QCD and statistical physics

Stéphane Munier

CPHT, École Polytechnique, CNRS
Palaiseau, France

Florence, February 1
High energy QCD

\[A(Y, r) = \int d^2b A(b, Y, r) = \text{elastic amplitude} \]

\[A(b, Y, r) = \text{fixed impact parameter amplitude} \leq 1 \]

(High) energy dependence of QCD amplitudes?
The Balitsky equation

Rapidity evolution of the scattering amplitude:

\[
\bar{\alpha} = \frac{\alpha_s N_c}{\pi} \quad \text{BFKL kernel; acts on transverse coordinates}
\]

\[
\partial_{\bar{\alpha} Y} A = x * (A - \langle TT \rangle)
\]

\[
\partial_{\bar{\alpha} Y} \langle TT \rangle = x * (\langle TT \rangle - \langle TTT \rangle) + x_2 * \langle \text{Tr} (U \bar{U} U \bar{U} \bar{U} U \bar{U}) \rangle
\]

\[
+ \text{source terms}
\]

...

A "mean field" approximation gives the Balitsky-Kovchegov (simpler) equation:

\[
\langle TT \rangle = \langle T \rangle \langle T \rangle = A \cdot A \quad \Rightarrow \quad \partial_{\bar{\alpha} Y} A = x * (A - A \cdot A)
\]

Understand and solve the full high energy evolution equations!

Balitsky (1996); Kovchegov (1999)

See also JIMWLK and further developments
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
Inside the Balitsky equation:

Effective formulation: "Pomeron" diagrams

\[A = \text{Pomeron} + \partial_{\alpha Y} A = \lambda * A + \ldots = ? \]
Alternative philosophy

Breakthrough by Mueller and Shoshi, 3 years ago:
"Small x physics beyond the Kovchegov equation"

This talk:

Subsequent interpretation of their calculation in the light of some models well-known in statistical mechanics (namely reaction-diffusion processes).

- go beyond the Mueller-Shoshi results
- simple picture, based on the parton model
- connects the QCD problem to more general physics and mathematics

Instead of a direct approach, identify the universality class from the physics of the parton model, then apply general results!
Outline

★ High energy QCD and reaction-diffusion

★ Field theory versus statistical methods for a simple particle model

★ Statistical methods and application to QCD
How a high rapidity hadron looks

$Y_0 = 0$

rapidity in the frame of the observer

$Y_1 > Y_0$
How a high rapidity hadron looks

Parton saturation:

\[n \leq N \]

\[\ln k^2 \]

\[n = \chi (-\partial_{\ln k^2}) n - \frac{n^2}{N} + \sqrt{n} \nu \]

BFKL \sim \partial_{\ln k^2}^2 n + n

\[\partial_{\Delta Y} \sim k' \sim k \]

\[\tilde{\alpha} \Delta Y \sim 1 \]

\[n \leq N \]

\[T(k) \sim \alpha_s^2 n(k) \]

Unitarity:

\[T(r) \leq 1 \Rightarrow N = \frac{1}{\alpha_s^2} \]

Noise term due to discreteness
How a high rapidity hadron looks

Parton saturation: $n \leq N$

$\alpha \Delta Y \sim 1$

Physical amplitude: $A = \langle T \rangle$

$T(k) \sim \alpha_s^2 n(k)$

Unitarity: $T(r) \leq 1 \Rightarrow N = \frac{1}{\alpha_s^2}$

$\partial_{\alpha Y} T = \chi (-\partial_{\ln k^2}) T - T^2 + \alpha_s \sqrt{T} \nu$

BFKL $\sim \partial_{\ln k^2}^2 T + T$

Noise term due to discreteness
How a high rapidity hadron looks

Parton saturation: \(n \leq N \)

Physical amplitude: \(A = \langle T \rangle \)

Branching diffusion: \(\partial^2_T + T^2 \)

Noise term due to discreteness: \(\ln k^2 \sim x \)

\(T(k) \sim \alpha_s^2 n(k) \)

Unitarity: \(T(r) \leq 1 \Rightarrow N = \frac{1}{\alpha_s^2} \)
The reaction-diffusion equation:

\[
\frac{\partial T}{\partial t} = \chi (-\frac{\partial}{\partial x}) T - T^2 + \sqrt{\frac{T}{N}} \nu
\]

