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Next-to-leading 
order

2

σNLO =
∫

m+1
d(d)σR +

∫

m
d(d)σV +

∫

m
d(4)σB

‘Real emission’
NLO corrections

‘Virtual’ or ‘one-loop’
NLO corrections

‘Born’ or ‘LO’
contribution 
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Why automate?

To save time
NLO calculations can take a long time. It would be nice to spend 
this time doing phenomenology instead.

To reduce the number of bugs in the calculation
Having a code that does everything automatically will be without* 
bugs once the internal algorithms have been checked properly.

To have all processes within one framework
To learn how to use a new code for each process is not something 
all our (experimental) colleagues are willing to do.
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IR divergence

Real emission -> IR divergent

(UV-renormalized) virtual corrections
-> IR divergent

After integration, the sum of all contributions is finite 
(for infrared-safe observables)

To see this cancellation the integration is done in a non-
integer number of dimensions:
Not possible with a Monte-Carlo integration
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Subtraction terms
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σNLO =
∫

m+1
d(d)σR +

∫

m
d(d)σV +

∫

m
d(4)σB
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Subtraction terms

Include subtraction terms to make real 
emission and virtual contributions 
separately finite

All can be integrated numerically
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σNLO =
∫

m+1

[
d(4)σR − d(4)σA

]
+

∫

m

[
d(4)σB +

∫

loop
d(d)σV +

∫

1
d(d)σA

]

ε=0

σNLO =
∫

m+1
d(d)σR +

∫

m
d(d)σV +

∫

m
d(4)σB



MadFKS
In collaboration with Stefano Frixione, Fabio Maltoni & 

Tim Stelzer, arXiv: 0908.4247
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FKS subtraction

FKS subtraction: Frixione, Kunszt & Signer 1996.

Also known as “residue subtraction”

Based on partitioning the phase space such that each 
partition has at most one soft and/or collinear divergence

Use simple plus-distributions to regulate the divergences

Are relevant formulae can be found in our MadFKS 
paper, arXiv:0908.4247
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FKS -- technicalities

Naive scaling of the number of subtraction terms is n2 (as opposed 
to n3 of CS dipoles). Can be greatly reduced by using symmetry of 
the matrix elements

Adding additional gluons does not lead to more phase-space 
partitions

In a given phase space partition, Born amplitudes need be computed 
only once for each real-emission event, and can be used for the Born 
and collinear, soft and soft-collinear counter events (and their 
remainders)

Trivially extended to BSM physics. Massive particles have only soft 
singularity which is independent of the spin

9
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MadFKS
Automatic FKS subtraction for QCD within the MadGraph/MadEvent 
framework

Given the (n+1) process, it generates the real, all the subtraction terms 
and the Born processes

Completely general & all automatic, using the same user-friendly interface as 
MadGraph

MadFKS works also for any BSM physics model implemented in 
MadGraph, e.g. MSSM

Color-linked Borns generated by MadDipole RF, Gehrmann & Greiner

MC-ing over helicities possible; only more efficient for high-multiplicity final 
states

Phase-space generation for the (n)-body is the same as in standard MG. It 
has been heavily adapted to generate (n+1)-body emission events at the same 
time

10
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Full NLO

Of course, to get the total NLO results, the finite parts 
of the virtual corrections should be included as well

Interface to link with the virtual corrections following 
the Binoth-Les Houches Accord

Standardized way to link MC codes to one-loop 
programs

We are also working on an interface to CutTools
In collaboration with Hirschi, Garzelli & Pittau
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Durham jet algorithm

Scale dependence: +45% -30% at LO; ±20% at NLO

LO and NLO bands overlap (LO uses αs(MZ)=0.130)

Point-by-point agreement with BlackHat (Berger et al.) for the virtuals
12

5 jets at LEP @ NLO
RF, Frixione, Melnikov, Zanderighi arXiv:1008.5313
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Figure 3: ALEPH LEP1 data compared to leading and next-to-leading order predictions in QCD,
without hadronization corrections. We use αs(MZ) = 0.130 at the leading and αs(MZ) = 0.118 at
the next-to-leading order in perturbative QCD. The renormalization scale is chosen to be 0.3MZ.
The uncertainty bands are obtained by considering the scale variation 0.15 MZ < µ < 0.6 MZ .
Solid lines refer to NLO QCD results evaluated with µ = 0.3MZ.

with resummations suggests that L ! 5 is what can be considered as a large logarithm.

