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The four elements of ACDM halos

I  Smooth background halo
-- NFW-like cusped density profile

-- near-ellipsoidal equidensity contours

I1 Bound subhalos

-- most massive typically 1% of main halo mass
-- total mass of all subhalos < 10%

-- less centrally concentrated than the smooth component

III Tidal streams

-- remnants of tidally disrupted subhalos

IV Fundamental streams
-- consequence of smooth and cold 1nitial conditions
-- very low internal velocity dispersions
-- produce density caustics at projective catastrophes
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I. Smooth background halo

Aquarius Project: Springel et al 2008
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e Density profiles of
simulated DM-only
ACDM halos are now
very well determined
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I. Smooth background halo

Aquarius Project: Springel et al 2008
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* Density profiles of
simulated DM-only
ACDM halos are now
very well determined

e The inner cusp does
not appear to have a
well-defined power
law slope

 Treating baryons more
important than better
DM simulations
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Bound subhalos: conclusions

e Substructure is primarily in the outermost parts of halos

 The radial distribution of subhalos i1s almost mass-independent

* Subhalo populations scale (almost) with the mass of the host

e The total mass in subhalos converges only weakly at small m

e Subhalos contain a very small mass fraction in the inner halo



I11. Tidal Streams
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e Produced by partial or total tidal disruption of subhalos
* Analogous to observed stellar streams 1n the Galactic halo
e Distributed along/around orbit of subhalo (c.f. meteor streams)

e Localised 1in almost 1-D region of 6-D phase-space (X, ¥)



Dark matter phase-space structure in the inner MW
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Dark matter phase-space structure in the inner MW
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IV. Fundamental streams

After CDM particles become nonrelativistic, but before they
dominate the density (e.g. z ~ 10°) their distribution function is

fix,v,t) =p)[1 +o(x,t)] N[{v - V(x,1)}/c]

where p(7) 1s the mean mass density of CDM,
o(x,?) 1s a Gaussian random field with finite variance < 1,
V(ix,t) = Vy(x,t) where V2 oc 6,
and N is normal with 6> << {|V|") (today o ~ 0.1 cm/s)

CDM occupies a thin 3-D 'sheet' within the full 6-D phase-space
and 1ts projection onto x-space 1s near-uniform.

Df/ Dt =0 — only a 3-D subspace 1s occupied at all times.
Nonlinear evolution leads to multi-stream structure and caustics




IV. Fundamental streams

Consequences of Df /Dt = 0 ‘

* The 3-D phase sheet can be stretched and folded but not torn
* At least one sheet must pass through every point x
 In nonlinear objects there are typically many sheets at each x

e Stretching which reduces a sheet's density must also reduce
its velocity dispersions to maintain f=const. — » ¢ ~ p °

* At a caustic, at least one velocity dispersion must — » o

* All these processes can be followed 1n fully general simulations
by tracking the phase-sheet local to each simulation particle



The geodesic deviation equation

Particle equation of motion: X = [f,] = [_%(l) ]

: 0 |
Offset to a neighbor: 0X = [T-gx] = [Qf 0 ]-BX; T=-V(V¢)

Write oX(t) =D(X,t)-0X , then differentiating w.r.t. time gives,

D = [QF o |D with D =1

e Integrating this equation together with each particle's trajectory gives
the evolution of its local phase-space distribution

e No symmetry or stationarity assumptions are required

e det(D) =1 at all times by Liouville's theorem

o For CDM, 1l/|det(D_)| gives the decrease in local 3D space density of
each particle's phase sheet. Switches sign and 1is infinite at caustics.



Similarity solution for spherical collapse in CDM
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Simulation from self-similar spherical initial conditions

Geodesic deviation equation > phase-space structure local to each particle

y Vogelsberger et al 2009




Simulation from self-similar spherical initial conditions

Vogelsberger et al 2009

The radial orbit
instability leads to a
system which 1s
strongly prolate 1n
the inner nonlinear
regions




Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2010
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Caustic crossing counts in a ACDM Milky Way halo

Vogelsberger & White 2010

... These are tidal streams not fundamental streams

Self-bound subhalos excluded
B 3z

0 75 150 225 30C

0.5 1.0 1.5 2.0 2.5
/To00




Vogelsberger & White 2010
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Stream density distribution in Aquarius halos

Vogelsberger & White 2010
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Stream density distribution at the Sun

Vogelsberger & White 2010
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Radial distribution of peak density at caustics
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Initial velocity

dispersion assumes a

standard WIMP with
m = 100 GeV/c*



intra / smooth

Fraction of annihilation luminosity from caustics
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Conclusions: fundamental streams and caustics

* Integration of the GDE can augment the ability of ACDM
simulations to resolve fine-grained structure by 15 to 20
orders of magnitude

* Fundamental streams and their associated caustics will
have no significant effect on direct and indirect Dark
Matter detection experiments

* The most massive stream at the Sun should contain
roughly 0.001 of the local DM density and would have
an energy spread AE/E < 107"°. It might be detectable in
an axion experiment






