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OUTLINE
• Factorization of the cross section at low transverse 

momentum qT

• The collinear anomaly and the definition of transverse 
momentum dependent PDFs

• Resummation of large log’s 

• Relation to the Collins Soper Sterman (CSS) formalism

•Numerical results to NNLL

2



The production of a lepton pair with large invariant mass is the 
most basic hard-scattering process at a hadron collider.  This is the 
place for HP2 at hadron colliders!

ATLAS has 3.5 pb-1  of data: ~ 7 x105 W’s and 2x105 Z’s !
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PERTURBATIVE EXPANSION
The perturbative expansion of the qT spectrum contains singular 
terms of the form (M is the invariant mass of the lepton pair)

which ruin the perturbative expansion at qT ≪ M and must be 
resummed to all orders.

classic example of an observable 
which needs resummation!
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ψ̄γµψ → CV (M2, µ) χ̄hc S†
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CV , anti-coll. soft coll.

p p̄ M2 = (p − p̄)2 Jµ
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−∞

ds n · As(x + sn)

]

(5)

(n · k, n̄ · k, k⊥)

x ∼ M−1(1, 1, λ−1)
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RESUMMATION
A formula which allows for the resummation of the 
logarithmically enhanced terms at small qT to arbitrary precision 
was first obtained by Collins, Soper and Sterman (CSS) in ‘84, 
based on earlier work of Collins and Soper.

A corresponding expression for the simpler case of soft-gluon 
resummation was derived only later by Sterman in ’87, and by 
Catani and Trentadue in ‘89.

We will now analyze the factorization properties of the cross 
section in these kinematic configurations.
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FACTORIZATION
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• Starting point is the factorization of the electroweak current in 
the Sudakov limit

• In Soft-Collinear Effective Theory (SCET) this can be written in 
operator form as
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The Drell-Yan cross section is obtained from the matrix 
element of two currents

   and    are light-cone reference vectors along   and   . 

The soft function contains a product of four Wilson lines along 
the directions of large energy flow
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× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉

1

dσ

dq2
T

=
1

q2
T

[

A
(1)
1 αs ln

M2

q2
T

+ A
(1)
0 + A

(2)
3 α2

s ln3 M2

q2
T

+ . . . (1)

+A
(n)
2n−1α

n
s ln2n−1 M2

q2
T

+ . . .
]

+ . . . (2)

ψ̄γµψ → CV (M2, µ) χ̄hc S†
n̄ γµ Sn χhc (3)

CV , anti-coll. soft coll.

p p̄ M2 = (p − p̄)2 Jµ
V

n n̄

(−gµν) 〈N1(p) N2(p̄)| Jµ†
V (x) Jν

V (0) |N1(p) N2(p̄)〉 →
1

2Nc
|CV (M2, µ)|2
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Final step is to expand the matrix elements in small momentum 
components, i.e. to perform a derivative expansion.

The light-cone components                        scale as

while the separation between the two currents scales as  

expansion parameter

DERIVATIVE EXPANSION
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× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉
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T , µ)

(23)

µ = µb = 2e−γE x−1
⊥

µ = qT

(24)

µ = µb = 2e−γE/x⊥

A(3) = ΓF
2 + 2β0d

q
2 = 239.2 − 652.9 #= ΓF

2 (25)

exp
(

−αscL
2
⊥

)

(26)

η =
CFαs

π
ln

M2

µ2
(27)

qT

L⊥

〈x−1
T 〉 = q∗ = M exp

(

−
π

2CF αs(q∗)

)

= 1.75 GeV for M = MZ (28)

µ = max (q∗, qT )

λ =
qT

M
(29)

nµ ∼
pµ

p0

n̄µ ∼
p̄µ

p̄0

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

1

4π

∫

d2x⊥ e−iq⊥·x⊥

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

× exp

{

−
∫ M2

µ2

b

dµ̄2

µ̄2

[

ln
M2

µ̄2
A

(

αs(µ̄)
)

+ B
(

αs(µ̄)
)

]

}
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NAIVE FACTORIZATION
Dropping power suppressed x-dependence leads to the result

For comparison: for soft-gluon resummation, the result is

KLN cancellation!

