Neutrino Signals from Decaying Dark Matter¹

Michael Grefe

Deutsches Elektronen-Synchrotron DESY, Hamburg

The Dark Matter Connection: Theory and Experiment GGI Firenze – 18 May 2010

Michael Grefe (DESY Hamburg)

Neutrino Signals from Decaying DM

¹Based on work in collaboration with Laura Covi, Alejandro Ibarra and David Tran: JCAP **0901** (2009) 029 & JCAP **1004** (2010) 017

Outline

Decaying Gravitino Dark Matter

Neutrino Constraints on Decaying Dark Matter

The Quest for Dark Matter I Cosmological Evidence

 Assuming standard general relativity, the existence dark matter is firmly established from gravitational observations on various scales

Dark Matter Properties:

- Weak-scale (or smaller) interactions
- Cold (maybe warm)
- Very long-lived (not necessarily stable!)

Particle dark matter can be a (super)WIMP with lifetime \gg age of the Universe!

The Quest for Dark Matter II

Why are we interested in Cosmic-Ray Signatures?

- Complementary method to direct dark matter searches and searches at colliders
- Recent observations:
 - PAMELA: Steep rise in the positron fraction above 10 GeV
 - Fermi LAT: Hardening of the electron spectrum around 100 GeV
 - H.E.S.S.: Change of slope in the electron spectrum at 1 TeV
- In conflict with expectations from secondary production and standard propagation models
- Could be explained by nearby astrophysical sources (pulsars are a source for e⁺e⁻-pairs)

Signature of dark matter annihilation/decay?

 Further observations in different cosmic-ray channels needed to discriminate possibilities

Annihilating vs Decaying Dark Matter

Why are we interested in Decaying Dark Matter?

• Flux from the galactic halo:

Dark Matter Decay

$$\frac{dJ_{\text{halo}}}{dE} = \frac{1}{4\pi \tau_{\text{DM}} m_{\text{DM}}} \frac{dN}{dE} \int_{\text{l.o.s.}} \rho_{\text{halo}}(\vec{l}) d\vec{l}$$
particle physics astrophysics

Annihilation:

- Strong signal from peaked structures
- Enhancement of cross section needed
- Best statistical significance for small cone around galactic centre

Decay:

- Milder angular dependence
- Less constrained and less studied
- Best statistical significance for full-sky observation

Annihilating and decaying dark matter require different strategies for observation!

Outline

Neutrino Constraints on Decaying Dark Matter

Decaying Gravitino Dark Matter I Motivation from the early Universe

- Gravitino arises naturally as the spin-3/2 superpartner of the graviton
- Thermal production: $\Omega_{3/2}h^2 \simeq 0.27 \left(\frac{T_R}{10^{10} \text{ GeV}}\right) \left(\frac{100 \text{ GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1 \text{ TeV}}\right)^2$

[Bolz et al. (2001)]

- Thermal leptogenesis: $T_R \gtrsim 10^9 \, {
 m GeV} \ \Rightarrow \ m_{3/2} \gtrsim {\cal O}(10) \, {
 m GeV}$ favored
- Correct relic density for typical leptogenesis and supergravity parameters
- Problem: Late gravitino decays are in conflict with BBN predictions!
- Gravitino LSP is a natural candidate for cold dark matter
- Problem: Late NLSP decays usually spoil BBN predictions!

Decaying Gravitino Dark Matter I Motivation from the early Universe

- Gravitino arises naturally as the spin-3/2 superpartner of the graviton
- Thermal production: $\Omega_{3/2}h^2 \simeq 0.27 \left(\frac{T_R}{10^{10} \text{ GeV}}\right) \left(\frac{100 \text{ GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1 \text{ TeV}}\right)^2$

[Bolz et al. (2001)]

- Thermal leptogenesis: $T_R \gtrsim 10^9 \, {
 m GeV} \ \Rightarrow \ m_{3/2} \gtrsim {\cal O}(10) \, {
 m GeV}$ favored
- Correct relic density for typical leptogenesis and supergravity parameters
- Problem: Late gravitino decays are in conflict with BBN predictions!
- Gravitino LSP is a natural candidate for cold dark matter
- Problem: Late NLSP decays usually spoil BBN predictions!