Clearly, 5 " L < 6 leaves very little room for the validity of this approach. It should be

possible to improve on the resummation by including sub-leading logarithms and matching

to NLO QCD computations. However, since we do not perform any resummation in this

paper, we require ln y−1
45 , ln y

−1
cut

<
∼ 6 for the comparison of the NLO QCD computation with

data. Interestingly, a similar upper bound on lny−1
45 appears because we neglect the mass of

b-quarks in our computation. This implies that the resolution parameter times the center

of mass energy should be larger than the b-quark mass, i.e. sy45 > m2
b , which translates

into ln(y−1
45 ) < ln(s/m2

b)
<
∼ 6, for s = M2

Z .

When fixed-order perturbative QCD calculations are compared to experimental data,

the choice of the renormalization scale becomes an important issue. Traditionally, multi-

jet observables in e+e− annihilations are computed in perturbative QCD by evaluating

the strong coupling constant at the center-of-mass energy. However, for large numbers of

jets this choice should be reconsidered, since the hardness of each jet decreases with their

number. Dynamical renormalization scales used in event generators account for this effect

by relating the choice of the renormalization scale to the event kinematics. Our choice

of the renormalization scale is also motivated by dynamical considerations. To this end,

we consider the clustering history of five- and six-parton configurations that results from

using the Durham jet algorithm. We compute the average value of
√
y23, where y23 is the

three-jet resolution parameter, using only phase-space weights. We find this average to be

approximately equal to 0.3. Since
√
y23s is, roughly, the relative transverse momentum of

production in the range 3 < ln y−1
cut < 7.

– 11 –
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Hadronization 
corrections

Historically, for LEP, hadronization corrections have been 
estimated by using Ariadne, Herwig & Pythia, which are tuned to 
data

However, they are based on 2➞2 and 2➞3 matrix elements. 
Therefore, for these 5 jet observables, they rely strongly on the 
showers.

We have estimated the
hadronization corrections
using Sherpa, with CKKW
matching up to 5 hard
partons

Corrections are mild up to
-ln(y45) ~ 6

13
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Figure 2: ALEPH data for the y45 distribution at LEP1, compared to SHERPA results. Two
hadronization models – Lund string [60] and cluster [61] – are employed. The lower pane in the left
plot shows the relative difference between Sherpa predictions with the two hadronization models,
and ALEPH data. In the right plot, the hadronization corrections for the two models are shown.

distribution, SHERPA results agree with ALEPH data to 20− 25%, similar to traditional

event generators. Moreover, in the region of moderately small values of ln y−1
45 , where fixed-

order perturbative description is reliable, the hadronization corrections are below twenty

percent, in sharp contrast with estimates of hadronization corrections based on PYTHIA,

HERWIG and ARIADNE. It is important to emphasize that, although in that region of

ln y−1
45 traditional event generators provide slightly better description of data compared to

SHERPA, this does not mean that hadronization corrections extracted with the former

codes are more reliable. Indeed, traditional event generators achieve agreement with data

at the price of very large hadronization corrections. This feature precludes a clear sep-

aration between long- and short-distance phenomena, which is crucial for the procedure

outlined below eq. (1.1) to be meaningful.

The ALEPH data exhibit a characteristic turnover shape. This turnover means that

for small values of y45, the result is dominated by exclusive five-jet production with very

small resolution parameter, where fixed order perturbation theory fails and a resummation

is required to achieve meaningful results. A resummation of αn
sL

2n and αn
sL

2n−1 terms,

where L = ln y−1
cut, was performed for R5 in [25], while no resummation is currently available

for the five-jet resolution parameter distribution. However, there seems to be no region in

L where this resummation can be valid since two conditions L " 1 and αsL # 1 should

be satisfied simultaneously. Taking αs ∼ 0.15 as a typical value of the strong coupling

constant4, we find that L should be smaller than 6. On the other hand, practical experience

4We take 5 − 20 GeV as a reasonable estimate of the scale of the strong coupling constant for five-jet

– 10 –
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αs extraction

Statistical uncertainties negligible at 
LEP1; larger at LEP2

Systematic and Perturbative uncertainties 
larger at LEP1 than LEP2, fit range 
uncertainties are opposite

Uncertainties from hadronization 
corrections already negligible at LEP1, 
not even considered for LEP2

Correlations between bins and LEP 
energies taken into account conservatively

14

LEP1, hadr. LEP1, no hadr.

