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Introduction



 LHC successfully started collisions at 7 TeV on 
March 30th 2010

 The need of Next to Leading Order multi-particle 
scattering predictions
is more pressing

 New ideas in the field
of loop corrections
give the possibility
to perform the automatic
generation of NLO
predictions for
multi-leg processes



Analytic calculations;

 W/Z/γ+ 2jets Bern et al (1998)

 H  + 2jets (eff. coupling)    
Badger, Berger, Campbell, Del Duca,  
Dixon, Ellis, Glover, Mastrolia, 
Risager, Sofianatos, Williams
(2006-2009)

Numerical calculations:

 EW corr. e+e- > 4 fermions
Denner and Dittmaier (2005)

 pp > W + 3jets
Ellis et al, Berger et al (2009)

 pp > Z + 3jets
Berger et al (2009) 

 pp > ttbb
Bredenstein et al, Bevilacqua
et al  (2009)

 pp > tt +2jets Czakon et al (2010) 

 pp > 4b Binoth et al (2010)

Status of
the art

We combined some of the recent techniques into a new computer program we 

called SAMURAI



Basic features of SAMURAI:
Scattering AMplitudes from Unitarity based 
Reduction Algorithm at the Integrand-level

 Is a fortran90 library for the calculation of the one loop 
corrections downloadable at the URL: www.cern.ch/samurai

 Main purpose was to provide a flexible and easy to use tool 
for the evaluation of the virtual corrections

 It works with any number/kind of legs

 Can process integrands written either as numerator of Feynman 
diagrams or as product of tree level amplitudes

 Rational terms are produced/processed together with the 
cut-constructible one

http://www.cern.ch/samurai


And further:

 SAMURAI can be compiled in 2x or 4x precision, a 
version working in multiple precision is available
on request

 It has a modular structure that allows for quick 
local updates

 It could also be useful to perform fast 
numerical check of analytic results

 Details and examples of applications can be found
in arXiv:1006.0710



Methods



SAMURAI: a numerical implementation
of the OPP/D-dimensional generalized 

unitarity cuts technique

 OPP polynomials (n-ple cut, n=1,2,3,4) extended to the 
framework of D-dim unitarity [Ellis, Giele, Kunszt, Melnikov]

 5-ple cut residue depending only on mu2 [Melnikov, Schultze]

 Integrand sampling with DFT for 3-ple and 2-ple cuts 
[Mastrolia, Ossola, Papdopoulos, Pittau]



 Any amplitude can be expressed as a linear combination of scalar 
integrals: boxes, triangles, bubbles, tadpoles plus rational terms

 At integrand level the structure is enriched by polynomial terms that 
integrate to zero

 The power of the OPP method is the fact that for each phase space 
point the only requirement for the reduction is the knowledge of the 
numerical value of the numerator function N for a finite set of
values of the loop momentum variable, solutions of the multiple cut 
conditions

OPP integrand decomposition: 4-dim



Extension to D-dim
 Once fixed a parametrization for the loop momentum in terms of a linear 

combination of known four-vectors (p0, ei) the vanishing term are 
polynomials of xi and mu2

 The problem is to fit the coefficients of the Δ-polynomials

For example the 3-ple cut residue (function of the unfrozen components) 
reads:



5-ple cut 
residue

Linear dependence

Best choice;

 avoid scalar pentagon decomposition
 avoid pentagon subtraction for tadpoles
 numerically more stable



Numerical
Sampling

• straightforward extension to multi-variate DFT projection
• Sampling on different circles for stable solutions
• number of the integrand samplings = number of the unknowns
• dynamical mu2-sampling

 Cut-5; completely frozen

 Cut-4; mu2 sampling

 Cut-3,2: mu2 sampling + DFT:

 Cut-1: trivial



Amplitudes &
Master Integrals

The sources of rational terms are the 
integrals with mu2 powers in the numerator

They are generated by the reduction 
algorithm, but could also be present ab
initio in the numerator function as a 
consequence of the algebraic manipulations



Running 
SAMURAI



calls:

A dedicated module (kinematic) is also available 
in the release that contains useful functions to 
evaluate:

 Polarization vectors for massless vectors
 Scalar and spinor products with both real and 

complex four vectors as arguments



 imeth = ‘diag’for an integrand given as numerator  
of a Feynman diagram

‘tree’for an integrand given as the   
product of tree level amplitudes

 isca = 1, scalar integrals evaluated with the
QCDLoop package (Ellis and Zanderighi)

2, scalar integrals evaluated with the      
AVH-OLO package (van Hameren)

 verbosity = 0, nothing is printed by the reduction
1, the coefficients are printed out
2, also the value of the MI are printed out
3, also the results of the tests are printed out

 itest = 0, none test
1, global n=n test is performed (not avail. for imeth=‘tree’)
2, local  n=n test is performed
3, power      test is performed (not avail. for imeth=‘tree’)

new – based on the mismatch of the polynomial degree of the    
given integrand and the reconstructed one



msq(0)

msq(1)

msq(2)

msq(3)

Pi(0,:)=v0

Pi(1,:)=v1

Pi(2,:)=v2

Pi(3,:)=v3

Optionally, to fill the denominators

Denominator(j) = [ q + Pi(j,:) ]^2 – mu2 – msq(j) 

nleg is the number 
of legs attached 
to the loop



 xnum [i]=  the name of the function to reduce with arguments xnum(cut, q, mu2)
for imeth=tree the cut play a selective role to use the relative
tree product

 tot [o] =  contains the result of the reduction convoluted with the MI

 totr [o]= contains the rational part only

 rank [i] = the rank of the numerator, useful to speed up the reduction

 istop [i] = when stop the reduction, i.e. after pentuple cut (5) quadruple (4)…

 scale2 [i] = the value of the renormalization scale (square)

 ok [o] = a logical variable giving the result of the test if they are evaluated



About the 
precision

 Gram Determinant -> induce large cancellations between contributions from the MI 
that carry such a factor (the tests coded in SAMURAI detect 
the associated instabilities)

