

LHC Detectors : Part 3

What is measured, how and why?

- Ģ
- Ģ

ATLAS and CMS

- Overview
- Ş

Experimental issues

- Some examples of experimental issues to be addressed
- such as Jet Energy Calibration
- and background estimations

Ap/Ge/ 10³ 10²

10

10 10-2

 10^{-3}

Disclaimer 1: I concentrate on multi-purpose detector ATLAS and CMS

Disclaimer 2 : Some slides or slide content taken from seminars/lectures of other LHC colleagues, eg. K. Jakobs, O. Buchmüller, L. Dixon, M. Dittmar, D. Froidevaux, F. Gianotti

Super:PT>600 Ultra:PT>400

- High: PT>250 Med: PT>120

Introduction : Measurements of hard processes

The hard scattering

Hard Scattering = processes with large momentum transfer (Q^2)

Represent only a tiny fraction of the total inelastic pp cross section (~ 70 mb) eg. $\sigma(pp \rightarrow W+X) \sim 150 \text{ nb} \sim 2 \cdot 10^{-6} \sigma_{tot}(pp)$

Parton Distribution functions

ETH Institute for Particle Physics

Parton Distribution functions

9

ETH Institute for Particle Physics

Event production rates at L=10³³ cm⁻² s⁻¹ and statistics to tape

Process	Events/s	Evts on tape, 10 fb ⁻¹	
W→ev	15	10 ⁸	
Z →ee	1	107	
t t	1	10 ⁶	
Minimum bias	10 ⁸	10 ⁷ کا assuming 19	
QCD jets p _T >150 GeV/c	10 ²	10 ⁷ of trigger bandwidth	
$b b \rightarrow \mu X$	10 ³	107	
gluinos, m=1 TeV	0.001	10 ³	
Higgs, m=130 GeV	0.02	104	

10⁷ events to tape every 3 days, assuming 30% data taking efficiency, 1 PB/year/exp

statistical error negligible after few days (in most cases) ! dominated by systematic errors (detector understanding, luminosity, theory)

First Physics runs (2008, 2009, ...)

- After first "good" 10 pb⁻¹
 - many jets...
 - ~20000 W, decaying to lepton + neutrinos
 - ~2500 Z, decaying into two leptons
 - ~200 semi-leptonic top-pair events
 - Measure rates, align and calibrate better
- After first "good" 100 pb⁻¹
 - W(Z)+jets rates well measurable
 - Jet calibration, MET calibration (for SUSY)
 - Inclusive leptons, di-leptons, photons, di-photon triggers (for Higgs)

General From 100 pb⁻¹ to 1 fb⁻¹

- Standard model candles
 - Top pair prod., W/Z cross sections, PDF studies, QCD studies, b-jet production
 - Do extensive MC tuning
- Early Higgs boson search
 - H→γγ,WW,ZZ
- Early SUSY-BSM searches
 - MET + anything, di-jet, di-leptons, di-photon, resonances....

ETH Institute for Particle Physics

Interesting in its own right

- measure (calculable) event rates, cross sections
- establish (dis)agreement with SM, constrain SM
- Schallenge theoretical calculations at high Q²
- demonstrate "working" experiment with well known processes
- Backgrounds to many searches : check MC simulations geg. W/Z+jets, Multi-Jets, top-pair events
- Constrain (relative) PDFs
- Alternative measurements of luminosity

Our Master Equation

Jets

\dot{\mathbf{G}} JET production at hadron colliders Φ ETH Institute for Particle Physics

What is a jet?

