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High energy QCD

RN\

— i b= impac t parameter hadr()n 2
(proton, nucleus, photon...)
Y =relative rapidity
r: transverse size of the projectile r,: transverse size of the target
) (

(k : transverse energy scale of the projectile k,: transverse energy scale of the target)

k k
A(Y, r)zJ. d°bA(b,Y,r)=elastic amplitude

k
A(b,Y,r)=fixed impact parameter amplitude <1

(High) energy dependence of QCD amplitudes?



The BalitsKy equation

Balitsky (1996)
Rapidity evolution of the scattering amplitude:
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BFKL kernel; acts on transverse coordinates T= L Tr(UU),({T)=A
N, Infinite hierarchy, more

- )
Oy A=X*(A—(TT)) complex operators at each step

/
O ATT)=X*x((TT)—{TTT))+X,*(Te(UTUUUUU))

+source terms

A "mean field" approximation gives the Balitsky-Kovchegov (simpler) equation:

<T T>=<T><T>:A-A = aayA:X*(A—A.A) Balitsky (1996);

Kovchegov (1999)

Understand and solve the full high energy evolution equations!

See also JIMWLK and further developments
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner



High energy QCD in the field-theory formulation

__ Balitsky (1996)

Inside the Balitsky equation: gH

Effective formulation: \
"Pomeron" diagrams - -
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Alternative philosophy

Breakthrough by Mueller and Shoshi, 3 years ago:
"Small x physics beyond the Kovchegov equation”

Thistalk:

Subsequent interpretation of their calculation in the light of some models well-known
in statistical mechanics (namely reaction-diffusion processes).

# go beyond the Mueller-Shoshi results
# simple picture, based on the parton model

# connects the QCD problem to more general physics and mathematics

Instead of a direct approach, identify the universality class from the physics of
the parton model, then apply general results!




Outline

* High energy QCD and reaction-diffusion
* Field theory versus statistical methods for a simple particle model

# Statistical methods and application to QCD



How a high rapidity hadron looks

observer

.

rapidity in the frame
of the observer
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How a high rapidity hadron looKs

k'~k
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Ew

A Parton saturation:
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:% T(k)~o’n (k)
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unitarity: T(r)<1 = N=—;
O(S

Number of partons n

By N=X (=08, )N——+n v

"’V“{I: BFKL ~ 812nk2n+n / }W Noise term due to discreteness



How a high rapidity hadron looKs

k'~k
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A Parton saturation:
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How a high rapidity hadron looKs

k'~k

1 .

1-Fock state amplitude T

GTX TT-l—\/:V

branching diffusion ~ 8}2(T+T Noise term due to discreteness



Reaction-diffusion
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[Prototype equation: sSFKPP equation 9, T=0-T+T-T"+ \/ % T(1-T) a Fisher; Kolmogorov,




Dictionary

Reaction-diffusion High energy QCD

Position x In (k*/kq)
Time t xY
Particle density T Partonic amplitude T
< >
Maximum/equilibrium 1
number of particles N o
Position of the wave front X Saturation scale In(Q’/k?)
sFKPP equation QCD evolution in the parton model

atT:a§T+T—T2+\/%T(1—T)v 0oy T=X(=8, o) T-T?+a T v



Outline

* High energy QCD and reaction-diffusion
* Field theory versus statistical methods for a simple particle model

# Statistical methods and application to QCD



Simple particle model

t+At t t+At
e @ probaAt k particles added: k particles split, n-k do not split
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Simple particle model

t t+At t t+At
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Field-theoretical formulation

Doi (1975)
Mueller (1995)
Statistical formulation: Evolution of Poissonian states  Shoshi. Xiao (2005
evolution of fixed particle number states
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— Statistical method
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— Statistical method
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a— Statistical method
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— Complex, abstract — No systematics



Summary of the part on simple particle models

We have considered a model that evolve according to nonlinear stochastic
differential equations of the form

SIE:n—Eiﬂ/nlJrE—v
dt N N

For the nonlinearity, (n) does not obey a closed equation, but an infinite hierarchy
of equations of the Balitsky type. A field-theoretical resolution is difficult, on the
other hand, the simple mean field solution completely fails!

