Gravitino dark matter and LHC

Grigoris Panotopoulos

University of Valencia & IFIC

GGI mini-workshop, Florence, June 10-11, 2010

Outline

- Motivation
- Candidates for DM in SUSY models
- Gravitino mass and interactions
- Cosmology of unstable gravitino
- Cosmology of stable gravitino
- Gravitino at LHC
- Conclusions

CMB Temperature anisotropies

G Panotopoulos GGI Florence 2010

Are there DM candidates in the SM?

The neutrino cannot be cold dark matter

From Omega m=10 eV From virial m > 150 eV

Supersymmetry: A new symmetry between bosons and fermions

- Basis of superstring theories
- Unification of gauge coupling constants

Particle content in Supersymmetric Models

The LSP is stable in SUSY theories with R-parity conservation. Thus, it will exist as a remnant from the early universe and may account for the observed Dark Matter.

The superpartners

$ ilde{u}_{R,L}$, $ ilde{d}_{R,L}$
$\tilde{c}_{R,L}$, $\tilde{s}_{R,L}$
$ ilde{t}_{R,L}$, $ ilde{b}_{R,L}$
$ ilde{e}_{R,L}$, $ ilde{ u}_e$
$\tilde{\mu}_{R,L}$, $\tilde{\nu}_{\mu}$
$ ilde{ au}_{R,L}$, $ ilde{ u}_{ au}$
\tilde{B}^0 , \tilde{W}^0 , $\tilde{H}^0_{1,2}$
$ ilde{W}^\pm$, $ ilde{H}^\pm_{1,2}$
ĝ
Ğ 🖍
ã

<u>Popular candidates for playing the role of cold dark matter</u>

Lightest neutralino: WIMP

<u>Gravitino</u>: Present in Supergravity theories. Can also be the LSP and a good dark matter candidate

<u>Axino</u>: SUSY partner of the axion. Extremely weak interactions

Gauge interactions: Fixed Yukawa interactions: Superpotential

MSSM:

$$W = \epsilon_{ij} \left(Y_u H_2^j Q^i u + Y_d H_1^i Q^j d + Y_e H_1^i L^j e \right) + \mu \epsilon_{ij} H_1^i H_2^j$$

NMSSM:

$$W = \epsilon_{ij} \left(Y_u H_2^j Q^i u + Y_d H_1^i Q^j d + Y_e H_1^i L^j e \right) - \epsilon_{ij} \lambda S H_1^i H_2^j + \frac{1}{3} \kappa S^3$$

Gut idea: Universal boundary conditions

$$m_{\tilde{f}_i}(M_{GUT}) = m_0$$

$$A_{ij}^{u}(M_{GUT}) = A_{ij}^{d}(M_{GUT}) = A_{ij}^{l}(M_{GUT}) = A_0 \delta_{ij}$$

$$M_1(M_{GUT}) = M_2(M_{GUT}) = M_3(M_{GUT}) = m_{1/2}$$

The running of mass parameters with the mass scale

From 1001.5014 (K. Olive)

Collider constraints on SUSY models

Once the spectrum and couplings are computed, experimental constraints are applied

Masses of superpartners

$$m_{ ilde{\chi}_1^\pm} > 103$$
 GeV, $m_{ ilde{g}} > 150$ GeV $m_{ ilde{ au}} > 87$ GeV, \dots

Mass of the Higgs boson

$$m_h > 114.1 \, GeV$$

Low energy observables that receive SUSY contributions

Muon anomalous magnetic moment

$$(g-2)_{\mu}$$

Rare decay:

$$|(b \rightarrow s \gamma)|$$

G Panotopoulos GGI Florence 2010

Typical $(m_0-m_{1/2})$ plane

From hep-ph/0402240 (Covi et al)