Prototype equation: sFKPP equation

\[
\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1-T) \nu
\]

Fisher; Kolmogorov, Petrovsky, Piscunov (1937)
Dictionary

Reaction-diffusion

<table>
<thead>
<tr>
<th>Position x</th>
<th>Time t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle density T</td>
<td>Maximum/equilibrium number of particles N</td>
</tr>
<tr>
<td>Position of the wave front X</td>
<td></td>
</tr>
</tbody>
</table>

High energy QCD

<table>
<thead>
<tr>
<th>$\ln(k^2/k_0^2)$</th>
<th>$\bar{\alpha} Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partonic amplitude T</td>
<td></td>
</tr>
<tr>
<td>Saturation scale $\ln(Q_s^2/k_0^2)$</td>
<td></td>
</tr>
</tbody>
</table>

sFKPP equation

$$\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1 - T) \nu$$

QCD evolution in the parton model

$$\partial_{\bar{\alpha} Y} T = \chi (-\partial_{\ln k^2}) T - T^2 + \alpha_s \sqrt{T} \nu$$
Outline

☆ High energy QCD and reaction-diffusion

☆ Field theory versus statistical methods for a simple particle model

☆ Statistical methods and application to QCD
Simple particle model

\[
\begin{align*}
\langle k \rangle &= n \Delta t \\
\sigma^2 &= \langle (k - \langle k \rangle)^2 \rangle = n \Delta t
\end{align*}
\]

\[
n(t + \Delta t) = n(t) + \Delta t \left[n(t) + \sqrt{n(t)} \nu(t + \Delta t) \right]
\]

define \(\nu = \frac{k - \langle k \rangle}{\sigma} \frac{1}{\sqrt{\Delta t}} \) such that \(\sum_{t}^{t+1} \nu \sim \pm 1 \)

\[
\frac{dn}{dt} = n + \sqrt{n} \nu
\]

What is, in average, the number of particles at time \(t \)?

\(\langle n(t) \rangle \) obtained by solving the trivial equation \(\frac{d\langle n \rangle}{dt} = \langle n \rangle \)
Simple particle model

\[
\begin{align*}
\text{t} & \quad \text{t} + \Delta t \\
\text{proba} \; \Delta t & \quad \text{proba} \; \Delta t \frac{n(t)}{N} \\
\text{proba} \left(1 - \Delta t - \Delta t \frac{n(t)}{N}\right) & \\
\end{align*}
\]

\[
\begin{align*}
t \quad & \quad t + \Delta t \\
k_1 \text{ particles added, } k_2 \text{ particles removed} & \\
\end{align*}
\]

\[
n(t) = n(t) + k_1(t + \Delta t) - k_2(t + \Delta t)
\]

\[
\text{proba } P_n(k_1, k_2) = \binom{n}{k_1 k_2} (\Delta t)^{k_1} \left(\Delta t \frac{n(t)}{N}\right)^{k_2} \left(1 - \Delta t - \Delta t \frac{n(t)}{N}\right)^{n - k_1 - k_2}
\]

\[
\begin{align*}
\langle \nu \rangle &= 0 \\
\langle \nu^2 \rangle &= \frac{1}{\Delta t}
\end{align*}
\]

\[
\langle n(t) \rangle \text{ is not obtained by solving a trivial equation!}
\]

\[
\begin{align*}
\frac{d\langle n \rangle}{dt} &= \langle n \rangle - \frac{1}{N} \langle n^2 \rangle \\
\frac{d\langle n^2 \rangle}{dt} &= \ldots \\
\end{align*}
\]

...infinite hierarchy!

similar to the Balitsky equation in 0D

Mean field approximation: \[
\frac{d\langle n \rangle}{dt} = \langle n \rangle - \frac{\langle n \rangle^2}{N}
\]

similar to the Balitsky-Kovchegov equation
Field-theoretical formulation

Statistical formulation:
evolution of fixed particle number states

Evolution of Poissonian states

\[\langle n(t) \rangle = \langle z(t) \rangle \quad \text{Path integral average, with weight} \]

\[\langle n(t) \rangle = e^t - \frac{2}{N} e^{2t} + \frac{6}{N^2} e^{3t} - \frac{24}{N^3} e^{4t} + \ldots \]

