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• Most likely a Weakly Interacting 
Massive Particle, or WIMP.

• Race is on to detect DM in the 
laboratory. 
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Background | Hunting for dark matter

• Big tub of inert material

•Deep underground

•Wait for rare event

•Need to know very local 
phase space distribution
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:

dR

dE
=

ρσwn|F (E)|2

2mµ2

∫ vmax

v>
√

ME/2µ2

f(v, t)

v
d3v (1)

where ρ is the local dark matter density (ρh =
0.3GeV/cm3 in the SHM), σwn is the WIMP-nucleus
scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
the SHM with a simple 1D Maxwellian:

f(v, t) ∝ exp

(

−(v + v⊕(t))2

2σ2

)

(2)

where v is the laboratory velocity of the dark mat-
ter particle and the instantaneous streaming velocity
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
vorbR

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βR sin(λ(t) − λR)
vorbφ

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βφ sin(λ(t) − λφ)
vorbz

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βz sin(λ(t) − λz)

where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.

The motion of the Earth around the Sun gives rise to

• Big tub of inert material

•Deep underground

•Wait for rare event

•Need to know very local 
phase space distribution
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:
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=
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where ρ is the local dark matter density (ρh =
0.3GeV/cm3 in the SHM), σwn is the WIMP-nucleus
scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
the SHM with a simple 1D Maxwellian:

f(v, t) ∝ exp

(

−(v + v⊕(t))2

2σ2

)

(2)

where v is the laboratory velocity of the dark mat-
ter particle and the instantaneous streaming velocity
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
vorbR

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βR sin(λ(t) − λR)
vorbφ

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βφ sin(λ(t) − λφ)
vorbz

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βz sin(λ(t) − λz)

where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.

The motion of the Earth around the Sun gives rise to
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:
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=

ρσwn|F (E)|2

2mµ2
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ME/2µ2

f(v, t)

v
d3v (1)

where ρ is the local dark matter density (ρh =
0.3GeV/cm3 in the SHM), σwn is the WIMP-nucleus
scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
the SHM with a simple 1D Maxwellian:

f(v, t) ∝ exp

(

−(v + v⊕(t))2

2σ2

)

(2)

where v is the laboratory velocity of the dark mat-
ter particle and the instantaneous streaming velocity
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
vorbR

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βR sin(λ(t) − λR)
vorbφ

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βφ sin(λ(t) − λφ)
vorbz

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βz sin(λ(t) − λz)

where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.

The motion of the Earth around the Sun gives rise to
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.

� E-mail: justin.inglis.read@gmail.com

Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.

c� 0000 RAS
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dm – indeed,
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We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-
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the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp
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−Φ(z)

v2
z,i
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− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)
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(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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z,i separately. This point is important
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z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.
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dm.
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Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
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where ν0,i = νi(0).
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by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:
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ρdisc(z) + ρeff

dm

�
(5)
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If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
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tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.
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Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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where ν0,i = νi(0).
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by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over
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tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important
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dm.
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Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.
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where ν0,i = νi(0).
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(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important
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dm.
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Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
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vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):
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+ νi

∂Φ
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= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:
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= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
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ρdisc(z) + ρeff

dm
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(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
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i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):
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= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi
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+ νi

∂Φ
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= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):
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+
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):
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∂
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(RνivRvz) +

∂
∂z

�
νiv2

z
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+ νi

∂Φ
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= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.

� E-mail: justin.inglis.read@gmail.com

Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
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νiv2
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+ νi

∂Φ
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= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi
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∂Φ
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= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
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+
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:
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This can then be trivially solved to give:
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(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:
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If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.
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Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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potential Φ.
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ulation is isothermal (v2
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z,i) gives:
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where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
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ρdisc(z) + ρeff
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(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =
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νi,0 exp
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−Φ(z)
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(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.

c� 0000 RAS

Measuring ρdm local | Basic equations

Guess/Measure GuessSolve

νi(z) = 2

� ∞

√
2Φ

dvz
vzf(vz)�
v2z − 2Φ

f = f(Ez); Φ(0) = 0

Wednesday, 19 May 2010



Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 28 January 2010 (MN LATEX style file v2.2)

Calculation for Silvia

J. I. Read1�
1
Department of Physics and Astronomy, University of Leicester,

University Road, Leicester, LE1 7RH, UK.