Neutralino mass matrix in the MSSM & the NMSSM

Extensions of the MSSM also allow an increase of the Higgs-exchange amplitude. For instance, in the Next-to-MSSM, where a new singlet (and singlino) is included:

$$\mathcal{M}_{ ilde{\chi}^0} = \left(egin{array}{cccc} M_1 & 0 & -M_Z s_ heta c_eta & M_Z s_ heta s_eta & 0 \ 0 & M_2 & M_Z c_ heta c_eta & -M_Z c_ heta s_eta & 0 \ -M_Z s_ heta c_eta & M_Z c_ heta c_eta & 0 & -\mu & -\lambda v_2 \ M_Z s_ heta s_eta & -M_Z c_ heta s_eta & -\mu & 0 & -\lambda v_1 \ 0 & 0 & -\lambda v_2 & -\lambda v_1 & 2\kappa rac{\mu}{\lambda} \end{array}
ight)$$

The lightest neutralino has now a singlino component

$$\tilde{\chi}_{1}^{0} = \underbrace{N_{11}\,\tilde{B}^{0} + N_{12}\,\tilde{W}_{3}^{0}}_{\text{Gaugino content}} + \underbrace{N_{13}\,\tilde{H}_{d}^{0} + N_{14}\,\tilde{H}_{u}^{0}}_{\text{Higgsino content}} + \underbrace{N_{15}\tilde{S}}_{\text{Singlino content}}$$

The gravitino can be the LSP in Supergravity

The relation between the gravitino mass and the rest of the soft masses depends on the SUSY-breaking mechanism

The gravitino mass is directly related to the scale of SUSY breaking

Interactions completely determined by the SUGRA Lagrangiar

Anomaly-Mediated (AMSB)	$m_{3/2} = O(10^4 - 10^5 \text{ GeV}) >> m, M$	Gravitino not LSP
Gravity-mediated (GMSB)	$m_{3/2} = O(10^2 - 10^3 \text{ GeV}) \sim m, M$	Gravitino LSP in some regions of the parameter space
Gaugino-Mediated	$m_{3/2} = O(10^{-2} - 10^2 \text{ GeV}) \lesssim m, M$	
Gauge-Mediated	$m_{3/2} = O(10^{-10} - 10^{-8} \text{ GeV}) \ll m, M$	Gravitino LSP

G Panotopoulos GGI Florence 2010 12

Feynman rules for the gravitino interactions

$$\frac{-1}{\sqrt{2}M_p}\gamma_{\nu}\gamma_{\mu}(1+\gamma_5)p^{\nu}$$

$$\frac{-1}{\sqrt{2}M_p}\gamma_\mu\gamma_\nu(1-\gamma_5)p^\nu$$

$$\frac{-1}{2\sqrt{2}M_p}gT^a_{ji}\gamma_\nu\gamma_\mu(1+\gamma_5) \qquad \frac{1}{2\sqrt{2}M_p}gT^a_{ij}\gamma_\mu\gamma_\nu(1-\gamma_5)$$

$$\frac{1}{2\sqrt{2}M_p}gT^a_{ij}\gamma_\mu\gamma_\nu(1-\gamma_5)$$

$$\frac{-i}{4M_p} p_{\rho} [\gamma^{\rho}, \gamma_{\sigma}] \gamma_{\mu} \qquad \frac{-1}{4M_p} g f^{abc} [\gamma_{\rho}, \gamma_{\sigma}] \gamma_{\mu}$$

$$\frac{-1}{4M_p}gf^{abc}[\gamma_\rho,\gamma_\sigma]\gamma_\mu$$

(From Moroi s Thesis hep-ph/9503210)

Gravitino production mechanisms

G Panotopoulos

GGI Florence 2010

Thermal production of gravitinos

SQCD

Thermal field theory

Thermal production of gravitinos

Collision term

$$C(T) \sim \frac{T^6}{M_p^2} \left(1 + \frac{m_{\tilde{g}}^2}{3m_{3/2}^2} \right)$$

