lon-Channeling
in Direct DM Detectors

Graciela Gelmini - UCLA

Based on work done with Nassim Bozorgnia and Paolo Gondolo

GGl Florence, May 19, 2010



Graciela Gelmini-UCLA

Channeling and Blocking Effects in Crystals

refer to the orientation dependence of ion penetration in crystals.

Channeling: o o B B B
lons incident upor-1 the crystal W
along symmetlry axis and planes ' B e B E
suffer a series of small-angle |
_ T _ O O O O O O
scattering that maintain them in
the open‘channels” and penetrate '
' O O 0O 0O 0 O
much further (ions do not get close
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to lattice sites) (b) /'
O O O O
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Blocking:

Reduction of the flux of ions
Fi1G. 1. Schematic illustration of (a) channeling and (b) blocking

origin ating in lattice sites cffects. The drawings are highly exaggerated. In reality, the oscillations
of channeled trajectories occur with wavelengths typically several
alon g symmetry axis and p| anes hundreds or thousands of lattice spacings.

(“blocking dip”) (From D. Gemmell 1974, Rev. Mod. Phys. 46, 129)
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Channeling and blocking in crystals is used in

studies of lattice disorder

lon implantation

to locate dopant and impurity atoms

studies of surfaces and interfaces

measurement of nuclear lifetimes

production of polarized beams... etc

channeling is to be avoided in ion implantation in Si to make circuits:
good data at ~ 100's keV (and analytic models by Gerhard Hobler (Vienna
University of Technology)-1995)
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Nal crystal

.Si or Ge crystal
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Channeling effect observed in Nal (TI) Altman et.al 1973

PHYSICAL REVIEW B VOLUME 7, NUMBER 5 1 MARCH 1973

Scintillation Response of Nal(T1) and KI(TI) to Channeled Ions*

M. R. Altman, H. B. Dietrich,T and R. B. Murray
Physics Depariment, University of Delaware, Newavk, Delaware 19711

T. J. Rock
Ballistic Research Laboratory Radiation Division, Aberdeen Proving Ground, Maryland 21010
(Received 29 September 1972)

The scintillation pulse-height response of NaI(T1) and KI(T1) to ‘He and 0 ions in the 2—60-
MeV range has been studied with the ion beam aligned along low~index planes and axes. and
also aligned along a random direction. The scintillation efficiency increases by as much as
50% when the ion beam is channeled along a major symmetry direction. The effect of chan-
neling has been observed by recording the pulse-height spectra for monoenergetic ions ori-
ented along {100}, {110}, and {111} planes, and along {100), (110), and (111) axes. The in-
crease in pulse-height response is in semiquantitative agreement with recent model calcu-
lations., Observation of this effect permits study of channeling phenomena in thick crystals
that are scintillators. In particular, this paper reports a measurement of the critical angle
for channeling of 15-MeV '°O along a {100} plane.
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Channeling effect observed in Nal (TI) Altman et.al 1973
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FIG. 2. {a) Pulse-height spectrum from 10-MeV 'S0
on NaI{Tl) for incidence along & random direction. (b)
Pulse-height spectrum from 10-MeV 0 along a {100}
plane, (c) Pulse-height spectrum from 24-MeV 90 along
a {100} plane. A light guide was used in all cases.

GGl Florence, May 19, 2010 5



Graciela Gelmini-UCLA

Channeling effect observed in Nal(TIl) Altman et.al 1973

Channeled ions produce more
scintillation light

(because they loose most of
their energy wvia electronic
stopping rather than nuclear

stopping)
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FIG. 11. Scintillation efficiency dL/dE as a function
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Graciela Gelmini-UCLA

Channeling effect in DM detection:

The potential importance of the channeling effect for direct DM detection was first pointed
out in stilbene crystals by H. Sekiya et al. (2003) and

subsequently for Nal (T1) by Drobyshevski (2007) and by the DAMA collaboration (2008).
When ions recoiling after a collision with a WIMP move along crystal axes and planes,
they give their energy to electrons, so (J = 1 instead of Q; = 0.09 and Qy, = 0.3

10°
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—
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(Savage, Gelmini, Gondolo, Freese JCAP 0904:010,2009)
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Daily-Modulation due to Channeling:
H. Sekiya et al. (2003); Avignone, Creswick, Nussinov (2008)

e The WIMP wind comes preferentially from one direction

e When that direction is aligned with a channel, the scintillation or ionization output is
larger

e Earth’s rotation makes the WIMP wind change direction with respect to the crystal,
which produces a daily modulation in the measured recoil energy (equivalent to a
modulation of the quenching factor)

This daily modulation would be a background free DM signature!