28 January 2010

ABSTRACT
Oort limit calculation for Silvia

Key words:

We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
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+
1

R
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=
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c (R)
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-
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where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:
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dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =
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If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:
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ν0,i exp
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−Φ(z)

v2
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dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important
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Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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Measuring ρdm local | Testing the method

Limits on local dark matter density 3

Table 1. Parameters for the disc, the halo and the bulge of the
simulation. From left to right: number of particles (N); total mass
(M); softening length (ε); half mass scale-length (r1/2) and height
(z1/2).

N [106] M [1010M⊙] ε [kpc] r1/2 [kpc] z1/2 [kpc]

Disc 30 5.30 0.015 4.99 0.17
Halo 15 45.40 0.045 - -
Bulge 0.5 0.83 0.012 - -

using the galaxy models of Widrow & Dubinski (2005) to
construct the initial conditions; these models are derived
from a composite three-integral distribution function
f = fdisk(E, Ez, Lz) + fhalo(E) + fbulge(E) and provide a
near-equilibrium initial conditions. The disc model has an
exponential radial profile and a sech2(z) vertical profile; its
distribution function applies in the epicyclic approximation
with σR,φ,z � vc, so the vertical energy is approximatively
constant: this leads to triaxial velocity ellipsoids in the
disc models as seen in real spiral galaxies (Widrow et al.
2008). The halo is modeled as a NFW profile, but when its
distribution function is combined with the disc one, the net
halo density profile slightly changes from it and is flattened
along the z−axis near the center, but preserves the r−1

central cusp.

In order to have a statistics comparable to the present
data (Holmberg & Flynn (2000) considered ∼ 2000 A-stars
in a cylindric volume of radius R = 200pc and height
z = 400pc centered on the Sun) in the Solar Neighborhood
and a force softening ε � 20pc, we construct a disc with
nd = 30 × 106 star particles; then we choose the mass of
the (dark matter) halo particles and the (star) bulge par-
ticles so that the heating time scale for the disc is much
smaller than the relaxation time scale and the time of the
simulation: theat � trel � tsim ∼ 0.5Gyr; we then choose
nh = 15× 106 and nb = 0.5× 106 particles for the halo and
the bulge respectively. ***SHOULD I WRITE HERE THE
FORMULAE FOR THE VARIOUS TIME SCALES???***
The characteristics of the model we built are listed in table
1; for a comparison in the table 2 the corresponding feutures
of the Milky Way are listed.
In our analysis we consider two different outputs of the sim-
ulation: an early step (t ∼ 50Myrs) and an evolved one
(t ∼ 0.7Gyrs), represented in figure 1 (in the upper and
lower panel respectively).

***TO BE READ AGAIN/FINISH*** ***IMPROVE
THE TABLES***

3.1 Tests on the simulation

We can easily test the validity of the approximations in our
simulations by

(i) Explictly comparing the magnitude of the first and
second terms in equation 1. This must be performed at the
relevant disc radius (i.e. R = R⊙) and must be valid over
the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

Table 2. The distinct components of the Milky Way. From left
to right: total mass (M); half mass scale-length (r1/2) and height
(z1/2). These values are compiled by (Read et al. 2008) and taken
from (Kuijken & Gilmore 1989; Ojha 2001; Holmberg & Flynn
2004; Seabroke & Gilmore 2007).