Boltzmann equation

$$\dot{n} + 3Hn = C(T)$$

Define the yield

$$Y = n/s, \Omega = mn/\rho_{cr}$$

Hubble parameter & entropy density

$$H(T) = 1.66\sqrt{g_*} \frac{T^2}{M_p}$$
 $s(T) = 2\pi^2 h_* T^3 / 45$

$$s(T) = 2\pi^2 h_* T^3 / 45$$

Assumption: Gravitino LSP & stable <--- R-parity conservation

$$\Omega_{3/2}h^2 = \Omega_{3/2}^{TP}h^2 + \Omega_{3/2}^{NTP}h^2$$

$$\Omega_{CDM}h^2 = 0.113$$

$$\Omega_{3/2}^{NTP}h^2 = \frac{m_{3/2}}{m_{NLSP}}\Omega_{NLSP}h^2$$

$$\Omega_{3/2}^{TP}h^2 = 0.27 \frac{T_R}{10^{10} GeV} \frac{100 GeV}{m_{3/2}} \left(\frac{m_{\tilde{g}}}{TeV}\right)^2$$

Gravitino abundance versus reheating temperature for several gravitino masses

BBN constraints on unstable exotic particles

GRAVITINO PROBLEM (UNSTABLE GRAVITINOS) TR < 10^5 GeV

G Panotopoulos GGI Florence 2010

GDM in R-parity violation

In R-parity conservation \longrightarrow difficult to reconcile:

- a) SUSY dark matter
- b) BBN
- c) Thermal leptogenesis ($T_R \ge 2 \times 10^9 \, GeV$)

$$\Gamma_{NLSP} = \frac{m_{NLSP}^5}{48\pi m_{3/2}^2 M_p^2} \longrightarrow \text{very long lifetime} \qquad \tau_{NLSP} = 2 \, days \, \left(\frac{m_{3/2}}{5 \, GeV}\right)^2 \, \left(\frac{150 \, GeV}{m_{NLSP}}\right)^5$$

$$\tau_{NLSP} = 2 \, days \, \left(\frac{m_{3/2}}{5 \, GeV}\right)^2 \, \left(\frac{150 \, GeV}{m_{NLSP}}\right)^5$$

$$\Omega_{3/2}^{TP}h^2 = 0.27 \frac{T_R}{10^{10} GeV} \frac{100 GeV}{m_{3/2}} \left(\frac{m_{\tilde{g}}}{TeV}\right)^2$$

$$m_{3/2} \ge 5 \, GeV$$

GDM in R-parity violation

A. Ibarra et. al.

New formulas for lifetimes

$$\Gamma_{3/2} \sim \lambda^2 \frac{m_{3/2}^3}{M_p^2}$$

$$\tau_{NLSP} = 10^3 \, sec \, \left(\frac{m_{NLSP}}{100 \, GeV}\right)^{-1} \, \left(\frac{\lambda}{10^{-14}}\right)^{-2}$$

with tiny couplings

$$10^{-14} < \lambda < 10^{-7}$$

$$m_{3/2} = 150 \, GeV$$
 $\tau_{3/2} = 10^{26} \, sec$

Gravitino dark matter in R-parity conservation

In the CMSSM

Neutralino NLSP areas excluded by BBN constraints. Only part of those with stau NLSP are left.

Non-thermal production alone not sufficient. Large contributions from thermal prod. are necessary.

As long as $T_R \le 10^9$ GeV sizable regions are found with correct Ω

From hep-ph/0509275

G Panotopoulos GGI Florence 2010 22

Gravitino dark matter in R-parity conservation

In the cNMSSM

Neutralino NLSP areas NOT excluded by BBN constraints

Non-thermal production alone not sufficient. Large contributions from thermal prod. are necessary.

