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✤ the relative values of the Standard Model (SM) gauge couplings

✤ the charge quantization, since the gauge group is simple

✤ the gauge quantum numbers of the SM fermions

✤ the mass relations between quarks and leptons

✤ the chiral anomaly cancellation

• SUSY Grand Unification should then be realized at some level.             
We adopt here the traditional picture, with low energy SUSY, four 
spacetime dimensions and gravity effects negligible below MPlanck
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through yij to gauge singlets N’s, which have 
heavy Majorana masses Mij : there are         

two sets of flavour parameters M
N

N
x

In type II seesaw, light neutrinos couple to 
the SU(2)L triplet Δ, with couplings fij

mij =

µv2

M2
∆

fij

The unique set of flavour parameters is the low energy one, that is, 
the light neutrino mass matrix  mij
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Is leptogenesis testable? Flavour

εL =
3

8π

M1

M2

Im[(y†y)12(y†y)12]

(y†y)11

✏ the couplings yia are not directly accessible at low energy
✏ N1 and N2 (at least) with different couplings are needed
✏ the outcome depends on several high energy flavour parameters 
(minimal GUT models partially constrain yia and are more predictive)
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∑

a

yia

v2
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yT
aj

εL ≡ [ Γ(N→LH) − Γ(N→L*H*) ] / Γtot



Outline
• Type I SO(10) unification vs type II SO(10) unification: a class 

of models with no unknown flavour parameters at GUT scale

✤ some model building ...

• Baryogenesis via leptogenesis in type II SO(10)

✤ the CP asymmetry, the efficiency factor, the constraints on 
light neutrino parameters

• mSUGRA flavour & CP violating effects in type II SO(10)

✤ the prediction for BR(μ → eγ) waiting for the MEG 
experiment results
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Neutrino Yukawa couplings lead to type I seesaw:



Neutrino masses in SO(10)
In usual SO(10) one entire family sits in a spinor representation:

16 = (1 + 5 + 10)SU(5) = N c + (L, dc) + (Q, uc, ec)

Neutrino Yukawa couplings lead to type I seesaw:

The fundamental representation also contains L and dc states:

10 = (5 + 5)SU(5) = (Lc, d) + (L, dc)

These L states have no Yukawas to Nc, but:
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The light L and dc states belong to the 10 multiplets.
YD generates also down quark & charged lepton masses.

Light & heavy matter fields
If both 16 and 10 matter fields exist, the light lepton doublet L 

is in general a linear combination of L16 and L10.

16 = (1 + 5 + 10)SU(5) = N c + (L, dc) + (Q, uc, ec)

10 = (5 + 5)SU(5) = (Lc, d) + (L, dc)

When SO(10) is broken to SU(5) by the VEV of a dim-16 Higgs,
the states (L, dc)16 acquire a mass of order MGUT :



Charged fermion masses
In other words, type II SO(10) is a different route to embed the 
flexible SU(5) unification into the more constrained SO(10) unification:

type I
SO(10)

type II  SO(10)

SU(5)

The up-type Higgs doublet resides in 10U, as usual.
The down-type Higgs doublet resides in 16D, which is needed anyway.
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Model-building issues

• SO(10) is broken to the SM in one step by an appropriate 
choice of  WGUT, involving extra fields with mass MGUT

• Natural doublet-triplet splitting: the MSSM Higgs doublets 
(HU ⊂ 10U & HD ⊂ 16D) are kept light by the ‘missing VEV’ 
mechanism

• Dim-5 operators contribute to p-decay through  TU - TD 
mixing: this needs to be tuned down to about 10-2 MGUT, 
similarly to minimal SU(5)

• Dim-6 operators contribute to p-decay through the          
(X,Y) gauge bosons as in SU(5): the present bound is               
MGUT > 5 1015 GeV
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The leptons Lc in the loop are heavy, 
with masses M1,2,3 ≈ ye,μ,τ MGUT.                     
In the case M1 << MΔ < M2 one finds

εL ≈

Tr(f∗f)

10π
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∑3
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Baryogenesis from the same CP phases observable in the lepton sector !

 A lepton asymmetry is 
produced by the 
couplings fij only
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• The neutrino mass scale fixes   KL KH = 220 (Σi mi2) / Δm223 >> 1    

• A good efficiency requires        KLc =  |mee|2 / (Σi mi2) KL << 1
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strong   washout

Define             
Yp = (np - np*)/s 
for each     
species p.                 
At the end of 
baryogenesis 
epoch we find  
YLc =YL - YH≠ 0.
Later Lc’s decay 
and asymmetry 
in light leptons 
is left.