M [1010M⊙] r1/2 [kpc] z1/2 [kpc]

Thin disc 4.8± 4 4.7± 0.5 0.2;0.25
Thick disc ∼ 1 5.9± 0.8 0.63± 0.18

Halo ∼ 100 50− 70 -
Bulge 0.8± 0.4 0.8 0.25

fying that it is flat to a good approximation over the relevant
range in z.

4 MODEL FITTING AND RESULTS

As pointed out in the last section, we consider two dif-
ferent evolutionary stages in our analysis: an early stage
(t ∼ 50Myrs) in which the disc is still axisymmetric and a
more evolved one (t ∼ 0.7Gyrs) with a bar.
We use the first stage to test the effect of systematics in
the case of a very good sampling; in order to do that we
consider 36 cylindrical patches (at the distance of 10o)
around the disc at a Galactocentric distance of R =8.5kpc
(represented as red circles in figure 1) ad sum them up to
produce an ideal “superpatch” containing a high number of
particles, resembling the statistics that will be obtained by
next future surveys (e.g. GAIA will obtain distances with
an accuracy better than 0.1% for ∼ 100000 stars within
80pc (Bailer-Jones 2008), approximately the same number
of particles can be found in our “superpatches”). Then we
compared the evolved stage with the early one analyzing 4
single cylindrical patches at different position in the disc
separately and 4 “wedges” (containing about 4-5 times the
number of stars of a single patch) at two different radial
distances from the center of the galaxy, namely R = 8.5kpc
and R = 6.5kpc, to study the effect of disc inhomogeneities
on the density recovery.
We use a Monte Carlo Markov Chain (MCMC) method
to recover the local density: leaving the total density
ρtot = ρs + ρDM and the star density ρs as free parameters,
we fit the functional form of the density profile given by
equation 10 to the actual density fall-off (an example is
shown in figure 6). Then we determine the dark matter
density as the difference between the total local density and
ρs.

***TO FINISH***

4.1 Maximum size of the box

The approximations of the method, described in section 2,
are good as long as we consider small enough patches; in par-
ticular considering boxes with a too large radial size break
the approximation of the separability of the potential; then
in order to compute correctly the velocity distribution rep-
resenting stars at the Galactic plane, we have to use samples
with the shortest height above the plane possible. FInally we

c� 2010 RAS, MNRAS 000, 1–7
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unevolved evolved
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Measuring ρdm local | Testing the method; current sampling

unevolved evolved
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Measuring ρdm local | Testing the method; future sampling

unevolved evolved
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Measuring ρdm local | Application to real data

Additional complications ... 

• Tracers are magnitude limited, not volume limited

• Velocity distribution comes from same star type as 
tracer density distribution; but not same stars

• Multiple mass components in the disc

• Measurement errors 

=> Marginalise over all of these in the MCMC!
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PRELIMINARY!! Results ... 

simulation real data
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Measuring fdm(v) | The standard approach
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Thin, thick and dark discs in LCDM; Read et al. 2008

Measuring fdm(v) | The standard halo model (SHM)

f(v) ∝ exp

�
− v2

2σ2

�

Isotropic Gaussian in the Galactic frame:
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Thin, thick and dark discs in LCDM; Read et al. 2008

Measuring fdm(v) | The importance of baryon physics
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Thin, thick and dark discs in LCDM; Read et al. 2008

stars & dark 
matter

Measuring fdm(v) | The importance of baryon physics
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Thin, thick and dark discs in LCDM; Read et al. 2008

Dynamical friction plane dragging

stars & dark 
matter

Measuring fdm(v) | The importance of baryon physics
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Measuring fdm(v) | A simulator’s wish list

• Resolve star formation in molecular clouds (~10pc)

• Full cosmological box to z=0 (~50Mpc)

• Cooling physics & non-equilibrium chemistry

• Feedback from supernovae & ionising radiation

=> Spatial dynamic range of 5x106

=> Temporal dynamic range of 5000

=> O(109) particles
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Measuring fdm(v) | A first approach