"cluster/spray of particles (tracks, calorimeter deposits) or flow of energy in a restricted angular region"

clear : need some algorithmic definition

A short digression: Jet Algorithms

Jets in Hadron Collider Detectors Φ ETH Institute for Particle Physics

Jets in DØ

CDF

- Introducing a cone prescription seems "natural"...
- But how to make it more quantitative?
 - don't want people "guessing" at whether there are 2,3, ... jets

The natural (?) definition of a jet in a hadron collider environment

0 Jets in Hadron Collider Detectors $\textcircled{0}^{\text{ETH Institute for Particle Physics}}$

(simulated) Jets in CMS

Requirements

- Applicable at all levels
 - partons, stable particles
 - for theoretical calculations
 - measured objects (calorimeter objects, tracks, etc)
 - and always find the same jet
- Independent of the very details of the detector
 - example : granularity of the calorimeter, energy response,...
- Easy to implement !
- Close correspondence between

Further difficulties

- Pile Up : many additional soft proton-proton interactions
 - up to 20 at highest LHC luminosity
- Underlying event
 - beam-beam remnants, initial state radiation, multiple parton interactions
 - gives additional energy in the event
- All this additional energy has nothing to do with jet energies
 - have to subtract it

G. Dissertori : LHC Detectors - Part 3

ETH Institute for Particle Physics

End of the digression

What do we have to measure? Φ ETH Institute for Particle Physics

Inclusive Jet cross section at the LHC Φ Particle Physics

- After MB studies, jets will be the first objects seen and measured
- Enormous cross section, so statistical errors quickly negligible
 - 1% at p_T=1 TeV for 1 fb⁻¹ (central)
 - ♀ 10% for 3 < η < 5
- Steeply falling cross
 section : energy scale
 knowledge most relevant

Problem 1 : Energy scale

- Question : how well do we know the energy calibration?
- Critical because of very steeply falling spectrum!

ETH Institute for Particle Physics

Problem 2: Energy resolution $\Phi^{\text{ETH Institute for Particle Physics}}$

- The energy resolution can distorts the spectrum
- Again : Critical because of very steeply falling spectrum!

Inclusive Jets : Systematics

- a 5% jet energy scale uncertainty (which is more realistic at start-up) gives a 30% error on the cross section!
- Second Seco

ETH Institute for Particle Physics

Jet+Photon and Jet Energy Scale (JES)

Jet calibration using p_T balance in Jet+Photon events

- Selection : isolated photons, no high-p_T secondary jet, photon and jet well separated in transverse plane
- Statistical error well below 1% after 10 fb⁻¹

Currently:

"monolithic" MC-corrections, i.e. one-step correction from calorimeter-level to particle level (inverse of response function)

Goal : Measure cross section as function of invariant mass of the two jets. Test QCD predictions and kook for resonances at high invariant mass.

Di-Jets (CMS PDTR)

ETH Institute for Particle Physics

Comparison ATLAS - CMS

Biggest difference in performance perhaps for hadronic calo

Jets at 1000 GeV ATLAS ~ 2% energy resolution CMS ~ 5% energy resolution, but expect sizeable improvement using tracks (especially at lower E)

W and Z production

... one of the first W and Z's in UA1/2

Predictions

- Probably best known cross section at LHC, NNLO, differentially
- a well suited normalization process

Anastasiou, Dixon, Petriello, Melnikov : differential in W/Z rapidity Petriello, Melnikov : fully differential in lepton momenta

Predictions

Experimental signature

Z: pair of charged leptons

- high-p⊤
- isolated
- opposite charge
- ~70 < m_{ll}< ~110 GeV

Example: electron reconstruction

- isolated cluster in EM calorimeter
- p_T > 20 GeV
- shower shape consistent with expectation from electrons
- matching charged track

W: single charged leptons

- high-p⊤
- isolated
- ET,miss (from neutrino)

transverse mass: $M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^\nu \cdot (1 - \cos \Delta \phi^{l,\nu})}$

G. Dissertori : LHC Detectors - Part 3

ATLAS/CMS : from design to reality Φ ETH Institute for Particle Physics

Amount of material in ATLAS and CMS inner trackers

Active sensors and mechanics account each only for ~ 10% of material budget
 Need to bring 70 kW power into tracker and to remove similar amount of heat

- Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which not at all understood at the time of the TDRs
- Material increased by ~ factor 2 from 1994 (approval) to now (end constr.)
- Electrons lose between 25% and 70% of their energy before reaching EM calo
- Between 20% and 65% of photons convert into e⁺e⁻ pair before EM calo
- Need to know material to ~ 1% X_0 for precision measurement of m_W (< 10 MeV)!