 Big cancellations between diagrams -> on-shell methods seems to be the best option

 If running with big internal masses -> big cancellations between cut-constructible 
and rational part

Quadruple precision solves these issues

For numerical studies and checks SAMURAI compiles also in quad



4 SYSTEMS

A simple option to treat instabilities:

switch to a Tensorial Reconstruction paired with an 
efficient numerical evaluation of tensor integrals

Level-0

Level-1

………… ……………………

Sampling monomial with 
one component of q

[with G. Heinrich, G. Ossola, T. Reiter (2010)]



Level-2

………… ……………………

Level-3

………… ……………………

Sampling monomial with 
two components of q

Sampling monomial with 
three components of q

6 SYSTEMS

4 SYSTEMS



Level-4

mu2-part

BUBBLE:

TRIENGLE:

BOX:

Sampling monomial with 
four components of q

1 SYSTEM

 Once reconstructed tensors that does not involve mu2, <N(q)>,
one can subtract it and sample the rest as above taking mu2.ne.0

 Not all components relevant 

 For several diagrams the mu2 part can be inferred from <N(q)>



Example:

Standard(double):
2x   SAMURAI

Standard(quadruple):
2x   Kin + integrals
4x   Algorithm

Tensorial(double):
Reconstruction paired
with numerical evaluation 
of tensor integras with 
GOLEM95



Also useful for:

 Speed up the computation if the numerator has a    
long expression: added time for tensorial
reconstruct compensated by a faster reduction

 Example;
dummy numerator of one 1ine of
code sitting on 6 denominators
and repeated N times

 Real loop variable match well with the automatic 
generation of integrand directly from tree level 
generators like MadGraph and HELAC 



Examples



Note:

Are chosen to address typical technical
issues that one encounter performing one 
loop virtual calculation

The aim is to show the flexibility of the 
framework

Are part of the release and could also be 
used as templates for other calculations



4-photons

Results numerically checked vs. Gounaris et al (1999)

• imeth=‘diag’
• nleg = 4, rank = 4
• 6 permutations, only 3 relevant

• mu2 terms give zero contribution
• mu2 qαqβ cancel in the sum
• mu22 gives rise to the correct rational part

L1
p1p2

L2

L3

L4

p3 p4

Denominators:



6-photons

Results numerically checked vs. Bernicot et al (2007,2008)

Bernicot et al (2007,2008)

SAMURAI with istop=2

SAMURAI with istop=3, subtracting totr

• imeth =‘diag’
• nleg = 6, rank = 6
• 120 permutations, only 60 relevant

PS point as in Nagy and Soper (2006)



8-photons

MHV result numerically checked vs. Mahlon (1993)

• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)



8-photons

NMHV result (new) numerically confirm the structure  

in Badger et al (2009)
The points in quadruple precision (x) have   
been calculated with istop=2, i.e. retaining   
all the cut constructible and rational pieces

• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)



8-photons

NNMHV result (new) numerically confirm the structure

in Badger et al (2009)
The points in quadruple precision (x) have
been calculated with istop=2, i.e. retaining
all the cut constructible and rational pieces

• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant
• sampling set as in Gong et al (2008)



Drell-Yan

Denominators:

If one want to consider regularization schemes 
giving rise to O(ε) terms and reduce them, then 
one needs to process N0 and N1 below separately

d=4     -> Dim Red
d=4-2ε -> CDR

• imeth =‘diag’
• nleg = 3, rank = 2

• msq = { 0, 0, 0}

• Pi = { 0, pu, pu + pe- + pe+ }

• N1 generate a rational term = - gs
2 CF LO



VB+1j: leading color

Results numerically checked vs. Bern et al (1997)

• imeth =‘diag’

• 1 Box nleg=4, rank=3
4 Tri nleg=3, rank=2
2 Bub nleg=2, rank=1

• Diagrams can be collected on a common 
box denominator

• Studing Left-handed current needs of 
a prescription for gamma5:
adopting DR w/anticommuting gamma5
we added –Nc/2 times the Tree Level 
amplitude 



6q amplitudes

Fortran Code generation 
completely automated 
thanks to an 
infrastructure derived 
from Golem-2.0

8 hexagons
24 pentagons
42 boxes
70 triangles

114 bubbles
---------------

258 Feynman Diagrams



6q amplitudes

• A(-+-+-+)
• ren scale = 1GeV
• uv renormalization included

GOLEM-2.0 + GOLEM95 GOLEM-2.0 + SAMURAI

Infrared poles calculated 
from the integrated dipoles

Automatic generated fortran code 
based on SAMURAI reduction more then 
10 times shorter and faster
already without any optimization



6q amplitudes

Difference between the single (double) 
virtual poles and those of the integrated 

dipoles for 10^5 phase space points

8.0

5.2||

30







R

GeVpT





5 and 6-gluons all plus: massive scalar loop

numerically checked vs. S. Badger’s table

For this helicity choice
the result is purely rational

• imeth=‘tree’
• nleg = 6, rank = 6



Conclusions
• SAMURAI is a fortran library for the automatic 
evaluation of the NLO virtual correction to scattering 
processes, once the integrand is given in the form of 
Feynman diagrams or as products of tree level 
amplitudes

• We produced several examples to show its main features

• We tried to make things as effective and simple as 
possible to allow for interfaces with other tools

• We provided also a ‚rescue system‛ pairing a 
tensorial reconstruction to the numerical evaluation 
of tensor integrals with GOLEM95 (with G. Heinrich)

• SAMURAI is mature for physical implementations!