Read et al., MNRAS 2008; arXiv:0803.2714
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Measuring fdm(v) | A first approach

Read et al., MNRAS 2008; arXiv:0803.2714

Number/mass/orbits of 
LCDM mergersa)

Diemand et al. 2005
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Measuring fdm(v) | A first approach

Read et al., MNRAS 2008; arXiv:0803.2714

b) Effect of dissipationless  
LCDM disc mergers

Number/mass/orbits of 
LCDM mergersa)

Diemand et al. 2005

Wednesday, 19 May 2010



N∗ = 7.5×105;ε∗ = 0.06kpc
Ndm = 2×106;εdm = 0.1kpc

Ndm = 2×106;εdm = 0.03kpc
N∗ = 7.5×105;ε∗ = 0.01kpc

Approach I | Initial conditions 

Read et al., MNRAS 2008; arXiv:0803.2714

LLMC

LMC

Fornax

MW
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MW

Wednesday, 19 May 2010



In situ dark matter; accreted dark matterIn situ stars; accreted stars

Low inclination

Approach I | A dark matter disc in the Milky Way 

Read et al., MNRAS 2008; arXiv:0803.2714; and see also Villalobos & Helmi 2008 (VH08)
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In situ dark matter; accreted dark matterIn situ stars; accreted stars

Low inclination

Approach I | A dark matter disc in the Milky Way 

Read et al., MNRAS 2008; arXiv:0803.2714; and see also Villalobos & Helmi 2008 (VH08)
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Approach I | Disc-plane dragging

Read et al., MNRAS 2008; arXiv:0803.2714
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For <200:

0-1 > 80 km/s

2-3 > 60km/s

Approach I | Quantifying the dark disc 

Read et al., MNRAS 2008; arXiv:0803.2714
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For <200:

0-1 > 80 km/s

2-3 > 60km/s

=>  ρdd ~ 0.25-1ρshm 

Approach I | Quantifying the dark disc 

Read et al., MNRAS 2008; arXiv:0803.2714
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Stars
Gas

 3 Milky Way mass gals. | Governato et al. 2007/2008
concordance LCDM

1.4x106 dark matter; 3x106 stars; 0.73x106 gas
force softening: 0.3 kpc

DM particle mass: 7.6x105 Msun
star particle mass: 0.23x105 Msun
gas particles mass: 0.34x105 Msun 

Approach II | Cosmological hydrodynamical simulations 

Read et al., MNRAS 2009; arXiv:0902.0009
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Summary | Dark disc properties
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ρdd/ρshm = 0.25-1.5 ; vdd = 0-150km/s ; σdd = 50-90km/s

f(vφ) = ρdm

�
(1− ρdd

ρshm
) exp

�
−

v2φ
2σ2

�
+

ρdd
ρshm

exp

�
− (vφ − vdd)2

2σ2
dd

��

=> ~Isotropic rotating double Gaussian in 
the Galactic frame:
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• Boosts the direct detection signal at low recoil 
energy by a factor ~3 in the 5-20keV range,

• Shifts the phase of the annual modulation signal 
allowing the WIMP mass to be determined, 

• Significantly boosts WIMP capture in the Sun and 
Earth by factors of ~10 and ~1000, respectively,

• Increases the possibility of detecting dark matter 
in the near future.

Bruch, Read, Baudis & Lake, 2009; arXiv:0804.2896; Bruch, Peter, Read, Baudis & Lake, 2009; arXiv:0902.4001

ρdd = 0.25-1.5ρshm ; vlag = 0-150km/s ; σ = 50-90km/s

Summary | Dark disc implications
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FIG. 5: Effect of the increased dark matter flux on the
spin-independent WIMP-nucleon cross section constraints ob-
tained by the CDMS-II [22] (red) and XENON10 [21] (blue)
experiment for three different values of ρd/ρh (0.5 dashed, 1
× and 2 !).