After Borel resummation:

\[\langle n(t) \rangle = N \left(1 - Ne^{-t} \int_0^\infty \frac{db}{1+b} e^{-N \exp(-t)b} \right) \]
Statistical method

\[\frac{dn}{dt} = n - \frac{n^2}{N} + \sqrt{n \left(1 + \frac{n}{N}\right)} \]

\(N = 5000 \)
Statistical method

\[
\frac{dn}{dt} = \left(1 - \frac{n(t)}{N}\right) \cdot n - \frac{n^2}{N} + \sqrt{n\left(1 + \frac{n}{N}\right)\gamma}
\]

N = 5000
Statistical method

\[
\frac{dn}{dt} = n - \frac{n^2}{N} + \sqrt{n \left(1 + \frac{n}{N}\right)^\nu}
\]
Statistical method

\[\frac{dn}{dt} = n - \frac{n^2}{N} + \sqrt{n} \left(1 + \frac{n}{N}\right)^{\nu} \]

1 \ll \bar{n} \ll N

\[\frac{d\langle n \rangle}{dt} = \langle n \rangle - \frac{\langle n \rangle^2}{N} \]

\[\frac{dn}{dt} = n + \sqrt{n} \nu \]
Statistical method

\[
\frac{dn}{dt} = n - \frac{n^2}{N} + \sqrt{n \left(1 + \frac{n}{N}\right)}
\]

Solution of the mean-field equation with the initial condition \(n(\bar{t}) = \bar{n} \)

\[
\langle n(t) \rangle = \int_0^\infty d\bar{t} \bar{n} e^{-\bar{t} - N \exp(-\bar{t})} \frac{N}{1 + \frac{N}{\bar{n}} e^{-(t-\bar{t})}}
\]

Field-theoretical result:

\[
\langle n(t) \rangle = N \left(1 - N e^{-t} \int_0^\infty \frac{db}{1 + b} e^{-N \exp(-t)b}\right)
\]

+ Well-established systematics
- Complex, abstract

+ Simple, intuitive
- No systematics
Summary of the part on simple particle models

We have considered a model that evolve according to nonlinear stochastic differential equations of the form

\[\frac{dn}{dt} = n - \frac{n^2}{N} + \sqrt{n \left(1 + \frac{n}{N}\right)} \]

For the nonlinearity, \(\langle n \rangle\) does not obey a closed equation, but an infinite hierarchy of equations of the Balitsky type. A field-theoretical resolution is difficult, on the other hand, the simple mean field solution completely fails!

However, there is a simple factorization at the level of individual realizations:

If \(N\) is large enough, realizations evolve first through the stochastic but linear equation

\[\frac{dn}{dt} = n + \sqrt{n} \]

until \(n\) is large enough for the noise term to be small, and continues evolving through the nonlinear but deterministic equation

\[\frac{dn}{dt} = n - \frac{n^2}{N} \quad \text{when } n \gg 1. \]

Then, \(\langle n \rangle\) is obtained from the averaging of many such realizations.
Outline

☆ High energy QCD and reaction-diffusion

☆ Field theory versus statistical methods for a simple particle model

☆ Statistical methods and application to QCD
QCD as a reaction-diffusion process

Reaction-diffusion
- Position x
- Time t
- Particle density T
- Maximum/equilibrium number of particles N
- Position of the wave front X

High energy QCD
- $\ln(k^2/k_0^2)$
- $\bar{\alpha} Y$
- Partonic amplitude T
- Saturation scale $\ln(Q_s^2/k_0^2)$

sFKPP equation
$$\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1 - T) \nu$$

QCD evolution in the parton model
$$\partial_{\bar{\alpha} Y} T = \chi (-\partial_{\ln k^2}) T - T^2 + \alpha_s \sqrt{T} \nu$$
The infinite particle number limit

\[\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1 - T) \nu \]
The infinite particle number limit

\[\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1 - T) \nu \]
The infinite particle number limit

\[\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T(1 - T)_x \]

The large time asymptotics are exact traveling waves.
Mathematical result by Bramson (1984)

The evolution of T is driven by the (linear) branching diffusion part.
The nonlinearity only tames the growth when \(T \sim 1 \)
The infinite particle number limit

\[\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}} T (1 - T) \nu \]

\[\chi(-\partial_x) T \]
\[\chi(\gamma) = \gamma^2 + 1 \]
characteristic function of the diffusion kernel

