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Axion cold dark matter

When are axions 100% of cold dark matter?

Study axion parameter space imposing

Q,=Qcpv=0.1131+0.0034

And update cosmological constraints and include anharmonicities
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Axions as solution to the strong CP problem
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Vacuum potentials A, = Q9,0 " with Q — ™" as r — ¢
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Axions as solution to the strong CP problem

The strong CP problem

Vacuum potentials A, = Q9,0 with Q — e*™™ a5 1 — 00

Vacuum state |0) = > =% 0)

~

New term in lagrangian Ly = 0 T T

3272 Ta Tapv

L violates P and T but conserves C, thus produces
a neutron electric dipole moment d,, ~ e(m,/M?)0

Experimentally d,, < 1.1 x 107%® ecm so 6§ < 1077-10~1Y

Why 6 should be so small is the strong CP problem
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Axions as solution to the strong CP problem

The Peccei-Quinn solution

Introducing a U(l)rq symmetry replaces /axmn
Ototal = 0 + argdet Myuark = 0(x) =a(z)/fa
static CP-violating angle dynamic CP-conserving field
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Axions as solution to the strong CP problem

The Peccei-Quinn solution

axion

Introducing a U(l)rq symmetry replaces
Ototal = 0 + argdet Myuark = 0(x) =a(z)/fa

static CP-violating angle dynamic CP-conserving field

New lagrangian £, = —%5’“&@@ + f% sg; Frv ~a;w + Lint(a)
Before QCD phase transition, (¢) can be anything

After QCD phase transition, instanton effects generate
V(0) = m? f2(1 — cos0) 1)

and (6) = 0 dynamically MN\/

0
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Axions as dark matter

Hot

Cold
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Axions as dark matter

Hot

Produced thermally in early universe
Important for ma>0.1eV (f2<10°), mostly excluded by astrophysics

Cold
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Axions as dark matter

Hot

Produced thermally in early universe
Important for ma>0.1eV (f2<10°), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of V(6)
(Vacuum realignment)

Produced by decay of topological defects

(Axionic string decays)
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Axion cold dark matter parameter space

fa Peccei-Quinn symmetry breaking scale
N Peccei-Quinn color anomaly
Ni Number of degenerate QCD vacua

Kim-Shifman-Vainshtain-Zakharov
Dine-Fischler-Srednicki-Zhitnistki

H1 Expansion rate at end of inflation

Couplings to quarks, leptons, and photons

0; Initial misalignment angle

Harari-Sikivie-Hagmann-Chang

Davis-Battye-Shellard Axionic string parameters

Assume N = Ni =1 and show results for KSVZ and HSHC string network

Thus 3 free parameters f., 0;, H1 and one constraint Q,=Ccpm
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Cold axion production in cosmology

Vacuum realignment

® |nitial misalignment angle 6

® Coherent axion oscillations start at temperature 77
3H(T)=m(11)

/ < 
Hubble expansion parameter T-dependent axion mass
non-standard expansion histories axions acquire mass through
differ in the function H(T) instanton effects at T < A = Aqcp

® Density at T1is ny(17) = %ma(ﬂ)fzx(@?f(@i»
< 

Anharmonicity correction 1 (6)
axion field equation has anharmonic terms 6 + 3H (T)0 + m?2(T)sinf = 0

® Conservation of comoving axion number gives present density (2,
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Cold axion production in cosmology

Axionic string decays

® Energy density ratio (string decay/misalignment)

Density enhancement

(String stretching rate)2
\ from string decays
str S’I“Nz

a = C
e
\

Uncertainty in axion spectrum

Slow oscillating strings (Davis-Battye-Shellard) r 315__ﬁ1 In(t1/9)

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie) — r

with a(f)oct’
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Standard cosmology
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Standard cosmology
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Axion CDM - Standard cosmology
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Axion CDM - Standard cosmology
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Axion CDM - Standard cosmology

PQ symmetry breaks
after end of inflation
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Axion CDM - Standard cosmology

PQ symmetry breaks
after end of inflation

* Average 0; over Hubble volume
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Axion CDM - Standard cosmology

PQ symmetry breaks
after end of inflation

PLANCK

* Average 0; over Hubble volume

e Anharmonicities are important | Axion isocurvature
fluctuations

Turner 1986
Lyth 1992
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Axion CDM - Standard cosmology

PQ symmetry breaks
after end of inflation

* Average 0; over Hubble volume

PLANCK

e Anharmonicities are important | Axion isocurvature
fluctuations

Turner 1986
Lyth 1992

, }7/6

£(0) = |In =525

O/t

* String decay contribution is S ot
o : fs cooling )
~16% of vacuum realignment | S\
1010 7

|GeW,
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Axion CDM - Standard cosmology

PQ symmetry breaks
during inflation

0,=0.0001

9,=0.001
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Axion CDM - Standard cosmology

PQ symmetry breaks
during inflation
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Axion CDM - Standard cosmology

PQ symmetry breaks
during inflation

0,=0.0001

e Constrained by non-adiabatic
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Axion CDM - Standard cosmology
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Axion CDM - Standard cosmology
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Standard cosmology
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Non-standard cosmology

In H
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Low Temperature Reheating cosmology
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Axion CDM - Low Temp. Reheating cosmology
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Axion CDM - Low Temp. Reheating cosmology

Ty = 15MeV
TRy = 150MeV

m— Standard

i Axion Isocurvature
Fluctuations
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Axion CDM - Low Temp. Reheating cosmology

PQ symmetry breaks
after end of inflation

* As Tru decreases, f, must ,
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Axion CDM - Low Temp. Reheating cosmology

| : PQ symmetry breaks
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Non-standard cosmology

In H
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Kination cosmology

. 8 ME poir
HE = S WE P MD pxa’
Pl RD pocat
Inflation e
E Hoc 112 Kma};on : Inflation ~ px V()
- xa
\ Radiation
Kination period dom|n2ated
dominated by Hea Mot
L atter
kinetic energy of e
scalar field Hocg-372
A dominated
Hoc A1/2
In a
Ford 1987

Friday, May 21, 2010



Axion CDM - Kination cosmology
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Axion CDM - Kination cosmology
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Axion CDM - Kination cosmology

PQ symmetry breaks
after end of inflation

® As Tiin decreases, f, must
decrease and m, increase

* String decay contribution is
|5 X vacuum realignment
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Axion CDM - Kination cosmology
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in
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e As Tiin decreases, constraints
from non-adiabatic fluctuations
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Conclusions

® |f the Peccei-Quinn symmetry breaks after inflation ends,
the axion mass must be m,=85£3 peV in standard cosmology

= much smaller m, in LTR cosmology
= much larger m, in kination cosmology

® |f the Peccei-Quinn symmetry breaks during inflation,
cosmological limits on non-adiabatic fluctuations constrain
parameter space and a specific initial misalignment angle 6
must be chosen

= larger allowed region and larger 6; in LTR cosmology
= smaller allowed region and smaller 6; in kination cosmology

Friday, May 21, 2010