Possible solution: *R*-parity not exactly conserved!

Decaying Gravitino Dark Matter II Bilinear R-Parity Violation

• Renormalisable R-parity violating terms in the superpotential:

 $W_{\mathcal{R}_p} = \mu_i L_i H_u + \lambda LL E^c + \lambda' LQ D^c + \lambda'' U^c D^c D^c$

- Proton stability guaranteed if λ'' vanishes
- We concentrate on bilinear R-parity breaking:
 - μ_i, λ, λ' related by field redefinitions
 - λ'' remains absent
- Bounds on R_p -couplings:
 - NLSP decays before BBN: Lower bound on 𝑘_p-couplings
 - Lepton/baryon asymmetry not washed out: Upper bound on \mathcal{R}_p -couplings
- Gravitino couplings suppressed by the Planck mass and the small R_p -couplings
- Gravitino unstable but very long-lived: $\tau_{3/2} \approx \mathcal{O}(10^{23} 10^{37}) \, s$

Decaying Gravitino Dark Matter II Bilinear R-Parity Violation

• Renormalisable R-parity violating terms in the superpotential:

 $W_{\mathcal{R}_p} = \mu_i L_i H_u + \lambda LLE^c + \lambda' LQD^c + \lambda'' U^c D^c D^c$

- Proton stability guaranteed if λ'' vanishes
- We concentrate on bilinear R-parity breaking:
 - μ_i, λ, λ' related by field redefinitions
 - λ'' remains absent
- Bounds on R_p -couplings:
 - NLSP decays before BBN: Lower bound on 𝑘_p-couplings
 - Lepton/baryon asymmetry not washed out: Upper bound on \mathcal{R}_p -couplings
- Gravitino couplings suppressed by the Planck mass and the small R_p -couplings
- Gravitino unstable but very long-lived: $\tau_{3/2} \approx \mathcal{O}(10^{23} 10^{37}) \, s$

The gravitino is a viable decaying dark matter candidate!

Decaying Gravitino Dark Matter III

Gravitino Decay Channels

R-parity breaking treated in terms of a non-vanishing sneutrino VEV

 Observable cosmic rays are created from direct production, gauge/Higgs boson fragmentation and lepton decays

Michael Grefe (DESY Hamburg)

Neutrino Signals from Decaying DM

Decaying Gravitino Dark Matter IV

Indirect Detection

- Gravitino branching ratios:
 - Independent of sneutrino VEV
 - Dominant dependence on gravitino mass
 - Large branching ratio into a neutrino line
- Smoking gun signature in neutrinos!

- Gravitino parameters constrained by antiproton observations due to hadronic decays
- Gravitino decays cannot fit PAMELA and Fermi LAT with these parameters

Decaying gravitino dark matter cannot account for the PAMELA and Fermi LAT excesses without additional astrophysical sources

Michael Grefe (DESY Hamburg)

Neutrino Signals from Decaying DM

[[]Buchmüller et al. (2009)]

Outline

Decaying Gravitino Dark Matter

Neutrino Constraints on Decaying Dark Matter

Neutrino Flux and Atmospheric Background I

Scalar Dark Matter Candidate

- Scalar dark matter decay channels:
 - DM $\rightarrow \nu \nu$: two-body decay with monoenergetic line at $E = m_{DM}/2$
 - DM $\rightarrow \ell^+ \ell^-$: soft spectrum from lepton decay (no neutrinos for $e^+ e^-$)
 - DM $\rightarrow Z^0 Z^0 / W^+ W^-$: low-energy tail from gauge boson fragmentation
- Triangular tail from extragalactic dark matter decays
- Neutrino oscillations distribute the flux equally into all neutrino flavours
- Atmospheric neutrinos are dominant background for TeV scale decaying DM

Michael Grefe (DESY Hamburg)