}

1     x   “transverse PDF”    x   “transverse PDF” 

“soft”  x  “standard PDF”    x  “standard PDF” 

dσ

dq2
T

=
1

q2
T

[

A
(1)
1 αs ln

M2

q2
T

+ A
(1)
0 + A

(2)
3 α2

s ln3 M2

q2
T

+ . . . (1)

+A
(n)
2n−1α

n
s ln2n−1 M2

q2
T

+ . . .
]

+ . . . (2)

ψ̄γµψ → CV (M2, µ) χ̄hc S†
n̄ γµ Sn χhc (3)

CV , anti-coll. soft coll.

p p̄ M2 = (p − p̄)2 Jµ
V

n n̄

(−gµν) 〈N1(p) N2(p̄)| J
µ†
V (x) Jν

V (0) |N1(p) N2(p̄)〉 →
1

2Nc

|CV (M2, µ)|2

× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉

ŴDY(x) =
1

Nc

〈0|Tr
[

S†
n(x) Sn̄(x) S†

n̄(0) Sn(0)
]

|0〉 (4)

Sn(x) = P exp

[

i

∫ 0

−∞

ds n · As(x + sn)

]

(5)

(n · k, n̄ · k, k⊥)

x ∼ M−1(1, 1, λ−1)

phc ∼ M (λ2, 1, λ) , phc ∼ M (1, λ2, λ) , (6)

ps ∼ M (λ2, λ2, λ2) . (7)

ŴDY(0) 〈N1(p)| χ̄hc(x+ + x⊥)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x− + x⊥) |N2(p̄)〉

ŴDY(0) = 1 (8)

ŴDY(x0) 〈N1(p)| χ̄hc(x+)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x−) |N2(p̄)〉

1

dσ

dq2
T

=
1

q2
T

[

A
(1)
1 αs ln

M2

q2
T

+ A
(1)
0 + A

(2)
3 α2

s ln3 M2

q2
T

+ . . . (1)

+A
(n)
2n−1α

n
s ln2n−1 M2

q2
T

+ . . .
]

+ . . . (2)

ψ̄γµψ → CV (M2, µ) χ̄hc S†
n̄ γµ Sn χhc (3)

CV , anti-coll. soft coll.

p p̄ M2 = (p − p̄)2 Jµ
V

n n̄

(−gµν) 〈N1(p) N2(p̄)| J
µ†
V (x) Jν

V (0) |N1(p) N2(p̄)〉 →
1

2Nc

|CV (M2, µ)|2

× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉

ŴDY(x) =
1

Nc

〈0|Tr
[

S†
n(x) Sn̄(x) S†

n̄(0) Sn(0)
]

|0〉 (4)

Sn(x) = P exp

[

i

∫ 0

−∞

ds n · As(x + sn)

]

(5)

(n · k, n̄ · k, k⊥)

x ∼ M−1(1, 1, λ−1)

phc ∼ M (λ2, 1, λ) , phc ∼ M (1, λ2, λ) , (6)

ps ∼ M (λ2, λ2, λ2) . (7)

ŴDY(0) 〈N1(p)| χ̄hc(x+ + x⊥)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x− + x⊥) |N2(p̄)〉

ŴDY(0) = 1 (8)

ŴDY(x0) 〈N1(p)| χ̄hc(x+)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x−) |N2(p̄)〉

1

this spells trouble: well known that transverse 
PDF not well defined w/o additional regulators
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CROSS SECTION
In terms of the hadronic matrix elements

on then obtains the DY cross section

with

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

2

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

2

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (13)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (14)

2
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CROSS SECTION

The resummation would then be obtained by solving the RG 
equation

This cannot be correct! If                                        is 
independent of M, the above cross section is μ dependent!

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

2

see SCET papers: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005;  Mantry, Petriello 2009

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (13)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (14)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (15)

2

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (13)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (14)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (15)

2
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RG invariance of cross section implies that the product of 
transverse PDFs                                        must contain 
hidden M2 dependence. 

Analyzing the relevant diagrams, one finds that an additional 
regulator is needed to make transverse PDFs well defined. In 
the product of the two PDFs, this regulator can be removed, but  
anomalous M2 dependence remains. Can refactorize

               with                  

Note that M2 dependence exponentiates!

COLLINEAR ANOMALY

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (13)

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (14)

d

d lnµ
CV (M2, µ) =

[

ΓF
cusp(αs) ln

−M2

µ2
+ 2γq(αs)

]

CV (M2, µ) . (15)

2

Aµ
s (x) = Aµ

s (0) + x · ∂Aµ
s (0) + . . .

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(10)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(11)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (12)

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2

T ,µ)

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ) ,

dFqq̄(x2
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TRANSVERSE PDFS

The “operator definition of  TMD PDFs is quite problematic [...] 
and is nowadays under active investigation”.