Constraints on ν parameters
The washout may be weak & the CP asymmetry sufficiently large                 

for MΔ > 1011GeV and specific ν parameters. If one takes MΔ = 1012 GeV,                      
successful leptogenesis requires:  (i) suppression of 0ν2β decays 
(ii) normal ν mass hierarchy  (iii) sin θ13 close to the upper bound ≈ 0.2 

Baryon
asymmetry
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Neutrinoless
2β decay of 
heavy nuclei
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Constraints on ν parameters

Unfortunately weak washout requires |mee| < 10-2 eV

εL

W
eak w

ashout
|mee|2

Successful leptogenesis implies also non-zero     
Majorana-type CP violating phases, ρ and σ.     
They are the same phases entering 0ν2β decay.
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Sfermion masses
Taking mSUGRA boundary conditions at MGUT:

type II seesaw à la SU(5)
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Sfermion masses
Taking mSUGRA boundary conditions at MGUT:

After RGE evolution, flavour violations are “minimal” both for 
quarks and leptons (CP violation depends also on 5 high energy phases)
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Lepton flavour & CP violations

Choosing (i) a heavy mass spectrum compatible with unification, 
(ii) the parameters leading to leptogenesis, (iii) approximatively 

equal superpartner masses, we roughly estimate:

The MEG experiment is taking data: 
from 10-11 (already last summer) to 2 10-13 (three years data taking)

Strong correlations with τ → μγ, eγ (A.Rossi)

Masina, Savoy, ’03; Paradisi, ’05; Ciuchini et al. , ’07; ...



Lepton flavour & CP violations

Choosing (i) a heavy mass spectrum compatible with unification, 
(ii) the parameters leading to leptogenesis, (iii) approximatively 

equal superpartner masses, we roughly estimate:

The MEG experiment is taking data: 
from 10-11 (already last summer) to 2 10-13 (three years data taking)

Strong correlations with τ → μγ, eγ (A.Rossi)

The present bound is 7 10-28 e cm, prospects to reach 10-30 : out of reach

Masina, Savoy, ’03; Paradisi, ’05; Ciuchini et al. , ’07; ...



BR(μ→eγ)

parameters leading to successful leptogenesis at 1012 GeV,  tan β = 10

too light chargino

no mSUGRA 
boundary conditions

MEG future 
bound

L.Calibbi, MF, S.Lavignac, A.Romanino, JHEP 0912 (2009) 057

no radiative EWSB

too 
light 
Higgs

MEGA present 
bound

Mslepton (GeV)



same 
parameters
as before, 

scanning over 
m0 and m1/2 Now

Now

μ to e 
conversion on 
Titanium could 

be probed down 
to 10-16 (Mu2e) 
or 10-18 (PRISM) 
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MΔ (GeV)

BR(μ→eγ)

εL

mSUGRA 
parameters fixed 

to tan β = 10
m0 = 700 GeV
m1/2 = 700 GeV

λH

λH

the slope of the 
contours (λH / MΔ) 
is fixed by the size 
of neutrino masses

no leptogenesis

Leptogenesis 
dynamics is 

constrained by LFV 
bounds: no strong 

washout

Requiring 
leptogenesis 

determines the 
overall size of LFV
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Quark flavour & CP violations

The presently allowed range is (1.8 -4.3) 10-4.                                                   
RR and RL contributions can be enhanced by the factor (fij / 0.05)4 .

Other constraints from CP violating observables as εK or EDMn.
They are sensitive to both low and high energy CP phases. 

Correlated analysis of the hadronic observables gives weaker constraints.

Most noticeable difference with the MSSM is  δRRd ≠ 0 at leading log.

BR(b → sγ)|g̃ ∼
(

100 GeV

MS

)4
[

(3.9 · 10−6)LL + (1.9 · 10−7)RR

]

+
(

100 GeV

MS

)2
[

(5.4 · 10−7)LR + (1.2 · 10−8)RL

]



SM may account only for 80-90% of 
this measured value (Buras, Guadagnoli) 

but hadronic uncertainties large

exp

no radiative 
EWSB

Text

μ→eγ

arbitrary choice of a CP violating phase



Conclusions
✴ Several upcoming experiments will provide new severe & 

complementary tests of SUSY GUTs

✴ In type II SO(10) models, the low energy fermion masses & 
mixing angles are the only flavour parameters of the full theory

✴ Baryogenesis via leptogenesis & neutrino masses are 
determined by the same Yukawa coupling matrix, and 
significantly constrain the parameters of this scenario

✴ A specific pattern is predicted for SUSY flavour              
violating effects, the strongest constraint coming from the 
present & near future bounds on BR(μ → eγ)
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The model: Yukawa sector

WY =
1

2
yij16i16j10 + hij16i10j16 +

1

2
fij10i10j54

up quarks:  mu = y vu

no neutrino Dirac mass!

y Quc〈Hu〉

1

2
fL10L10〈∆〉

54 is needed to make neutrinos 
massive (type II seesaw):  mν = f vΔ

heavy lepton & d-quark masses:  ME = MDT = h VGUT

light lepton & d-quark masses:    me = mdT  = h vd

h
(

L
16

L
c〈116

H 〉 + e
c
L

10〈Hd〉
)