σ−1
totdσ/dy45, R5 σ−1

totdσ/dy45, R5

stat.
+0.0002

−0.0002

+0.0002

−0.0002

syst.
+0.0027

−0.0029

+0.0027

−0.0029

pert.
+0.0062

−0.0043

+0.0068

−0.0047

fit range
+0.0014

−0.0014

+0.0005

−0.0005

hadr.
+0.0012

−0.0012
–

αs(MZ) 0.1159
+0.0070

−0.0055
0.1163

+0.0073

−0.0055

Table 2: Values of the strong coupling constant αs(MZ) obtained from fits to ALEPH LEP1 data
for σ−1

totdσ/dy45 and R5. NLO QCD predictions are used. Hadronization corrections are estimated
with SHERPA. Default fit ranges are 3.8 ≤ − ln y45 ≤ 5.2, and 4.0 ≤ − ln ycut ≤ 5.6. See the text
for details.

SHERPA. We use the Lund string model to estimate systematic uncertainties related to

hadronization effects.

Since we use fixed-order perturbative results and do not perform any resummation, it

is not possible to describe the data in the full kinematic ranges studied by experiments.

This feature makes the choice of the kinematic range used in the fit an important but,

unfortunately, somewhat a subjective issue. In general, we attempt to take the fit range

as large as possible, with the condition that our computations are reliable and that the

data quality is good. In the determination of the central value of αs at LEP1, we consider

3.8 ≤ − ln y45 ≤ 5.2 (7 data points) for the five-jet resolution parameter distribution, and

4.0 ≤ − ln ycut ≤ 5.6 (8 data points) for R5. In order to estimate the error on αs related

to our choice of the fit range, we extract the value of αs by performing a second fit, with

larger ranges 3.4 ≤ − ln y45 ≤ 5.6 (11 data points) for the five-jet resolution parameter,

and 3.4 ≤ − ln ycut ≤ 6.0 for R5 (13 data points). The difference between the values of

αs obtained in the two fits is called the “fit range” error; it is supposed to quantify the

uncertainty on αs due to the choice of the data points included in the fits.

At LEP2 the situation is different. Firstly, data are given with a coarser binning and,

secondly, large fluctuations are present in experimental results at small values of ln y−1
45

and ln y−1
cut (for example, for some center-of-mass energies the corresponding observables

are not even monotonic). Because of this, we decided to exclude those data points from

our fits, effectively reducing the fit ranges. We note that those data would have had a

modest impact on the final result anyhow, because they are affected by fairly large errors.

– 13 –

LEP2, no hadr. LEP2, no hadr. LEP2, no hadr.

σ−1
totdσ/dy45 R5 σ−1

totdσ/dy45, R5

stat.
+0.0020

−0.0022

+0.0022

−0.0025

+0.0015

−0.0016

syst.
+0.0008

−0.0009

+0.0012

−0.0012

+0.0008

−0.0008

pert.
+0.0049

−0.0034

+0.0029

−0.0020

+0.0029

−0.0020

fit range
+0.0038

−0.0038

+0.0030

−0.0030

+0.0028

−0.0028

αs(MZ) 0.1189
+0.0066

−0.0057
0.1120

+0.0050

−0.0047
0.1155

+0.0044

−0.0039

Table 3: Values of the strong coupling constant αs(MZ) obtained from fits to ALEPH LEP2
data with Ecm ≥ 183 GeV for σ−1

totdσ/dy45 and R5. NLO QCD predictions are used. Hadronization
corrections are not included. Default fit ranges are 4.8 ≤ − ln y45 ≤ 6.4, and 2.1 ≤ − log10 ycut ≤ 2.9.
See the text for details.