Experimental Z/W counting

Example of selection from CMS (simulation studies)

- Z : 2 isolated leptons, p_T>20 GeV, $|\eta| < 2.5$, W : 1 isolated lepton + MET
- Studied : electrons, muons.
- Difficult issue : MET (=neutrino reconstruction)

CMS PTDR, G.D., Dittmar, Ehlers, Holzner

ETH Institute for Particle Physics

Experimental Z counting precision of 1 - 2 % appears feasible, even after 1. year

W/Z + jets

- Extremely important background for many searches
 - in particular for SUSY searches in the "jets+lepton+E_{Tmiss}" channel
- Remember : Jet scale uncertainty extremely important (xsec as function of jet p_T), also here

q'

w

00000

- ✤ can expect some 30 % uncertainty from that. Probably less in case of rate measurements.
- Should also have a more "inclusive" look at it : Measuring the Z p_T can be done with a relative precision at the per-cent level (leptons (!) again), will be invaluable for checking predictions and tuning MCs

G. Dissertori : LHC Detectors - Part 3

ETH Institute for Particle Physics

00000g

22222

Top production

Op identification

G. Dissertori : LHC Detectors - Part 3

Top Production (example : semi-leptonic case)

ETH Institute for Particle Physics

See the top immediately with simple selection : Missing E_T , 1 lepton, \geq 4 jets, even without b-tag (!), cut on hadronic W mass

Example (ATLAS study):

- Observe it with 30 pb⁻¹
- σ(tt) to 20 % with 100 pb⁻¹
- ♀ M(t) to 7-10 GeV

Once b-tagging is understood:

Very high S/B achievable ~ 27 !

Backgrounds : W+4j, Wbb+2j(3j) (minor here)

relevant also for single-top

Study the top quark properties mass, charge, spin, couplings, production and decay, $\Delta M_{top} \sim 1 \text{ GeV }$? important background for searches

Jet energy scale from $W \rightarrow jet jet$,

commission b-tagging

General remarks on searches for new physics

How to claim discovery

Suppose a new narrow particle $X \rightarrow \gamma \gamma$ is produced:

 $\sqrt{N_B} \equiv \text{error on number of background events, for large numbers}$ otherwise: use Poisson statistics

S > 5 : signal is larger than 5 times error on background. Gaussian probability that background fluctuates up by more than 5σ : $10^{-7} \rightarrow$ discovery

\Rightarrow S = N_S/ $\sqrt{N_{B}}$ decreases by $\sqrt{2}$

 \rightarrow N_B increases by ~ 2 (assuming background flat)

"A detector with better resolution has larger probability to find a signal" <u>Note</u>: only valid if $\Gamma_{\rm H} << \sigma_{\rm m}$. If Higgs is broad detector resolution is not relevant.

- m m
- Luminosity

Ð Signal Significance : Issues

 \subseteq Detector resolution (eq. mass resolution σ_m) If σ_m increases by e.g. a factor of two, then need to enlarge peak region by a factor of two to keep the same number of signal events

 \Rightarrow S ~ 1 / $\sqrt{\sigma_m}$

$$\Gamma_{\rm H} = 100 \text{ GeV} \rightarrow \Gamma_{\rm H} \sim 0.001 \text{ GeV}$$

 $\Gamma_{\rm H} = 200 \text{ GeV} \rightarrow \Gamma_{\rm H} \sim 1 \text{ GeV}$

$$m_{H} = 600 \text{ GeV} \longrightarrow \Gamma_{H} \sim 100 \text{ GeV} \Gamma_{H} \sim m_{H}^{3}$$

$$N_{\rm S} \sim L$$

 $N_{\rm B} \sim L$

Background extrapolation

G. Dissertori : LHC Detectors - Part 3

(eg. revert the cuts above)

ETH Institute for Particle Physics

Background extrapolation

Background extrapolation...

Warnings...