On a final note, we find that including the dark disk
component does not change the interpretation of the an-
nual modulation signal observed in the DAMA [30] ex-
periment for pure SI coupling. Above a WIMP mass of
10GeV/c2, the allowed DAMA region is still excluded
by CDMS-II and XENON10 [21, 22] results, while below
10GeV/c2 no new parameter region opens.

Conclusions

In ΛCDM, a dark matter disk forms from the accre-
tion of satellites. In this letter, we show how its lower
velocities with respect to the Earth alters the expected
detection rate and annual modulation signal in dark mat-
ter detectors. Our main findings are:

The dark disk boosts the detection rates at low recoil
energy. For WIMP masses ! 50GeV/c2, recoil energies
of 5 - 20 keV and ρd/ρh ≤ 1, the rate is boosted by factors
up to 2.4 for Ge and 3 for Xe targets. Comparing this
with the rates at higher energy will constrain the WIMP
mass, particularly for masses above 100GeV/c2.

The dark disk has a different annual modulation phase
than the dark halo, while the relative amplitude of the
two components varies with recoil energy and WIMP
mass. As a result, there is a new richness in the annual
modulation signal that varies uniquely with the WIMP
mass, for given dark disk properties (the properties of the
dark disk will be measured from next generation surveys
[23, 24]).

The increased expected dark matter flux provides new
constraints on the WIMP cross section from current ex-
periments. For likely dark disk properties (ρd/ρh ≤ 1),
the constraints for pure spin-independend coupling im-
prove by up to a factor of 1.4 for CDMS-II and 3.5 for
XENON10 [21, 22].

We acknowledge support from the Swiss NSF and the
wonderful working environment and support of UZH.
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Figure 4: Total muon flux Φµ for Eµ > 1 GeV at the Earth’s surface as a function of Mχ from neutrinos originating in the Sun (left panel) and Earth (right panel).

In both cases the muon flux is dominated by the dark disk component. Current experimental constraints on the muon flux from the Earth and Sun from Super-

Kamiokande [22], AMANDA-II [23, 29] and IceCube22 [24] are shown. The enhanced flux allows these experiments to constrain a much larger portion of the

CMSSM parameter space. The projected sensitivity of the IceCube80 experiment will probe a significant fraction of the allowed parameter space. The closed

contours show – 95% (red/dashed) and 68% (green/solid) – of the probability density of CMSSM models consistent with both astrophysical and collider constraints,

assuming flat priors. The color-bar gives the relative probability density (see §4 for details).

tion. These span a likely range of the true distribution func-

tion of low speed WIMPs. The Damour and Krauss [33] solar-

captured distribution function is larger than the Gaussian distri-

bution function for 30 km/s < u < 50 km/s. However Peter [35]

finds that subsequent scattering in the Sun reduces the lifetime

and phase space density of these WIMPs below the Gaussian

phase space density.

In Fig. 3, we show the muon fluxes from WIMP annihila-

tion in the Earth for both the SHM and the dark disk assuming

a muon energy threshold of 1 GeV. For both distribution func-

tions, the flux from the dark disk is two to three orders of mag-

nitude above the SHM if ρd/ρh = 1. This large increase is due

to the fact that t⊙/τ < 1, such that Γ ∝ C2
. Thus, an increase in

the capture rate of WIMPs in the Earth has a more dramatic af-

fect on the muon flux than a similar enhancement in the capture

rate of WIMPs in the Sun.

The predicted flux from WIMPs with Mχ � 100 GeV is

quite sensitive to the low speed phase space density distribu-

tion. For the distribution function from the solar system simu-

lations, we find the steep drop in flux due to the kinematic cut-

off in the capture rate for Mχ � 500 GeV. As a consequence,

while the enhancement of the muon flux from the dark disk

puts the search for WIMP annihilation in the Earth on the same

level as the Sun for Mχ � 100 GeV, the prospects for detecting

WIMPs of higher masses is unclear. Precision estimates of the

low speed tail of the WIMP velocity distribution are necessary

to determine the prospects for high mass WIMPs.