Nassim Bosognia, Paolo Gondolo and | set out more than a year ago to do an analytic
calculation to understand channeling and blocking for DM detection, and estimate daiy
modulation amplitudes...
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Our calculation of the fraction of recoils that are
channeled as function of recoil energy and direction:

® Use classical analytic models of the 60's and 70’s, in particular Lindhard’'s model(Lindhard

1965, Morgan & Van Vliet 1971, Dearnaley 1973, Gemmell 1974, Appleton & Foti 1977, Hobler 1995)

® Continuum string and plane model, in which

the screened Thomas-Fermi potential is averaged 100 Channel, Siior
over a direction parallel to a row/plane (took just one) 0.7 ' ' '
0.6} — Axial
_ ] _ 0.5¢ ——Plana |1
® In the direction perpendicular the row or plane, the %‘ 0.4k .
. . === asisi
transverse energy’ is conserved =
_ 2
Eperp - E¢z + Uz
v —wvsing ~ v .Qk : :
perp ? ¢ 0.0C 005 01C 015 0.2C

_ 2
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Axial and planar channels
Pmin: Min. distance of approach - v: angle far away from row or plane

(Fig. from D. Gemmell 1974, Rev. Mod. Phys. 46, 129)

1od | Eperp:E¢?+Uz'

— . ROW E-—-!
i — U(p2m1n)
= EY” + Uniddle

U.iddle: at middle of channel,

far from row/plane,
angle there is

L [U(Pmin)—Umiddle)]
g = L)

Channeling requires

Pmin > Pec
which amounts to

Y < P
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Axial and planar channels can be understood as interference of Coulomb

shadow cones, pmin > pe and Y < Y.
(Fig. from Hiroshi Kudo, 2001)

Ion beam

direction

Atom row

— P

y=0
C °
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Channeling requires (Lindhard 1965, Morgan & Van Vliet 1971, Hobler 1995)

e Min. distance of approach to row or plane larger than a critical value:

pumin > pel B, T) = 1/ p2(E) + e us (T))

pc(E): for perfect-rigid-lattice decreases with F
w1 (T): 1-dim. amplitude of thermal fluctuations
(used Debye model) increases with T, e.g. in Si

c: found through data/simulations, 1 < ¢ < 2

e Angle far from the row/plane smaller than a

J
b < b, = \/ Ulpe)~Uren)

If p.(E,T) > the radius of the
channel r.p, = dep /2, Y. = 0:

| Terit (log)

NO CHANNELING POSSIBLE
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Si ion in Si crystal, c =1 (i.e. r. — u1(7T) at high E)

(Bozorgnia, Gelmiin, Gondolo 2010)
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Si ion in Si crystal, c =2 (i.e. 1. — 2 u1(7T) at high E)

(Bozorgnia, Gelmiin, Gondolo 2010)
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Data B and P ion in Si crystal fitted with ¢ = 2 (data from Hobler-1995)

(Bozorgnia, Gelmiin, Gondolo 2010)
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In Nal, no data or modeling available at low energies

DAMA channeling fraction:

Calculated as if ions start from the middle of the channel

(DAMA- Eur. Phys. J. C 53, 205-2313, 2008)

1
Unchanneled ion’;'l
X EXXEXXY
c
@ @ @ @ @ @ % lodine recoils
@—— = "-—:__ ﬁ Channeled - 10'2?
___________________ ion F
@ @ @\@ @ @ @ i Sodium recoils
W :
L S B e
E., (keV)
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Reproduced DAMA calculations of channeled fraction

We used HEALPix (Hierarchical Equal Area iso Latitude Pixelisation)
method to compute the integral over all directions. Dechanneling due
to Tl doping (only first interaction and no rechanneling)

(Bozorgnia, Gelmiin, Gondolo 2010)

Incident ion:

Fractior

0.01] .
0.00<

0.001
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Channeling probability of ions ejected from lattice sites

e Recoiling nuclei start at or close to lattice sites
e Blocking effects are important
e In a perfect lattice no recoil would be channeled (“rule of reversibility” ).

e However, there are channeled recoils due to lattice vibrations! Collision
may happen when nucleus is somewhat within the channel, with prob.

g(p) = 1%6(_p2/2u%) thus PCh = foo drg(p) — 6(_p§,min/2u%)

and p; min IS given by p. (uncertainty in p. is exponentiated in Pcyp,)

e Recoiling nucleus leaves an empty lattice site.

