).

The Next-to-Leading anomalous dimension matrix for the most general H∆F=2
eff has

been recently computed [8]. We use the Regularisation-Independent anomalous dimen-
sion in the Landau gauge (LRI), since we will make use of matrix elements computed

in lattice QCD with the same choice of renormalisation scheme (see ref. [8] for details
on the computation).

A full NLO computation would also require the O(αs) corrections to the matching

conditions in eq. (2.4). Unfortunately, such corrections are not available yet. One might
argue that, being of order αs(MS), these contributions should be small, as suggested

by the cases of the SM and of the two Higgs doublet model; however, this statement
can only be confirmed by an explicit computation. Unfortunately, due to the absence

6

x ∼ 2.4

Nir & Seiberg (93).
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Warped Models (RS)
♦ Generic warped models (up-type anarchy):  

Gedalia, et. al (09);
Isidori, et. al (10).

(see A. Weiler’s talk)

Flavor fQ fU fD

1 Aλ3fQ3 ∼ 3 × 10−3 mu

mt

f
U3

Aλ3 ∼ 1 × 10−3 md

mb

f
D3

Aλ3 ∼ 2 × 10−3

2 Aλ2fQ3 ∼ 1 × 10−2 mc

mt

f
U3

Aλ2 ∼ 0.1 ms

mb

f
D3

Aλ2 ∼ 1 × 10−2

3 mt

vy5Df
U3

∼ 0.3
√

2 mb

mt
fU3 ∼ 2 × 10−2

TABLE VI: Values of the fxi parameters [Eq. (6.4)] which reproduce the observed quark masses and CKM

mixing angles starting from anarchical 5D Yukawa couplings. We fix fU3 =
√

2 and y5D = 2 (see text).

Observable Mmin
G [TeV] ymin

5D or fmax
Q3

IR Higgs β = 0 IR Higgs β = 0

CPV-BLLLL
d 12f2

Q3
12f2

Q3
fmax

Q3
= 0.5 fmax

Q3
= 0.5

CPV-BLLRR
d 4.2/y5D 2.4/y5D ymin

5D = 1.4 ymin
5D = 0.82

CPV-DLLLL 0.73f2
Q3

0.73f2
Q3

no bound no bound

CPV-DLLRR 4.9/y5D 2.4/y5D ymin
5D = 1.6 ymin

5D = 0.8

εLLLL
K 7.9f2

Q3
7.9f2

Q3
fmax

Q3
= 0.62 fmax

Q3
= 0.62

εLLRR
K 49/y5D 24/y5D above (6.7) ymin

5D = 8

TABLE VII: Most significant flavor constraints in the RS framework. The values of ymin
5D and fmax

Q3
correspond

to MKK = 3 TeV. The bounds are obtained assuming maximal CPV phases and gs∗ = 3. Entries marked

‘above (6.7)’ imply that for MKK = 3 TeV, y5D is outside the perturbative range.

where we use the rescaling y5D → y5D
√

1 + β, which produces the correct β → ∞ limit [81] and

avoids subtleties in the β = 0 case.

With anarchical 5D Yukawa matrices, an RS residual little CP problem remains [80]: Too large

contributions to the neutron electric dipole moment (EDM) [69], and sizable chirally enhanced

contributions to εK [12, 78, 82–84] are predicted. The RS leading contribution to εK is generated

by a tree-level KK-gluon exchange which leads to an effective coupling for the chirality-flipping

operator in (6.3) of the type [78, 82–84]

CK
4 &

g2
s∗

M2
KK

fQ2
fQ1

fd2
fd1

rg
00(cQ2

)rg
00(cd2

)

∼
g2
s∗

M2
KK

2mdms

(vy5D)2
rg
00(cQ2

)rg
00(cd2

)

rH
00(β, cQ1

, cd1
)rH

00(β, cQ2
, cd2

)
. (6.8)

The final expression is independent of the fxi , so the bound in Table I can be translated into

constraints in the y5D−MKK plane. The analogous effects in the D and B systems yield numerically

weaker bounds. Another class of contributions, which involves only left-handed quarks, is also

important to constrain the fQ − MKK parameter space.

25

Agashe, et. al (04,06).
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correspond

to MKK = 3 TeV. The bounds are obtained assuming maximal CPV phases and gs∗ = 3. Entries marked

‘above (6.7)’ imply that for MKK = 3 TeV, y5D is outside the perturbative range.

where we use the rescaling y5D → y5D
√

1 + β, which produces the correct β → ∞ limit [81] and

avoids subtleties in the β = 0 case.