6. Discussion

In Fig. 4, we show the total flux from the Sun and the

Earth (including capture from both SHM and dark disk com-

ponents assuming ρd/ρh = 1) along with current experimental

constraints. The flux in both cases is dominated by the dark

disk component. To be conservative, we show the lower bound

of the expected muon flux from the Earth obtained using the

phase space density distribution from the solar system simula-

tions. The inclusion of the dark disk component significantly

improves the constraints on the allowed parameter space from

current experiments. Large area neutrino telescopes such as

IceCube will be sensitive to a large fraction of the allowed pa-

rameter space, providing a complementary search for dark mat-

ter to direct detection experiments.

Systematic uncertainties owing to the unknown density and

velocity distribution of the dark disk are especially large for the

Earth owing to high powers of these parameters in the calcu-

lation of the annihilation flux. For the results presented in this

paper, we used ρd/ρh = 1 and σd = 50 km/s with the mean

lag |v⊙| = σd. For the Earth the dependency is proportional to

(ρd/ρh)
2/σ6

d for masses Mχ > 100 GeV, since the part of the

WIMP phase space relevant for capture scales as ρd/ρh/σ3

d and

the flux depends on the capture rate squared. For the Sun we can

only give an approximate empirical dependency of (ρd/ρh/σa
d)

with a ∈ [1 2], depending on the particle’s mass. This scal-

ing differs from the scaling in the Earth owing to the flux being

proportional to one power of the capture rate. Simulations have

shown that all disk galaxies will have a dark disk, but the cos-

mic variance in its properties will be large. At the minimum

extreme is a dark disk with ρd/ρh = 0.25 and σd � 100 km/s.

Even in this case, the annihilation signal from the Earth and Sun

are both dominated by the dark disk rather than the dark halo.

However, with such a large velocity dispersion, the scaling just

described means that the dark disk does not lead to the large

boosts that come from our median dark disk properties.

6

Amanda-II 2003
IceCube 80 2016

SHM

Dark disc implications | Sun dark matter capture
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Figure 4: Total muon flux Φµ for Eµ > 1 GeV at the Earth’s surface as a function of Mχ from neutrinos originating in the Sun (left panel) and Earth (right panel).

In both cases the muon flux is dominated by the dark disk component. Current experimental constraints on the muon flux from the Earth and Sun from Super-

Kamiokande [22], AMANDA-II [23, 29] and IceCube22 [24] are shown. The enhanced flux allows these experiments to constrain a much larger portion of the

CMSSM parameter space. The projected sensitivity of the IceCube80 experiment will probe a significant fraction of the allowed parameter space. The closed

contours show – 95% (red/dashed) and 68% (green/solid) – of the probability density of CMSSM models consistent with both astrophysical and collider constraints,

assuming flat priors. The color-bar gives the relative probability density (see §4 for details).

tion. These span a likely range of the true distribution func-

tion of low speed WIMPs. The Damour and Krauss [33] solar-

captured distribution function is larger than the Gaussian distri-

bution function for 30 km/s < u < 50 km/s. However Peter [35]

finds that subsequent scattering in the Sun reduces the lifetime

and phase space density of these WIMPs below the Gaussian

phase space density.

In Fig. 3, we show the muon fluxes from WIMP annihila-

tion in the Earth for both the SHM and the dark disk assuming

a muon energy threshold of 1 GeV. For both distribution func-

tions, the flux from the dark disk is two to three orders of mag-

nitude above the SHM if ρd/ρh = 1. This large increase is due

to the fact that t⊙/τ < 1, such that Γ ∝ C2
. Thus, an increase in

the capture rate of WIMPs in the Earth has a more dramatic af-

fect on the muon flux than a similar enhancement in the capture

rate of WIMPs in the Sun.