As long as $T_{_R} {\leq} 10^{_7} \text{ GeV \& mG} {\leq} 1 \text{GeV}$ sizable regions are found with correct $\Omega.$ Singlino case must be excluded

G. Barenboim & GP 1004.4525

G Panotopoulos GGI Florence 2010 23

Modulus decay

$$X o ilde{G} ilde{G}$$

$$\Gamma_{tot} \equiv \Gamma(X \to all) \simeq \Gamma(X \to gg) + \Gamma(X \to \tilde{g}\tilde{g}) = \frac{3}{16\pi} \frac{m_X^3}{M_p^2}$$

$$\Gamma_{3/2} = \frac{1}{288\pi} \frac{m_X^3}{M_p^2}$$

$$\Gamma_{3/2} = \frac{1}{288\pi} \frac{m_X^3}{M_n^2}$$
 $Br(X \to \psi_{3/2}\psi_{3/2}) = \frac{\Gamma_{3/2}}{\Gamma_{tot}} = \frac{1}{54} \sim 0.01$

$$Y_{3/2}^{modulus} = \frac{3}{2} \frac{\Gamma_{3/2}}{\Gamma_{tot}} \frac{T_R}{m_X}$$

$$T_R = 4.9 \times 10^{-3} \left(\frac{10}{g_*(T_R)}\right)^{1/4} \left(\frac{m_X}{10^5 \text{ GeV}}\right)^{3/2} \text{ GeV}$$

Benchmark points in the CMSSM

Model	$m_0 (GeV)$	$m_{1/2} \left(GeV \right)$	$tan\beta$	$m_{\chi} (GeV)$	$\Omega_\chi h^2$
A	200	500	15	205.9	0.64
В	400	800	25	338.6	1.82
C	1000	600	30	252.8	7.81
D	350	450	20	184.9	1.22

Table 1: Four benchmark models considered in the analysis for the neutralino NLSP case.

Model	$m_0 (GeV)$	$m_{1/2} (GeV)$	$tan\beta$	$m_{\tilde{\tau}} (GeV)$	$\Omega_{ ilde{ au}}h^2$
Е	100	1300	5	483.6	0.1
F	50	500	10	186.8	0.01
G	100	800	15	294.3	0.03
H	60	600	20	199.9	0.01

Table 2: Four benchmark models considered in the analysis for the stau NLSP case.

Total gravitino abundance

$$\Omega_{3/2}h^2 = \Omega_{3/2}^{TP}h^2 + \Omega_{3/2}^{NTP}h^2 + \Omega_{3/2}^{modulus}h^2$$

$$\Omega_{CDM}h^2 = 0.113$$

A typical plot for the benchmark points

G Panotopoulos

GGI Florence 2010

26

Gravitino @ LHC

Timeline

- 10 September 2008: LHC starts operating
- 20 November 2009: It restarts after the incident
- 23 November 2003: First collisions at 450 GeV
- 30 November 2009: It reaches 1.18 TeV
- 30 March 2010: Two beams collided at 7 TeV at 13:06 CEST

If NLSP=stau Using gravitino Feynman rules compute the stau lifetime

$$\Gamma(\tilde{f} \to f\tilde{G}) = \frac{m_{\tilde{f}}^5}{48\pi M_p^2 m_{3/2}^2} \left(1 - \frac{m_{3/2}^2}{m_{\tilde{f}}^2}\right)^4$$

$$\tau_{\tilde{f}} = 6.1 \, 10^3 sec \left(\frac{m_{3/2}}{100 GeV}\right)^2 \, \left(\frac{1000 GeV}{m_{\tilde{f}}}\right)^5 \, \left(1 - \frac{m_{3/2}^2}{m_{\tilde{f}}^2}\right)^{-4}$$

Measure stau mass and lifetime → determine gravitino mass

Recall the plot Omega versus Reheating temperature

From gravitino mass we can

determine

Measure of reheating temperature at colliders!

Conclusions

- SUSY: Well motivated and most popular journey beyond the SM.
- Byproduct: Ideal candidates for CDM (axino, gravitino, neutralino)
- Gravitino: Mass related to SUSY breaking scheme, interactions completely determined by SUGRA Lagrangian
- If light it can play the role of CDM in both R-parity conserving and violating SUSY models
- In R-parity violation: Scenario compatible with thermal leptogenesis,
 PAMELA anomaly
- In R-parity conservation: Both in CMSSM and cNMSSM there is allowed parameter space where all constraints satisfied
- LHC: Measure T_R in colliders, if stau NLSP from its lifetime