With anarchical 5D Yukawa matrices, an RS residual little CP problem remains [80]: Too large

contributions to the neutron electric dipole moment (EDM) [69], and sizable chirally enhanced

contributions to εK [12, 78, 82–84] are predicted. The RS leading contribution to εK is generated

by a tree-level KK-gluon exchange which leads to an effective coupling for the chirality-flipping

operator in (6.3) of the type [78, 82–84]

CK
4 &

g2
s∗

M2
KK

fQ2
fQ1

fd2
fd1

rg
00(cQ2

)rg
00(cd2

)

∼
g2
s∗

M2
KK

2mdms

(vy5D)2
rg
00(cQ2

)rg
00(cd2

)

rH
00(β, cQ1

, cd1
)rH

00(β, cQ2
, cd2

)
. (6.8)

The final expression is independent of the fxi , so the bound in Table I can be translated into

constraints in the y5D−MKK plane. The analogous effects in the D and B systems yield numerically

weaker bounds. Another class of contributions, which involves only left-handed quarks, is also

important to constrain the fQ − MKK parameter space.
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  ♦ RS alignment (via shining):  
Csaki, et. al (09).

Concerning the quark zero modes, the flavor structure of the above models as well as the phe-

nomenology can be captured by using the following simple rules [69, 74, 75]. In the 5D interaction

basis, where the bulk masses k Cij
x are diagonal (x = Q,U,D; i, j = 1, 2, 3; k is the AdS curvature),

the value fxi of the profile of the quark zero modes is given by

f2
xi = (1 − 2cxi)/(1 − ε1−2c

xi ) . (6.4)

Here cxi are the eigenvalues of the Cx matrices, ε = exp[−ξ], ξ = log[MPl/TeV], and MPl is

the reduced Planck mass. If cxi < 1/2, then fxi is exponentially suppressed. Hence, order one

variations in the 5D masses yield large hierarchies in the 4D flavor parameters. We consider the

cases where the Higgs VEV either propagates in the bulk [76] or is localized on the IR brane. For

a bulk Higgs case, the profile is given by ṽ(β, z) " v
√

k(1 + β)z̄2+β/ε, where z̄ ∈ (ε, 1) (z̄ = 1

on the IR brane), and β ≥ 0. The β = 0 case describes a Higgs maximally-spread into the bulk

(saturating the AdS stability bound [77]). The relevant part of the effective 4D Lagrangian, which

involves the zero modes and the first KK gauge states can be approximated by [69, 74]

L4D ⊃ (Y u,d
5D )ijφ

u,d Q̄ifQi
(U,D)j fUj ,Dj

rφ
00(β, cQi

, cUj ,Dj
) + g∗G

1x†
ixi

[
f2

xir
g
00(cxi) − 1/ξ

]
, (6.5)

where φu,d = φ̃,φ, g∗ stands for a generic effective gauge coupling and summation over i, j is

implied. The correction for the couplings from the case of fully IR-localized KK and Higgs states

is given by the functions rφ
00 [74] and rg

00 [78, 79]:

rφ
00(β, cL, cR) ≈

√
2(1 + β)

2 + β − cL − cR
, rg

00(c) ≈
√

2

J1(x1)

0.7

6 − 4c

(
1 + ec/2

)
, (6.6)

where rφ
00(β, cL, cR) = 1 for brane-localized Higgs and x1 ≈ 2.4 is the first root of the Bessel

function, J0(x1) = 0.

In Table VI we present an example of a set of fxi-values that, starting from anarchical 5D Yukawa

couplings, reproduce the correct hierarchy of the flavor parameters. We assume, for simplicity, an

IR localized Higgs. The values depend on two input parameters: fU3, which has been determined

assuming a maximally localized tR (cu3 = −0.5), and y5D, the overall scale of the 5D Yukawa

couplings in units of k, which has been fixed to its maximal value assuming three KK states.

On general grounds, the value of y5D is bounded from above, as a function of the number of KK

levels, by the requirement that Yukawa interactions are perturbative below the cutoff of the theory,

Λ5D ∼ NKKk, and it is bounded from below in order to account for the large top mass. Hence the

following range for y5D is obtained (see e.g. [76, 80]):

1

2
! y5D !

2π

NKK
for brane Higgs ;

1

2
! y5D !