We use 4.8 ≤ − ln y45 ≤ 6.4 for the five-jet resolution parameter (2 data points per
√
s),

and 2.1 ≤ − log10 ycut ≤ 2.9 for R5 (4 data points per
√
s), to find the central values of αs.

In order to estimate the fit-range error, we employ 4.8 ≤ − ln y45 ≤ 5.6 (1 data point per√
s), and 2.1 ≤ − log10 ycut ≤ 2.5 (2 data points per

√
s), since the choice of these ranges

leads to the largest changes in the values of the strong coupling constant compared to the

αs values obtained from fitting with the default ranges.

The results of our fits to LEP1 data are shown in table 2. The agreement between

the two values of αs(MZ) extracted with and without hadronization corrections is impres-

sive; the difference is completely negligible compared to the overall uncertainties. This

result could have been anticipated by inspecting fig. 2, which shows that, in the fit region,

hadronization corrections are small, in particular when the default SHERPA choice, the

cluster model, is used. We note that if we use the hadronization corrections as given by con-

ventional HERWIG, PYTHIA, or ARIADNE, without matching them to high-multiplicity

matrix elements, the picture changes drastically and the values of αs(MZ) extracted with

or without hadronization corrections are quite different from each other. We also note

that the overall errors of the two results given in table 2 are slightly smaller when in-

cluding hadronization corrections. This is due to a marginally better description of the

data in the central region of the fit range – which leads to smaller value of αs(MZ) and

thus to smaller perturbative errors. However, the error reduction is partially compensated

by the degradation of the fit quality when including larger values of ln y−1
45 , ln y

−1
cut, where

hadronization corrections increase. This feature leads to larger fit-range error compared to

the no-hadronization case. Note also that if we extract the values of αs(MZ) by fitting6 the

6Hadronization corrections are included.

– 14 –

five-jet resolution parameter distribution and R5 separately, we obtain 0.1168+0.0076
−0.0060 and

0.1151+0.0071
−0.0056 respectively. These values are consistent with the result of the combined fit

shown in table 2 but have slightly larger errors. From table 2, it is clear that the sensitivity

of the five-jet observables to αs is very high, as illustrated by the tiny statistical errors.

This sensitivity is ultimately related to the high power of αs that enters the five-jet ob-

servables. In spite of this, the overall error is not particularly small, since the perturbative

uncertainty is still quite sizable at this order in perturbative QCD.

Compared to LEP1, there are important differences when we extract αs by fitting to the

LEP2 data. Firstly, because hadronization corrections are negligible at LEP1, and because

these corrections decrease with energy, we do not consider them for LEP2. Secondly, for

the reasons explained above, we do not consider the data points at small values of ln y−1
45

and ln y−1
cut. This fact, combined with coarser binning of data, pushes us to the region of

y45 that may be affected by large logarithms of the resolution parameter. As a result, we

find larger fit-range errors at LEP2 than at LEP1. The statistical errors are also much

larger at LEP2 than at LEP1, as one expects given the luminosities collected. On the other

hand, since the effective strong coupling is smaller at LEP2, the perturbative uncertainty

affecting five-jet observables decreases, making the αs extraction at LEP2 competitive with

that done at LEP1. In table 3 we present the αs values obtained by fitting separately the

five-jet resolution parameter and R5 at LEP2, since they differ from each other by a larger

amount than at LEP1. Still, both values are within one standard deviation from the strong

coupling constant that we obtain by performing a simultaneous fit to the two observables.

We take the latter value, given in the third column of table 3, as our best determination

of αs from LEP2 data.

We obtain our final estimate of the strong coupling constant by combining the values

of αs(MZ) extracted from LEP1 and LEP2 data. We assume that the statistical and sys-

tematic errors of the two results are not correlated (an assumption which is strictly correct

for the former, and a very good approximation for the latter), while the perturbative errors

are considered to be fully correlated. The correlation of the perturbative uncertainties is

due to the fact that we estimated them by varying the renormalization scale, which results

in changes of the cross sections whose pattern is independent of the center-of-mass energy.