The predicted flux from WIMPs with Mχ � 100 GeV is

quite sensitive to the low speed phase space density distribu-

tion. For the distribution function from the solar system simu-

lations, we find the steep drop in flux due to the kinematic cut-

off in the capture rate for Mχ � 500 GeV. As a consequence,

while the enhancement of the muon flux from the dark disk

puts the search for WIMP annihilation in the Earth on the same

level as the Sun for Mχ � 100 GeV, the prospects for detecting

WIMPs of higher masses is unclear. Precision estimates of the

low speed tail of the WIMP velocity distribution are necessary

to determine the prospects for high mass WIMPs.

6. Discussion

In Fig. 4, we show the total flux from the Sun and the

Earth (including capture from both SHM and dark disk com-

ponents assuming ρd/ρh = 1) along with current experimental

constraints. The flux in both cases is dominated by the dark

disk component. To be conservative, we show the lower bound

of the expected muon flux from the Earth obtained using the

phase space density distribution from the solar system simula-

tions. The inclusion of the dark disk component significantly

improves the constraints on the allowed parameter space from

current experiments. Large area neutrino telescopes such as

IceCube will be sensitive to a large fraction of the allowed pa-

rameter space, providing a complementary search for dark mat-

ter to direct detection experiments.

Systematic uncertainties owing to the unknown density and

velocity distribution of the dark disk are especially large for the

Earth owing to high powers of these parameters in the calcu-

lation of the annihilation flux. For the results presented in this

paper, we used ρd/ρh = 1 and σd = 50 km/s with the mean

lag |v⊙| = σd. For the Earth the dependency is proportional to

(ρd/ρh)
2/σ6

d for masses Mχ > 100 GeV, since the part of the

WIMP phase space relevant for capture scales as ρd/ρh/σ3

d and

the flux depends on the capture rate squared. For the Sun we can

only give an approximate empirical dependency of (ρd/ρh/σa
d)

with a ∈ [1 2], depending on the particle’s mass. This scal-

ing differs from the scaling in the Earth owing to the flux being

proportional to one power of the capture rate. Simulations have

shown that all disk galaxies will have a dark disk, but the cos-

mic variance in its properties will be large. At the minimum

extreme is a dark disk with ρd/ρh = 0.25 and σd � 100 km/s.

Even in this case, the annihilation signal from the Earth and Sun

are both dominated by the dark disk rather than the dark halo.

However, with such a large velocity dispersion, the scaling just

described means that the dark disk does not lead to the large

boosts that come from our median dark disk properties.
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Detecting dark/accreted discs | Hunting for accreted stars

• C. Liu et al. 2010 (in prep.): evidence for accreted stars above 
the Milky Way disc plane?

• Klement et al. 2009: streams in the Solar neighbourhood with 
disc-like kinematics - an accreted disc(s)? 

• Carollo et al. 2010: ‘metal weak’ thick disc - an accreted disc? 

• Could one or all of these be the ‘smoking gun’ for a dark disc? 

Wednesday, 19 May 2010



• The race is on to detect WIMPs in the laboratory. For this we need to 
know the local dark matter density ρdm and velocity distribution fdm.

• Using kinematics of Solar Neigh. stars, we obtain a [preliminary] 
estimate of ρdm

• To measure fdm, we require numerical simulations. These must include 
baryonic physics. Doing so leads to a disc of dark matter in our Galaxy. 

• The dark disc: boosts the direct detection signal at low recoil energy by 
a factor ~3 in the 5-20keV range; shifts the phase of the annual 
modulation signal allowing the WIMP mass to be determined; and boosts 
WIMP capture in the Sun and Earth by factors of ~10 and ~1000, 
respectively.

• We find tentative evidence for several accreted discs of stars in the 
Milky Way. This is the smoking gun for a dark disc. 

Conclusions
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