4π√
NKK

for bulk Higgs , (6.7)

24

yd
5D � 3yu

5D

Factor of few improvement exclude models.
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∼ 106−7 tt̄/yr

           Top FCNC (tFCNC), ∆t = 1
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tFCNC vs. bFCNC, generic bounds
Fox, et. al (07).

to the Wilson coefficients calculated in Section III, focusing mostly on observables related to B physics. This leads
directly to predictions for the top branching ratio. Sec. V contains a summary of the results and our conclusions. We
include an Appendix with details of the calculations.

II. EFFECTIVE LAGRANGIAN FOR TOP FCNC

We consider an effective Lagrangian

Leff =
1

Λ2

∑

(Ci Oi + C′
i O′

i) . (1)

where the Oi operators involve third and second generation quarks and the O′
i involve the third and first generations.

Since we are interested in top quark decays, we define Oi and O′
i in the mass basis for the up-type quarks.

A complete set of dimension-six operators which give a tcZ or tcγ vertex are

Ou
LL = i

[

Q3H̃
] [

(

D/H̃
)†

Q2

]

− i
[

Q3

(

D/H̃
)

] [

H̃†Q2

]

+ h.c. ,

Oh
LL = i

[

Q3γ
µQ2

][

H† ↔Dµ H
]

+ h.c. ,

Ow
RL = g2

[

Q2σ
µνσaH̃

]

tRW a
µν + h.c. ,

Ob
RL = g1

[

Q2σ
µνH̃

]

tRBµν + h.c. ,

Ow
LR = g2

[

Q3σ
µνσaH̃

]

cRW a
µν + h.c. ,

Ob
LR = g1

[

Q3σ
µνH̃

]

cRBµν + h.c. ,

Ou
RR = i tRγµcR

[

H† ↔Dµ H
]

+ h.c. . (2)

The brackets mean contraction of SU(2) indices, Q3 and Q2 are the left-handed SU(2) doublets for the third and
second generations, tR and cR are the right-handed SU(2) singlets for the top and charm quarks, H is the SM
Higgs doublet, H̃ = iσ2H∗, and the index a runs over the SU(2) generators. The first lower L or R index on the
operators denotes the SU(2) representation of the third generation quark field, while the second lower index refers to
the representation of the first or second generation field. In this basis all of the derivatives act on the Higgs fields.
We could also consider operators directly involving gluons, but since the indirect constraints on gluonic currents are
very weak (see, e.g., [6]), we restrict our focus to the electroweak operators in Eq. (2). The form of the operators in
Eq. (2) after electroweak symmetry breaking are given in the Appendix.

Throughout the paper we focus on those new operators that contribute to t → cZ, cγ. In any particular model
there may be additional contributions to Eq. (1) that contribute to ∆F = 1 and ∆F = 2 processes in the down
sector (e.g., four-fermion operators). These operators have suppressed contributions to top FCNCs. When we bound
the coefficients of the operators in Eq. (2) from B physics, we neglect these other contributions. In any particular
model these two sets of operators may have related coefficients. Unless there are cancellations between the different
operators, the bounds will not get significantly weaker.

There are other dimension-six operators that can mediate FCNC top decays (for example tRγµDνcRBµν). But
these can always be reduced to a linear combination of the operators included in Eq. (2) plus additional four-fermion
operators and operators involving QLqRHHH fields. For instance, operators involving two quark fields and three
covariant derivatives can be written in terms of operators involving fewer derivatives using the equations of motion.
Operators involving two quark fields and two covariant derivatives (e.g., Q3DµcRDµH̃) can be written in terms of
operators involving the commutator of derivatives included in Eq. (2) plus operators with one derivative and four-
fermion operators. Finally, operators involving two quark fields and one covariant derivative can be written in a way
that the derivative acts on the H field, as in Eq. (2), plus four-fermion operators.

Of the four-fermion operators which appear after the reduction of the operator basis, some are suppressed by
small Yukawa couplings and can simply be neglected. However, some are not suppressed, and of those, the biggest
concern would be semileptonic four-fermion operators, like (tc)(##). These contribute to the same final state as
t → cZ → c#+#−. (We emphasize Z → #+#−, because the LHC is expected to have the best sensitivity in this
channel [1, 2].) However, the invariant mass of the #+#− pair coming from a four-fermion operator will have a smooth
distribution and not peak around mZ , so the Z-mediated contribution can be disentangled experimentally. Operators
with (tc)(qq) flavor structure also contribute to t → c#+#− or t → cγ at one loop, but their contributions are suppressed

2

Effective theory,
dim’ 6 operators:
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tFCNC vs. bFCNC, generic bounds
Fox, et. al (07).
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tFCNC vs. bFCNC, generic bounds
Fox, et. al (07).
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tFCNC vs. bFCNC, generic bounds
Fox, et. al (07).