It is quite likely that a more sophisticated approach to estimating perturbative errors (see

e.g. ref. [66]) will result in a smaller uncertainty on αs. Hence, the procedure that we

employ in this paper is rather conservative. Using the results of tables 2 and 3, we finally

obtain

αs(MZ) = 0.1156+0.0041
−0.0034 . (4.1)

We note that if we perform the fit to both LEP1 and LEP2 data simultaneously, we obtain

αs(MZ) = 0.1156+0.0045
−0.0041, in perfect agreement with eq. (4.1).

The value of αs(MZ) that we extract from five-jet observables at LEP can be compared

with other recent determinations of this quantity, shown in table 4. We see that both the

central value of αs and its error, obtained from fitting five-jet observables, compare well

with other determinations. On the other hand, it is interesting that αS(MZ) in eq. (4.1)

is lower than the world average. It is peculiar that a number of recent determinations of

– 15 –
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αs extraction -- 
correlations

Statistical uncertainties are uncorrelated between different 
center-of-mass energies. At a given c.o.m. energy, y45 is 
uncorrelated, while R5 is assumed to be fully correlated.

Systematic uncertainties are assumed to be fully correlated at a 
given c.o.m. energy and between all LEP2 energies, however 
completely uncorrelated between LEP1 and LEP2.

Perturbative uncertainties are assumed to be fully correlated.

Hadronization uncertainties (considered only at LEP1) are 
assumed to be fully correlated.

15
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Comparison with 
other measurements

Uncertainty competitive with other measurements

Slightly smaller than world average, but consistent within 
uncertainties

16

Observable αs(MZ) Ref.

τ decays 0.1197 ± 0.0016 S. Bethke
Υ decays 0.119 ± 0.0055 N. Brambilla et al.

3 jet observables 0.1224 ± 0.0039 G. Dissertori et al.

jets in DIS 0.1198 ± 0.0032 H1 collaboration
DIS 0.1142 ± 0.0021 J. Blümlein

thrust 0.1135 ± 0.0011 R. Abbate et al.

lattice 0.1183 ± 0.0008 HPQCD collaboration
EW fits 0.1193 ± 0.0028 H. Flacher et al.

world average 0.1184 ± 0.0007 S. Bethke

e
+

e
−

→ five jets 0.1156 ± 0.0038
RF, S. Frixione,
K. Melnikov & G. Zanderighi

1



Virtual corrections
In collaboration with Valentin Hirschi and
Maria-Vittoria Garzelli & Roberto Pittau
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Virtual corrections

Interface using the Binoth-LHA is available

For more flexibility (e.g. massive particles & BSM) 
we also started working on generating the virtual 
corrections ourselves

Using the OPP method as implemented in CutTools

18

Ossola, Papadopoulos & Pittau



Rikkert Frederix, September 14, 2010

Implementation
MadGraph generates the loop diagrams by cutting one of the 
particles in the loop: simple tree-level diagrams remain
➞ Passed to CutTools

NLOComp filters duplicates and sets-up the interference with the 
Born diagrams: computation of the color factors.

Ghosts also needed

R2 terms are computed using tree-level Feynman Rules

Point-by-point agreement found with MCFM (and private codes): 
Drell-Yan, 2-jet production, top pair, W/Z+1 jet...

Not yet optimized in any way. This will be done only in the MGv5 
framework

19

Draggiotis, Garzelli, Papadopoulos & Pittau



Rikkert Frederix, September 14, 2010

Wbb associated 
production

First new results with MadFKS+NLOComp/CutTools

                                          ,    with massive b’s 

Similar calculation by Febres Cordero, Reina & Wackeroth

However, here the W boson decay is included, and 
stable enough to generate results without cuts on the 
bottom quarks

20

pp→W+(→ e+νe)bb̄
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FIG. 2: LO (black, dashed), NLO inclusive (red, solid) and NLO exclusive (blue, dot-dashed)

transverse momentum distributions for the b jet with the leading (left hand side) and subleading

(right hand side) transverse momentum in W+bb̄ (upper plots) and W−bb̄ (lower plots) production.