Look for solutions of the form
\[T_\gamma = \exp\left(-\gamma (x - v(\gamma) t)\right) \]

Solution: \[v(\gamma) = \frac{\chi(\gamma)}{\gamma} \]

General solution: arbitrary superposition of different wave numbers

\[T = \int d\gamma f(\gamma) T_\gamma = \int d\gamma f(\gamma) \exp\left(-\gamma (x - v(\gamma) t)\right) \]

Large times (saddle point \textit{at constant} \(T \)), select the wave that travels with \textit{minimum} velocity:

\[v'(\gamma_0) = 0 \Rightarrow \chi'(\gamma_0) = \frac{\chi(\gamma_0)}{\gamma_0} \]

\[\begin{aligned}
V_\infty &= \frac{dX_t}{dt} = v'(\gamma_0) = \frac{\chi(\gamma_0)}{\gamma_0} \\
T(x, t) &\sim e^{-\gamma_0 (x - X_t)}
\end{aligned} \]

\[\gamma_0 = 1, V_\infty = 2 \]
in the F-KPP case
Transition to the asymptotics

Initial condition:

\[V_{\infty} = \beta \eta_0 x \]

Transients:

\[e^{-\beta(x-x_t)}, \beta > \gamma_0 \]

Traveling wave, asymptotic velocity:

\[V_{\infty} = \frac{x(\gamma_0)}{\gamma_0} \]

\[V(t) = \frac{x(\gamma_0)}{\gamma_0} - \frac{3}{2\gamma_0 t} \]
Accounting for discreteness

Observation: T is either 0 or larger than $1/N$

Recipe: Whenever there is more than 1 particle on a site apply the mean field evolution

$\partial_t T = (\partial_x^2 T + T - T^2) \Theta(T - 1/N)$

Infinite N equation + cut-off
(still deterministic)

$V_\infty = \frac{x(y_0)}{y_0}$

$V_{BD} = \frac{x(y_0)}{y_0} \frac{3}{2y_0 t}$

$V(t) = \frac{x(y_0)}{y_0} - \frac{3}{2y_0 t}$

$t_0 \sim L^2 = \frac{\ln^2 N}{y_0^2}$

$V_{BD} = \frac{x(y_0)}{y_0} - \frac{\pi^2 y_0 x^{''}(y_0)}{2 \ln^2 N}$

Velocity of a front of size $L = \frac{\ln N}{y_0}$
The FKPP equation \(\partial_t T = \partial_x^2 T + T - T^2 \) admits asymptotic traveling wave solutions, of shape \(e^{-\gamma_0(x - X_t)} \) and velocity \(V = \frac{\partial X}{\partial t} = \frac{\chi(y)}{\gamma_0} \) where \(\chi(y) = y^2 + 1 \) and \(\gamma_0 \) minimizes \(v(y) = \frac{\chi(y)}{y} \) in the F-KPP case.

The traveling wave builds up \textbf{diffusively} from a given initial condition and its velocity during that phase reads \(V(t) = \frac{\chi(y_0)}{\gamma_0} - \frac{3}{2} \frac{t}{\gamma_0} \).

The FKPP equation may be modified to take into account the fact that in real particle models, occupation numbers are discrete, 0, 1, 2...:

\[\partial_t T = \partial_x^2 T + T - T^2 \Theta(T - 1/N) \]

The front reaches its asymptotic shape of width \(L = \frac{\ln N}{\gamma_0} \) after a time \(L^2 \) and the corresponding velocity is

\[V_{BD} = \frac{\chi(y_0)}{\gamma_0} - \frac{\pi^2 y_0 \chi''(y_0)}{2 \ln^2 N} \]

Confirmed to be the right average front velocity in numerical simulations of fully stochastic models!
Assumption #1: the evolution of the stochastic front is essentially deterministic

Typical shape of the front

\[T = \ln N / \gamma_0 \]

\[e^{-\gamma_0(x-x)} \]
Assumption #1: the evolution of the stochastic front is essentially deterministic
Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic, except for some occasional extra-particles in the tail

Unusual shape of the front due to a forward extra particle
Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic, *except for some occasional extra-particles in the tail*