- Always try to be as independent from the Monte Carlo as possible!
 - eg. find a "Standard Model candle" for calibration
 - Obtain backgrounds from the data whenever possible
 - Easy if we have mass peak (from sidebands)
 - More difficult in case of excess in high-energy tails, in particular in relation to MET or high- E_T jets
 - Study carefully the validity of a Monte Carlo, and what it is exactly based on
 - eg. LO 2-to-2 process + parton shower, or 2-to-n + parton shower, or NLO+parton shower, or …
- Worry in particular about systematic errors in your search analysis when S/B << 1 !!</p>
 - be careful with calculation of significance

Signal Significance : Issues

Solution See as significance (number of 'sigmas') one usually sees the definition
($\sigma_{stat}(background) = \sqrt{n_b}$ for large enough statistics)

$$S = n_{\sigma} = \frac{n_s}{\sqrt{n_b}}$$

Solution \mathbf{S} Adding a relative systematic uncertainty \mathbf{f} , $\sigma_{syst}(n_b) = f n_b$, in quadrature to the statistical uncertainty, this becomes:

ETH Institute for Particle Physics

G Signal Significance : Issues

this can be rewritten as

$$\tilde{n}_{\sigma} = n_{\sigma} \cdot \left[1 + \left(\frac{f \cdot n_{\sigma}}{n_s / n_b} \right)^2 \right]^{-\frac{1}{2}}$$

limiting cases:

$$n_s/n_b << f \cdot n_\sigma \implies \tilde{n}_\sigma \approx \frac{n_s/n_b}{f}$$

$$n_s/n_b >> f \cdot n_\sigma \implies \tilde{n}_\sigma \approx n_\sigma$$

dominated by statistics

dominated by

systematics

a concrete example (10% background uncertainty)

n _s	n _b	n_s/n_b	n_{σ}	\tilde{n}_{σ}
50	100	0.5	5	3.5
500	10000	0.05	5	0.5

In the second case, more luminosity will not improve the significance!

(unless more data help to better understand the background)

ETH Institute for Particle Physics

SUSY and Missing Et

G SUSY signatures

ETH Institute for Particle Physics

Seems easy, but....

Relies on

good reconstruction and understanding of

- multi-jet backgrounds
- Missing transverse Energy

Typical selection

- E_{T,miss} > 100 GeV

Warning

- For description of multi-jet
 backgrounds a simple
 Parton-shower MC is not good
 enough
- Have to combine with matrix elements, eg. ALPGEN

54

Seems easy, but....

- Relies on
 - good reconstruction and understanding of
 - multi-jet backgrounds
 - Missing transverse Energy

Other discoveries

The easy case: a Z' (or similar)

- Z': generic for new heavy gauge bosons
 - GUT, dynamical EWSB, little Higgs, …
 - Clear signature
 - Iow background, mainly Drell-Yan
- One of main issues
 - early control of lepton reconstruction, eg.
 - alignment effects reduce sensitivity by ~ 50 % in the early days (< 100 pb⁻¹)
- ♀ Similar ATLAS study for $Z' \rightarrow e^+e^-$
 - 🖗 In SSM, SM-like couplings
 - ~1.5 fb⁻¹ needed for discovery up to 2 TeV
 - $Z \rightarrow \ell \ell$ +jet and DY needed to get
 - E-calibration and understand lepton eff.

57

What LHC could discover (besides Higgs and SUSY)

Summary of Part 3

"The only place where success comes before work is the dictionary"

Summary

- SM physics at the LHC: we will have to re-discover the SM before going to other discoveries
- Test the SM at an unprecedented energy scale
 - Iots of highly exciting and interesting physics
 - Jets, Ws and Zs, tops, ...
- These are also important tools to
 - understand, study, calibrate and improve the detector performance
 - constrain physics input (pdfs, underlying event)
 - necessary input for all other measurements
- We are getting ready now to be able to perform all these measurements and run these tools as early as possible, once the data start flowing in....

Prospects for discoveries are very good

At the LHC we have

- Iarge cross sections
- spectacular signals
 - for many new signals

But

- have to understand the detector first
- as well as the SM backgrounds
- Thus : be careful not to claim discovery too early
- but also not too late ... ;-)

In any case, extremely exiting years are ahead of us!