Two main T effects: amplitude u1(7T") increases with T which increases
channneling prob.- but r. also increases with T what decreases the prob.
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Channeling probability of ions ejected from lattice sites: Si
No dechanneling included (Bozorgnia, Gelmiin, Gondolo 2010)

Siions,c;=c,=1

Siions,ci=cp=2

0.001¢

0.001¢
0.0007%; 9005
0.000%;
0.000%} &go-c

0.000z;
0.0001%

0.0001

10 20 50 100200 500100C
E (keV)

Si ions, Static lattic

900 °C

0.01;
0.00%&¢t
600 °C

0.001;
5x 1074}

1x 104t
5 10

50 100 500a.00c
E (keV)

19



Geionsci=c=1
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Channeling probability of ions ejected from lattice sites: Ge
No dechanneling included (Bozorgnia, Gelmiin, Gondolo 2010)
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Channeling probability of ions ejected from lattice sites: Nal(TI)
Upper bound: T-dep. static lattice.
Righ: extreme dechanneling due to TI, with no re-channeling considered.

(Bozorgnia, Gelmiin, Gondolo 2010)
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Channeling probability of ions ejected from lattice sites: Nal (TI)
More reasonable upper bounds at 20 K with lattice oscillations included
- Right: extreme dechanneling due to Tl with no re-channeling considered.

(Bozorgnia, Gelmiin, Gondolo 2010)
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Compatibility of DAMA/LIBRA with other experiments

Then (Savage, Gelmini, Gondolo, Freese JCAP 0904:010,2009)
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with channeling
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_ 100 I with channeling
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e d diff. at 7 .
anda now ITr. a O )(Savage,Gelmini, Gondolo 2010)
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with 1o change in L.y¢)

(Savage, Gelmini, Gondolo 2010)
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Compatibility of DAMA/LIBRA with other experiments

If L.y extrapolated as a constant below 4 keVnr (band: how the 90%CL bound changes

DAMA modulation
(50/30/90%)

DAMA
"~ total events

XENONI10
(flat Leg)

XENON100
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CoGeNT
(7-12 GeV)
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Compatibility of DAMA/LIBRA with other experiments

If L.s; extrapolated linearly to zero as E decreases below 4 keVnr (band: how the 90%CL
bound changes with 1o change in L.¢¢ from Manzur (2010) data set)

(Savage, Gelmini, Gondolo 2010)
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Conclusions:

e The channeling of recoiling lattice ions and incident ions is different. The
effect of blocking is important to understand the channeling of recoll
nuclei: the channeled fraction of recoils is smaller and it is strongly
temperature dependent (so it is negligible at mK).

e Channeling in crystaline detectors can lead to a daily modulation of
a WIMP signal, a DM signature without any background (Avignone,
Creswell & Nussinov 2008) (with small amplitudes- but larger for halo
components with small velocity dispersion)

e Analytic models give good qualitative results but need data/simulations
to get good quantitative results (not available or Nal).
Montecarlo simulations may be needed to settle these issues (many are
used in other applications of channeling).
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Advances in lon Implantation Modeling
for Doping of Semiconductors

ATHENA

Process Simulation. Frameﬁork

SILVACO
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Advances in lon Implantation Modaling for Doping of Samiconductors -8-
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Different Orientation of Silicon Crystal Structure

SILVACO
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Molecular Dynamics

Classical MD: many, more
recent

studies by T.Diaz de la Rubia et
al.

on defects in silicon

Advances in lon implantation Modeling for Doping of Semiconductors -8-
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Classification of Simulation Models

Binary Collision Approximation

MC(Monte-Carlo) codes: stochastic
methods are used to locate the target atoms
or to determine the impact parameters, flight
distances, scattering angles, etc. The best
known code is the TRIM(SRIM).

SILVACO
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