Assumption #2: the probability for such extra-particles is

$$p(\delta) d\delta dt = C_1 e^{-\gamma_0 \delta} d\delta dt$$
Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is
\[p(\delta) d\delta dt = C_1 e^{-\gamma_0 \delta} d\delta dt \]
Assumption #1: the evolution of the stochastic front is essentially deterministic, except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is \(p(\delta) d\delta dt = C_1 e^{-\gamma_0 \delta} d\delta dt \)

Unusual shape of the front due to a forward extra particle
Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is
\[p(\delta) \, d\delta \, dt = C_1 \, e^{-\gamma_0 \delta} \, d\delta \, dt \]

\[V(t) = \frac{x(y_0)}{y_0} \frac{3}{2y_0 t} \]

\[V_{BD} = \frac{x(y_0)}{y_0} \frac{\pi^2 x''(y_0)}{2y_0 L^2} \]

\[\Delta X = \delta + \int_0^{L^2} dt (V(t) - V_{BD}) = \delta - \int_0^{L^2} dt \frac{3}{2y_0 t} + \text{const} \]

\[= \delta - \frac{3}{2y_0} \ln L^2 + \text{const} = \frac{1}{y_0} (\gamma_0 \delta - \ln L^3) + \text{const} \]

\[e^{-\gamma_0 (x - X_t)} = e^{-\gamma_0 (x - X)} + e^{-\gamma_0 (x - X - \Delta X)} \]

\[X_t = X + \frac{1}{y_0} \ln (1 + e^{\gamma_0 \Delta X}) \]

\[R(\delta) = X_t - X = \frac{1}{y_0} \ln \left(1 + C_2 \frac{e^{\gamma_0 \delta}}{L^3}\right) \]
Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic, **except for some occasional extra-particles in the tail**

Assumption #2: the probability for such extra-particles is

\[p(\delta) d\delta dt = C_1 e^{-\gamma_0 \delta} d\delta dt \]

Assumption #3: their effect on the front position is

\[R(\delta) = X_f - X = \frac{1}{\gamma_0} \ln \left(1 + C_2 \frac{e^{\gamma_0 \delta}}{L^3} \right) \]

Time \(L^2 \) to reach the asymptotic shape \(e^{-\gamma_0 (x - X - \Delta X)} \)

Position w.r.t. the deterministic front:

\[\Delta X = \delta + \int_0^{L^2} dt (V(t) - V_{BD}) = \delta - \int_0^{L^2} dt \frac{3}{2\gamma_0 t} + \text{const} = \delta - \frac{3}{2\gamma_0} \ln L^2 + \text{const} = \frac{1}{\gamma_0} (\gamma_0 \delta - \ln L^2) + \text{const} \]

\[e^{-\gamma_0 (x - X_f)} = e^{-\gamma_0 (x - X)} + e^{-\gamma_0 (x - X - \Delta X)} \]

\[X_f = X + \frac{1}{\gamma_0} \ln \left(1 + e^{\gamma_0 \Delta X} \right) \]

\[\Rightarrow R(\delta) = X_f - X = \frac{1}{\gamma_0} \ln \left(1 + C_2 \frac{e^{\gamma_0 \delta}}{L^3} \right) \]
Accounting for fluctuations

Brunet, Derrida, Mueller, SM (2005)

Assumption #1: the evolution of the stochastic front is essentially deterministic, *except for some occasional extra-particles in the tail*

Assumption #2: the probability for such extra-particles is

\[p(\delta) \, d\delta \, dt = C_1 \, e^{-\gamma_0 \delta} \, d\delta \, dt \]

Assumption #3: their effect on the front position is

\[R(\delta) = X_f - X = \frac{1}{\gamma_0} \ln \left(1 + C_2 \frac{e^{\gamma_0 \delta}}{L^3} \right) \]

Stochastic rules for the effective evolution of the position of the front:

\[
X_{t+dt} = \begin{cases}
X_t + V_{BD} \, dt, & \text{if no fluctuation occurs} \\
X_t + V_{BD} \, dt + R(\delta), & \text{with proba } p(\delta) \, d\delta \, dt
\end{cases}
\]

\[V - V_{BD} = \int d\delta \, p(\delta) \, R(\delta) \]

\[\left[\text{n-th cumulant} \right]_{t} = \int d\delta \, p(\delta) \, R^n(\delta) \]

\[L = \frac{\ln N}{\gamma_0} \]
We proposed a phenomenological model for the propagation of stochastic fronts, that we expect to be valid in the weak noise limit (for a large enough number of particles). This model is summarized in the following assumptions:

Assumption #1: the evolution of the stochastic front is essentially deterministic, except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is \[p(\delta) \, d\delta \, dt = C_1 e^{-\nu_0 \delta} \, d\delta \, dt \]

Assumption #3: their effect on the front position is \[R(\delta) = \frac{1}{\nu_0} \ln \left(1 + C_2 \frac{e^{\nu_0 \delta}}{L^3} \right) \]

(Assumption #4: needed to get the constant \(C_1 C_2 \))

It leads to **quantitative** predictions for the position of the front:

\[
\begin{align*}
V &= \frac{x(y_0)}{y_0} - \frac{\pi^2 y_0 x'''(y_0)}{2 \ln^2 N} + \frac{\pi^2 y_0^2 x''(y_0)}{\nu_0 \ln^3 N} \frac{3 \ln \ln N}{\nu_0 \ln^3 N} \\
\frac{n\text{-th cumulant}}{t} &= \pi^2 y_0^2 x''(y_0) \frac{n! \zeta(n)}{\nu_0^n \ln^3 N}
\end{align*}
\]

\[\ln N \gg 1 \]
Correction to the velocity

Numerical checks

Reaction-diffusion model, discrete in space and time
Use the dictionary...

Position x	\(\ln(k^2/k_0^2) \)
Time t	\(\bar{\alpha} Y \)
Particle density \(T \)	Partonic amplitude \(T \)
Maximum/equilibrium number of particles \(N \)	\(\frac{1}{\alpha_s^2} \)
Position of the wave front \(X \)	Saturation scale \(\ln(Q_s^2/k_0^2) \)

...to get predictions for QCD!

Shape of the partonic amplitude:

\[T \sim \left(r^2 Q_s^2(Y) \right)^{Y_0} \]

Saturation scale:

\[
\frac{d}{d(\bar{\alpha} Y)} \langle \ln Q_s^2 \rangle = \frac{\chi(y_0)}{y_0} - \frac{\pi^2 y_0^2 \chi'''(y_0)}{2 \ln^2(1/\alpha_s^2)} + \pi^4 y_0^2 \chi'''(y_0) \frac{3 \ln \ln(1/\alpha_s^2)}{y_0 \ln^3(1/\alpha_s^2)}
\]

\[
\langle \ln^n Q_s^2 \rangle_{\text{cumulant}} = \pi^2 y_0^2 \chi'''(y_0) \frac{n! \zeta(n)}{y_0^n} \left[\frac{\bar{\alpha} Y}{\ln^3(1/\alpha_s^2)} \right]
\]

Validity

A priori, \(Y \gg 1, \ln \left(1/\alpha_s^2 \right) \gg 1 \)

In practice: analytical results reliable for \(\alpha_s \ll 10^{-5} \)

But we believe the picture itself for \(\alpha_s < 0.1 \)
Summary

Instead of solving the full QCD evolution equations, we have identified, from the physics, the universality class of high energy QCD as the one of reaction-diffusion processes.

This lead us to study the shape and weight of individual Fock states, and a stochastic traveling wave equation of the F-KPP type:

$$\partial_{\vec{\alpha} Y} T = \chi (-\partial_{\ln k^2}) T - T^2 + \alpha_s \sqrt{T} \nu$$

The properties of these QCD traveling waves (shape and position, i.e. form of the amplitude and rapidity dependence of the saturation scale) may be obtained directly by solving simpler equations in the universality class of the sF-KPP equation.
Outlook

Understand the limits of the statistical approach
- how well does it reproduce QCD? What is beyond?
- can one derive more universal analytical results?
- can one get close to phenomenology from numerics?
...

\[V = \frac{x(y_0)}{y_0} - \frac{\pi^2 y_0 x''(y_0)}{2 \ln^2 N} + \pi^2 y_0^2 x'''(y_0) \frac{3 \ln \ln N}{y_0 \ln^3 N} \]

\[\text{[n-th cumulant]} = \pi^2 y_0^2 x'''(y_0) \frac{n! \zeta(n)}{y_0^n \ln^3 N} \]

"Statistical" approach

Replica approach

Field-theoretical approach

Itakura, in progress