The lower window shows a bin-by-bin K factor, for the inclusive (red, solid) and exclusive (blue,

dot-dashed) cases.

that, at a given perturbative order, the uncertainty due to the residual renormalization- and

factorization-scale dependence may underestimate the theoretical uncertainty due to missing

higher-order corrections. A realistic determination of this uncertainty is usually much more

complex and requires a thorough understanding of the perturbative structure of the cross

section, in particular at the lowest orders of the perturbative expansion. In Wbb̄ production

8

21

Febres Cordero et al.

RF, Frixione, Garzelli, Hirschi, Maltoni & Pittau

Wbb Results
Transverse momentum of the hardest 
and 2nd hardest b-jets regulated by 
the b quark mass

W boson decay included

Unfortunately, slight disagreement 
between calculations when cuts are 
also applied to our results
                                  work in progress



Matching to a Parton 
Shower

In collaboration with Stefano Frixione & Paolo Torrielli
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Automation of MC@NLO

FKS is based on a collinear picture, so are the MC counter 
terms: branching structure is for free

Automatic determination of color partners

Automatic computation of leading-color matrix elements

Works also when MC-ing over helicities
23

Automation of MC@NLO

dσ(H)
MC@NLO = dφn+1

(
M(r)(φn+1) −M(MC)(φn+1)

)

dσ(S)
MC@NLO =

∫

+1
dφn+1

(
M(b+v+rem)(φn) −M(c.t.)(φn+1) + M(MC)(φn+1)

)

! Black stuff: pure NLO, fully tested in MadFKS

! Red stuff: now available in MadFKS, being tested

In black: pure NLO, fully tested in MadFKS

In red: already implemented for Herwig 6;
            Pythia and Herwig++ are work in progress
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MadFKS matched to 
parton shower

In MadFKS many process fully tested and working
(e.g. e+e- to jets, Drell-Yan, top pair production, ...)

New result: t-channel single top production

24
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t-channel single top
Already implemented in MC@NLO and POWHEG

However, due to the massless initial state b quark in the 
fixed order calculation, some strange behavior at low pT 
and for forward B hadrons
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A similar set of comparisons is presented in fig. 3 for the t-channel production mech-

anism, always at the Tevatron. The agreement between POWHEG and MC@NLO is as good as

before for inclusive quantities, or even better. In particular, the slight mismatch in the top

transverse-momentum distribution completely disappears, as one can see in plot (a). For

all the other plots, considerations similar to the s-channel case remain valid.

In fig. 4 the same set of plots are shown, comparing POWHEG and PYTHIA. We have good

agreement for most distributions, after applying an appropriate K factor to the PYTHIA

results. Only minor differences are present in the high-pT tail of distributions in panels (e)

and (f ).

As a final comparison, in the left panel of fig. 5, we show pB̄T , the transverse-momentum

spectrum of the hardest b̄-flavoured hadron, after imposing the rapidity cut |yB̄ | < 3. In

the t-channel, this hadron will come most probably from an initial-state gluon undergoing

a bb̄ splitting. The b quark is then turned into a t while the b̄ quark is showered and

hadronized. We see that, while POWHEG and MC@NLO are in a fair agreement in the medium-

and high-pT range, sizable differences are present at low pT. These discrepancies are most

probably due to the disagreement that one can notice in the yB̄ distribution (right panel

of fig. 5), and to a smaller extent to a different implementation of the inclusion of b-mass

effects by both programs (just before the showering stage).

Figure 5: Comparisons between POWHEG and MC@NLO results for the hardest b̄-flavoured hadron
transverse momentum (left) and rapidity (right), for t-channel top production at the Tevatron pp̄
collider. Rapidity cuts are highlighted.

We also plot in fig. 6 the same quantities comparing POWHEG interfaced to PYTHIA with

respect to PYTHIA alone. A large mismatch in the high-pB̄T spectrum is clearly visible in

the left panel. This observable is particularly sensitive to real matrix-element effects, not

present in PYTHIA. Concerning the low-pB̄T behaviour, we see that here the difference is

much less pronounced than in fig. 5. Furthermore, the aforementioned mismatch in the yB̄
distribution is no longer present, as one can see in the right panel.