Looks as if B-phys. strongly constraint LH operators!
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tFCNC vs. bFCNC, generic bounds
Fox, et. al (07).

Looks as if B-phys. strongly constraint LH operators!

Not valid if down alignment is at work 
2x Gedalia, et al. (10).
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Robust bounds for ∆t = 1

♦ 3-gen’ case the structure is much richer (8 Gell-Mann 

matrices), a covariant treatment is necessary.

Simplification: @ LHC light quark jets look the same.
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The approximate U(2)

0th order question for a 3x3 adjoint:
Is a residual U(2) conserved?
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The approximate U(2)

0th order question for a 3x3 adjoint:
Is a residual U(2) conserved?
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Covariant description of approx’ U(2)

♦ Without loss of generality:

♦ SM massless quarks are 

broken to active & sterile states:

♦ CKM has a single phase:
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Covariant basis 

♦ Start as in 2 gen’:

♦ Add a Cartan:
or

�
ĴQ, Âu,d

�
= 0
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ĴQ, Âu,d
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Covariant basis 

♦ Start as in 2 gen’:

♦ Add a Cartan:
or

�
ĴQ, Âu,d

�
= 0

♦ Any adjoint can decompose according to:

“big” directions
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Covariant basis 

♦ Start as in 2 gen’:

♦ Add a Cartan:
or

�
ĴQ, Âu,d

�
= 0

♦ Any adjoint can decompose according to:

“big” directions “small” ones, beyond U(2)
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Robust projected bound (assuming no signal) 
& t/b flavor violation 

♦ The bounds:

♦ Overall 3rd gen’ flavor violation:
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The bound 
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 ∆F = 2 ,
�
(t̄, b̄)LXQ(u, d)L

�2

♦ Signal is in same sign tops:

♦ Input dim’ 6 into MadGraph/MadEvent:
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 ∆F = 2 ,
�
(t̄, b̄)LXQ(u, d)L

�2

Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables

Re Im Re Im

(s̄LγµdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; �K

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; �K

(c̄LγµuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd ; SψKS

(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd ; SψKS

(b̄LγµsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

(t̄LγµuL)2 12 7.1 10−3 uu→ tt

TABLE II: Bounds on representative dimension-six ∆F = 2 operators. Bounds on Λ are quoted assuming

an effective coupling 1/Λ2, or, alternatively, the bounds on the respective cij ’s assuming Λ = 1 TeV.

Observables related to CPV are separated from the CP conserving ones with semicolons. In the Bs system

we only quote a bound on the modulo of the NP amplitude derived from ∆mBs (see text). For the definition

of the CPV observables in the D system see Ref. [15].

single angle and a single phase. To understand various aspects of our analysis, it is useful, however,

to provisionally set the phase to zero, and study only CP conserving (CPC) observables. We thus

have

λQ = diag(λ1, λ2), V =



 cos θc sin θc

− sin θc cos θc



 , Vd =



 cos θd sin θd

− sin θd cos θd



 . (3.8)

It is convenient to define

λ12 =
1

2
(λ1 + λ2), δ12 =

λ1 − λ2

λ1 + λ2
, Λ12 = δ12λ12. (3.9)

Thus λ12 parametrizes the overall, flavor-diagonal suppression of XQ (in particular, loop factors),

δ12 parametrizes suppression that is coming from approximate degeneracy between the eigenvalues

of XQ, and θd and θc−θd parametrize the suppression that comes from alignment with, respectively,

the down and the up sector.

The main point is the following: Alignment can entirely suppress the contribution to either K0–

K0 mixing (θd = 0) or D0–D0 mixing (θd = θc) but not to both. Thus, the flavor measurements

give a constraint on Λ12 which reads [16]

Λ12 ≤ 3.8× 10
−3

�
ΛNP

1 TeV

�
. (3.10)

10
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However, CPV in D system is stronger

Despite O(λ5
C) suppression:

Also applied to SUSY & RS => weak but robust bounds.
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Outlook, Flavor at the LHC Era

What if no deviation are observed including in u-FCNC 
(or any other low E observable)? Can bound NP.

Flavor diagonal NP (spectrum or couplings, say KK gluon 
BRs) could be exciting, especially deviation from U(2). 

LMFV vs. GMFV could be next decade question:  
LMFV lies on Au-Ad plane;
GMFV lies on large-axes sub-manifiold .

LHC era ~ up FCNC, however, regarding tFCNC, despite 
orders mag’ improvement => constraints rather weak.
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Backups
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