Type I versus type II SO(10)

The most general superpotential for dim-10 and dim-16 multiplets:

WY =
1

2
y16M16M10H + h16M10M16H +

1

2
M1010M10M

 The singlet VEV in 16H mixes the (L, dc) states in 16M and 10M :

The orthogonal combination defines the light (L,dc) states

WY ⊃ 5
10

M

(

〈116

H 〉 5
16

M + M10 5
10

M

)

In general  Llight = cosθ L10 + sinθ L16 :

Type I SO(10) limit is θ = π/2 ; type II scenario is θ = 0 (it occurs for 

M10 = 0; notice that DT splitting requires MH 10H 10H to be forbidden)                            



SO(10) breaking to the SM
To break SO(10), besides 16 one may use 45 and 54 Higgs 
multiplets, acquiring a GUT scale VEV

To align a 45 VEV along TB-L  one needs a non-generic WGUT

In this way SO(10) is broken in one step (at M16) to the SM,     
with the correct VEV alignment required by DT-splitting

All (un)eaten fields in WGUT get mass at the GUT scale ∼ M16



DT-splitting and p-decay

Doublet-Triplet splitting by the missing VEV mechanism
(Dimopoulos-Wilczek), but with the down Higgs partly in 16:

WDT = α10 45B−L 10
′
+ M 10

′
10

′
+ η 16 16 10 + g16 45B−L 16

MD =





0 0 ηV1

0 M10 0

0 0 gVB−L





MT =





0 αVB−L ηV1

−αVB−L M10 0

0 0 gVB−L





Due to the type II SO(10) structure,                                               
the D=5 p-decay can be mediated only through T10 - T16 mixing

ηV1M10

α2gV 3
B−L

!
1

MGUT

Hu = H10
u

Hd = cH10
d

+ sH16
d



Full computation of εL

The loop contains 2 heavy sleptons  with 
masses Ml and Mk , and a Higgsino from 54, 
either  S ∼ (1,1,0)SM   or   T ∼ (1,3,0)SM

F (x, xk, xl) = Θ(1 − xk − xl) x log

[

1 + 2x2
− x2

k
− x2

l
+

√

λ(1, x2

k
, x2

l
)

1 + 2x2
− x2

k
− x2

l
−

√

λ(1, x2

k
, x2

l
)

]

ε
∆
B−L = 2 ·

Γ(∆ → L∗L∗) − Γ(∆∗
→ LL)

Γtot(∆∗) + Γtot(∆)

ε∆B−L =
1

16π

∑

R=S,T

cR

3
∑

k,l=1

F

(

MR

M∆

,
Mk

M∆

,
Ml

M∆

)

Im[f∗

kl(ff∗f)kl]

Tr(f∗f) + . . .

F is the imaginary part
of the loop integral

Mk + Ml → 0 F ≈
MR

M∆
log

(

1 +
M

2

∆

M2

R

)

Fmax ≈ 0.8 for MR

M∆
≈ 0.5

Mk + Ml → M∆ F → 0
Mk + Ml > M∆ F = 0



Ways out :

➡ Non-supersymmetric scenario, with a real 54 Higgs

➡ Gravitino very heavy (m3/2 >> 100 TeV), e.g. significantly split SUSY

➡ Gravitino very light (m3/2 < 100 eV), e.g. some gauge-mediation models

➡ Non-thermal production of Δ’s even for TRH << MΔ

The gravitino problem
In our scenario, at least in the weak washout region,                                   
thermal leptogenesis requires MΔ ≥ 1011-12 GeV

In SUGRA, if m3/2 is close to the electroweak scale, the gravitino 
overproduction bound on the reheating temperature is TRH < 109-10 GeV 
(much stronger bounds from BBN, but more model-dependent)



• In SO(10) models with type I 
seesaw, further suppression of εL 
comes from small Yukawa 
couplings: y = yup

• Some tuning of parameters is 
needed to enhance the asymmetry:

- quasi-degeneracy of two 
decaying states N1 & N2

- interplay with type II seesaw

- N2 decays plus flavour effects

nB

s
≈ 10

−3
εLη

obs

≈ 10
−10

εL =
3

8π

M1

M2

Im[(M†
uMu)12]2

v2(M†
uMu)11

Flanz, Paschos, Sarkar, Weiss; Covi, Roulet, Vissani; 
Pilaftsis, Underwood; Akhmedov, MF, Smirnov

Joshipura, Paschos, Rodejohann; Hambye, Senjanovic;
Hosteins, Lavignac, Savoy, Abada, Josse-Michaux

Di Bari;  Vives; Riotto

εL ∼ [ Γ(N→LH) − Γ(N→L*H*) ]

Leptogenesis in type I SO(10)