By comparing figs. 5 and 6, one immediately notices the different behaviours of the

two Monte Carlo programs that we are interfacing to. We observe that the HERWIG shower

and hadronization create an enhancement at large values of |yB̄ |, which is not present in
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Frixione, Laenen, Motylinski & Webber(2006);
Alioli, Nason, Oleari & Re (2009)
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Initial state b quark

“Standard” way of looking at this process

But there is an equivalent description with no bottom 
PDF and an explicit gluon splitting to b quark pairs
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The two schemes
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At all orders both description should agree; 
otherwise, differ by:

evolution of logarithms in PDF: they are 
resummed

available phase space

approximation by large logarithm
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5-flavor scheme: “2 ➞ 2” 4-flavor scheme: “2 ➞ 3”
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Four-flavor scheme

Use the 4-flavor (2 ➞ 3) process as
the Born and calculate NLO

Much harder calculation due to
extra mass and extra parton

Spectator b for the first time at NLO

Process implemented in the MCFM-v5.7 parton-level NLO code

Starting point for future NLO+PS beginning at (2 ➞ 3)
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A similar set of comparisons is presented in fig. 3 for the t-channel production mech-

anism, always at the Tevatron. The agreement between POWHEG and MC@NLO is as good as

before for inclusive quantities, or even better. In particular, the slight mismatch in the top

transverse-momentum distribution completely disappears, as one can see in plot (a). For

all the other plots, considerations similar to the s-channel case remain valid.

In fig. 4 the same set of plots are shown, comparing POWHEG and PYTHIA. We have good

agreement for most distributions, after applying an appropriate K factor to the PYTHIA

results. Only minor differences are present in the high-pT tail of distributions in panels (e)

and (f ).

As a final comparison, in the left panel of fig. 5, we show pB̄T , the transverse-momentum

spectrum of the hardest b̄-flavoured hadron, after imposing the rapidity cut |yB̄ | < 3. In

the t-channel, this hadron will come most probably from an initial-state gluon undergoing

a bb̄ splitting. The b quark is then turned into a t while the b̄ quark is showered and

hadronized. We see that, while POWHEG and MC@NLO are in a fair agreement in the medium-

and high-pT range, sizable differences are present at low pT. These discrepancies are most

probably due to the disagreement that one can notice in the yB̄ distribution (right panel

of fig. 5), and to a smaller extent to a different implementation of the inclusion of b-mass

effects by both programs (just before the showering stage).

Figure 5: Comparisons between POWHEG and MC@NLO results for the hardest b̄-flavoured hadron
transverse momentum (left) and rapidity (right), for t-channel top production at the Tevatron pp̄
collider. Rapidity cuts are highlighted.

We also plot in fig. 6 the same quantities comparing POWHEG interfaced to PYTHIA with

respect to PYTHIA alone. A large mismatch in the high-pB̄T spectrum is clearly visible in

the left panel. This observable is particularly sensitive to real matrix-element effects, not

present in PYTHIA. Concerning the low-pB̄T behaviour, we see that here the difference is

much less pronounced than in fig. 5. Furthermore, the aforementioned mismatch in the yB̄
distribution is no longer present, as one can see in the right panel.

By comparing figs. 5 and 6, one immediately notices the different behaviours of the

two Monte Carlo programs that we are interfacing to. We observe that the HERWIG shower

and hadronization create an enhancement at large values of |yB̄ |, which is not present in
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Also BSM

squark-gluino associated production

real emission corrections included, 
but virtual correction not (yet)
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To conclude
For any QCD NLO computation (SM & BSM) MadFKS 
takes care of:

Generating the Born, real emission, subtraction terms, 
phase-space integration and overall management of 
symmetry factors, subprocess combination etc.

Using NLOComp+CutTools and virtual corrections are being 
automated

With the shower subtraction terms, interface to showers to 
generate automatically unweighted events with NLO precision 
is working with Herwig and work in progress with Pythia and 
Herwig++

First physics results at NLO are being produced within the 
MadGraph/MadEvent framework using the MadFKS code
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