Neutrino Flux and Atmospheric Background II

Fermionic Dark Matter Candidate

- Fermionic dark matter decay channels:
 - DM $\rightarrow Z^0 \nu$: narrow line near $E = m_{DM}/2$ and tail from Z^0 fragmentation
 - DM $\rightarrow \ell^+ \ell^- \nu$: hard prompt neutrino spectrum and soft spectrum from lepton decay
 - DM $\rightarrow W^{\pm} \ell^{\mp}$: soft spectrum from W^{\pm} fragmentation and lepton decay
- Triangular tail from extragalactic dark matter decays
- Neutrino oscillations distribute the flux equally into all neutrino flavours
- Atmospheric neutrinos are dominant background for TeV scale decaying DM

Michael Grefe (DESY Hamburg)

Neutrino Signals I Upward Through-going Muons

- Muon track from charged-current deep inelastic scattering of a muon neutrino off a nucleon outside the detector
- Deep inelastic neutrino-nucleon scattering and propagation energy loss shifts muon spectrum to lower energies
- Bad energy resolution (0.3 in log₁₀ E) smears out cutoff energy
- Muon track reconstruction is the best-understood method at neutrino telescopes

Neutrino Detection

Neutrino Signals II

Contained Muons

- Muon track and hadronic shower from charged-current deep inelastic scattering of a muon neutrino off a nucleon inside the detector
- Deep inelastic neutrino-nucleon scattering shifts muon spectrum to lower energies
- Bad energy resolution (0.3 in log₁₀ E) smears out cutoff energy
- If the shower can be used for analysis, reconstruction of initial neutrino energy possible

Neutrino Signals III Showers

- Hadronic and electromagnetic showers from charged-current deep inelastic scattering of electron and tau neutrinos and neutral-current interactions of all neutrino flavours inside the detector
- Potentially best channel for dark matter searches:
 - Better energy resolution (0.18 in $\log_{10} E$) helps to distinguish spectral features
 - $3 \times$ larger signal and $3 \times$ lower background compared to other channels
- Problem: TeV-scale shower reconstruction is not yet well understood

Outline

Decaying Gravitino Dark Matter

Neutrino Constraints on Decaying Dark Matter

Limits on the Dark Matter Parameter Space I

Limits from Super-Kamiokande

- Limit on integrated upward through-going muon flux from the Super-Kamiokande collaboration
 - · As expected, strongest limit from the largest cone around the galactic centre
 - Stronger limits for larger dark matter masses due to increasing neutrino-nucleon cross section and increasing muon range although the neutrino flux decreases with increasing dark matter mass
 - Stronger limits for harder spectra
- Super-Kamiokande does not constrain the parameter region that fits PAMELA and Fermi LAT

Michael Grefe (DESY Hamburg)

Limits on the Dark Matter Parameter Space II Sensitivity of IceCube

- Many orders of magnitude larger than Super-Kamiokande
- Larger volume gives higher events rates and more sensitivity to small fluxes
- DeepCore extension allows to set stronger constraints at lower masses
- Use of spectral information will greatly improve the limits
- Use of different detection channels allows additional improvement
- PAMELA and Fermi LAT preferred regions will be tested

Conclusion

Conclusion

- In contrast to the concentration on peaked structures in the case of annihilation it will be a better strategy to look at spectral features in full-sky observations for a first signal of decaying dark matter
- Directional observation with gamma rays and neutrinos will allow to decide between annihilating and decaying dark matter or astrophysical sources
- Decaying gravitino dark matter is a well-motivated candidate but probably cannot accomodate the Fermi results without astrophysical sources
- Neutrinos are an important complementary channel for indirect dark matter searches
 - Neutrino telescopes will provide strong constraints on the dark matter parameters, in particular at large masses
 - In case of detection the neutrino channel will give additional information about dark matter decay modes and branching ratios

Conclusion

Conclusion

- In contrast to the concentration on peaked structures in the case of annihilation it will be a better strategy to look at spectral features in full-sky observations for a first signal of decaying dark matter
- Directional observation with gamma rays and neutrinos will allow to decide between annihilating and decaying dark matter or astrophysical sources
- Decaying gravitino dark matter is a well-motivated candidate but probably cannot accomodate the Fermi results without astrophysical sources
- Neutrinos are an important complementary channel for indirect dark matter searches
 - Neutrino telescopes will provide strong constraints on the dark matter parameters, in particular at large masses
 - In case of detection the neutrino channel will give additional information about dark matter decay modes and branching ratios

Thanks for your attention!