However, there 1s a simple factorization at the level of individual realizations:

If N 1s large enough, realizations evolve first through the stochastic but linear equation

dn
——=n+vVnv

dt

until n 1s large enough for the noise term to be small, and continues evolving through the
nonlinear but deterministic equation

dn n’
—_—=nN-——- hen n>>]..
a *n v

Then, (n)1s obtained from the averaging of many such realizations



Outline

* High energy QCD and reaction-diffusion
* Field theory versus statistical methods for a simple particle model

# Statistical methods and application to QCD



QCD as a reaction-diffusion process

Reaction-diffusion High energy QCD
Position x In (k*/kq)
Time t xY
Particle density T Partonic amplitude T
- >
Maximum/equilibrium 1
number of particles N o
Position of the wave front X Saturation scale In(Q’/k?)
sFKPP equation QCD evolution in the parton model

atT:éT+T—T2+\/%T(1—T)v 0oy T=X(=8, o) T-T?+a T v



The infinite particle number limit

2 - T(1-T)v

0, T=0;T+T- T+\/

VN




The infinite particle number limit

atT=a§T+T—TZ+\/%T<1—T>V




The infinite particle number limit

atT=a§T+T—TZ+\/§T(1—T>V

The large time asymptotics are exact traveling waves. Mathematical result by Bramson (1984)

The evolution of T is driven by the (linear) branching diffusion part.
The nonlinearity only tames the growth when T~1

T




The infinite particle number limit

atT=6§T+T—T2+\/£T(1—T)v
~—— N
X(=0,)T

X(y)=y*+1 characteristic function of the diffusion kernel

Look for solutions of the form T =exp|-y(x—v(y)t||

Solution: V(y)zM V(y):wri in the F-KPP case

General solution: arbitrary superposition of different wave numbers
T

T=[dyf(y)T,=[ dyf(y)exp|—y[x—v(y)t) A

N~
,

Large times (saddle point at constant T), select the wave
that travels with minimum velocity:

ax X,

. . X(yo) dt Yo

V'(y,)=0 = X (Yo):y— <
0

L T (X , t) Ne_YO(X_Xt)
yo=1,V_ =2 1n the F-KPP case



Transition to the asymptotics

InT
In1 v A
initial condition
e*B(X*Xt) B>Yo
N - X
Xt=0
il A
transients:
e_YO(X_Xt)
traveling wave, asymptotic velocity: \
X (yo)
v, =220
Yo j X



Accounting for discreteness
TA

Observation: 7 is either O or larger than 1/N

Recipe: Whenever there is more than 1 particle
on a site apply the mean field evolution

1/N > % Brunet, Derrida (1997)
Infinite N equation + cut-off 0, T=(0:T+T-T?)O(T-1/N)
(still deterministic)
InT
1 particle
In(1/N) -
t,~L?
X
V. = X()’o) "Zyox H ()/o)
BD o 2
Yo 2In°N

InN
Yo

Velocity of a front of size L=



Summary of the mean field approach

The FKPP equation 6, T=8-T+T-T?

admits asymptotic traveling wave solutions, of shape e_yO(X_Xt)
X(y)

dX, X%  where X(y)=y*’+1 and y, minimizes v(y)=—%

dt
Yo in the F-KPP case Y

and velocity V =

Gribov, Levin, Ryskin (1980)

The traveling wave builds up diffusively from a given initial condition

and its velocity during that phase reads V(t)= X(yo) 3 Bramson (1984)

Yo 2y,t Mueller, Triantafyllopoulos (2002)

The FKPP equation may be modified to take into account the fact that in real particle

models, occupation numbers are discrete, 0,1,2... : 6,T=(6;T+T-T*)6(T-1/N)
i i : InN
The front reaches its asymptotic shape of width L= I;,
0 2 11 .
after a time L* and the corresponding velocity is V= X(yo) T ¥oX o) Brunet, Derrida (1997)

Yo 2In>N  Mueller, Shoshi (2004)

Confirmed to be the right average front velocity Brunet. Derrida: Moro:
in numerical simulations of fully stochastic models! Pechenik, Levine; Panja...



Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic

Typical shape of the front

> ]

> X




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic

>

Typical evolution over a small time

Mean field with cutoff

-

V,,dt

z[~




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Unusual shape of the front due to a forward extra particle

>

I extra particle

> X




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt

Unusual shape of the front due to a forward extra particle

>

1 extra particle

> X




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,

except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e*°dsdt

z[~

Unusual shape of the front due to a forward extra particle

>

Mean field with cutoff

-




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e*°dsdt

Unusual shape of the front due to a forward extra particle

>




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)
Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e*°dsdt

:X(Yo)_ 3

V(t)
Yo 2y,t

_X(yo) TX"(yo)
Yo 2Y0L2

—Yo(x—X-AX)

>

time L* to reach the asymptotic shape e Vi

position w.r.t. the deterministic front:

+const

AX=5+ [ dt(V(t)~Vyp)=5—[" dt

- 0 o 2y,t

:6—ilnL2+const:l(y06—1nL3)+Const
2y, Yo

—yo(x—X) —>

e_Yo(X_Xf) — e_}’o(x_x) + e_Yo(X_X_AX)

/ Xf:X+iln(1+ey°AX)




Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e*°dsdt

Yoo
Assumption #3: their effect on the front positionis R(§ ):Xf—X:iln

T Yo
A time L? to reach the asymptotic shape e """ **¥

e
L3

1+C,

position w.r.t. the deterministic front:

L? L?
AX=6+[, dt(V(t)-Vyp)=6-[ dt

:6—ilnL2+const:l(y06—1nL3)+Const

Yo Yo

+const
2y.t

—yo(x—X) —>

e_}’o(X_Xf):e_)’o(X_X) (x—X-AX)

+e "
/ Xf:X+iln(1+ey°AX)

0
eYO

1L-+G,

5

> ; ; |
5 X X+AX X



Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt

9

Assumption #3: their effect on the front positionis R(§ ):Xf—X:iln

Yo

eYo
L3

1+C,

Stochastic rules for the effective evolution of the position of the front:

X,+Vypdt, ifnofluctuationoccurs

Xiprar™
X,+V;,dt+R(6), withproba p(s)dédt
C,C,3InL
V-V, =] dép(6)R(s — 172
BD f p(5)R(5) Vo yoL? [ _InN
—_ Yo
[n—thcumulant| n _ GGy nlg(n)
: =] d6p(5)R™(5) T




Summary of the effect of fluctuations

Brunet, Derrida, Mueller, SM (2005)

We proposed a phenomenological model for the propagation stochastic fronts, that we
expect to be valid in the weak noise limit (for a large enough number of particles).
This model is summarized in the following assumptions:

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(s)dsdt=C,e*°dsdt

Y00
Assumption #3: their effect on the front positionis R(§ ):iln 1 +CzeL—3
Yo
(Assumption #4: needed to get the constant C,C, )
It leads to quantitative predictions for the position of the front:
V:X(y")—nzyoxIl(y°)+n2y2x"(y )SlnlnN InN>1
Yo 21n*N ° " yoIn®N
[n—thcumulant| , ,_,,, ,n!Z(n)
t =1y, X" (yo)

yoln®N



cumulants

Numerical checks

1 | | 1 | | 4I

1 O‘I 5 1 020 1 030 1 040 1 050 1 060 1 D?O

N
Reaction-diffusion model, discrete in space and time



Shape of the partonic amplitude: T ~(r2 Q> (Y ))yo
, 2y X" 3Inln(1/a2
Saturation scale: ¢ <1nQ§>:X(y°)—7T YOZX ()/20) 2yoX"'(yo) - ?( a;)
d(xY) Yo  2In*(1/a?) Yoln™(1/c) = A~A
12(n) xY
In" 02 2 2y n
< Qs >cumulant T yO (}’0) }/g ln3(1/o<§)

Validity

Use the dictionary...

Position x In(k*/kg)
Time t xY
Particle density T Partonic amplitude T
- >
Maximum/equilibrium 1
number of particles N s
Position of the wave front X Saturation scale In(Q?/k?)

..to get predictions for QCD!

Apriori, Y>>1,In(1/c)>1
In practice: analytical results reliable for o« << 107>

But we believe the picture itself for o, <0.1




Summary

Instead of solving the full QCD evolution equations, we have identified, from the physics,
the universality class of high energy QCD as the one of reaction-diffusion processes.

This lead us to study the shape and weight of individual Fock states, and a stochastic
traveling wave equation of the F-KPP type:

0 T=X(=0, )T-T’+x T v

Ink?

The properties of these QCD traveling waves (shape and position, 1.e. form of the
amplitude and rapidity dependence of the saturation scale) may be obtained directly
by solving simpler equations in the universality class of the sF-KPP equation.



Outlook

Understand the limits of the statistical approach
- how well does it reproduce QCD? What 1s beyond?
- can one derive more universal analytical results?

- can one get close to phenomenology from numerics?

"Statistical" approach

s
Replica approach

@ Field-theoretical approach

4 - N
_X(ye) myeX"(¥o) 2 2..., 3InInN
V= — 2 +1yoX (Yo)—g,
Yo 2In"N yoIn N
[n—thcumulant] . ,_,,, .n!g(n)
t =Ty, X (Yo) IPE
. Yoln'N

" »

Itakura, in progress