Regularization of the individual transverse PDFs is delicate, but 
the product is well defined, and has specific dependence on the 
hard momentum transfer M2. 

Anomaly: Classically,                                               is invariant 
under a rescaling of the momentum of the other nucleon N2. 
Quantum theory needs regularization. Symmetry cannot be 
recovered after removing regulator. 

Not an anomaly of QCD, but of the low energy theory.

What God has joined together, let no man separate...

quote from Cherednikov and Stefanis ’09. For reviews, see Collins ’03, ’08
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SIMPLIFICATION FOR                   .

For perturbative values of qT we can perform an operator 
product expansion

Again, only the product of two                   functions is well 
defined. 

Effective theory diagrams for                   are not well-defined 
in dim. reg..  Following Smirnov ’83,  we use additional analytical 
regularization, which is very economical, since it does not 
introduce additional scales into the problem.
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It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)
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=
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q
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j=q̄,g

∫∫

z1z2≥M2/s

dz1
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dz2

z2
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T , z1z2s−M2)
∫

0

dq2
T Cqq̄→ij(z1, z2, q

2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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ANALYTICAL REGULARIZATION

• Raise QCD propagators carrying large momentum         to 
fractional powers          :

• Limit                        is trivial for QCD, but effective theory 
diagrams have poles, which only cancel in the sum of collinear 
and anti-collinear diagrams. 

hc hc

hc hc

β
α → xx

xx

hc hc

hc

hc

hc

β α +
xx

xx

hc
hc

hc

hc hc

β
α

Figure 2: Matching of an analytically-regularized QCD graph onto SCET diagrams.

of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain
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(35)
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Figure 1: One-loop diagrams contributing to the matching coefficients Iq←q (top row) and
Iq←g (bottom row). The vertical lines indicate cut propagators.

refers to the running coupling evaluated at the scale µ, unless indicated otherwise. The
dimensional regulator is defined by d = 4− 2ε, and we omit O(ε) terms. Moreover, µ denotes
the renormalization scale defined in the MS scheme. The remaining two diagrams turn out
to be ill-defined in dimensional regularization due to light-cone singularities. To give meaning
to the corresponding loop integrals requires introducing additional regulators. The simplest
possibility is to employ analytic regularization, as is common in the context of asymptotic
expansions [19, 20]. In the context of SCET this method has been used in [15, 44]. One starts
by reconsidering the QCD diagrams contributing to the process and raises all propagators
through which the external hard-collinear momentum p flows to a fractional power,

1

−(p − k)2 − iε
→

ν2α
1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and
associated scale ν2. For QCD diagrams, such as the first graph in Figure 2, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place also the SCET diagrams in the (anti-)hard-
collinear sectors are now also well-defined. The diagrams in each sector involve divergences
in the analytical regulator, which cancel in the sum of all contributions. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 2, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 2. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (31)

As seen in Figure 2, the regulator α plays a double role: it regularizes the fermion propagators
in hard-collinear diagrams and the Wilson lines in anti-hard-collinear diagrams. Both classes
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ANALYTICAL REGULARIZATION

• Regulators play double role. E.g.    regulates hc propagators 
and  hc Wilson line   

• Regulator breaks invariance of anti-hard-collinear sector under 
a rescaling of the hard-collinear momentum              . 
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Figure 2: Matching of an analytically-regularized QCD graph onto SCET diagrams.

of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain
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4
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. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain
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is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place the contributions of the different momentum
regions are now well-defined individually and one can check which regions give non-vanishing
contributions to the expansion of the integral. One finds that only the hard, the hard-collinear
and anti-hard-collinear regions contribute. If the diagrams are evaluated off-shell, then also a
soft contribution arises in the individual diagrams, but one easily verifies that the contribution
of a semi-hard mode scaling as M(λ, λ, λ) vanishes.

Since the original diagram is well defined without the analytical regulators and is obtained
by adding up the contributions from the different regions, we are guaranteed that the limits
α → 0 and β → 0 can be taken in the sum and that the result is independent of the regula-
tor. Individually, however, the diagrams in each sector involve divergences in the analytical
regulators. If the momentum k in (31) is hard-collinear, as in the first SCET diagram in
Figure 2, the regularization in the effective theory takes the same form as in QCD. If, on the
other hand, the momentum k is anti-hard-collinear, then the propagator is far off-shell and in
SCET is represented by a Wilson line, as shown in the second diagram in Figure 2. Using the
replacement rule (31) and performing the appropriate expansions, we find that the Feynman
rule for a gluon emission from the anti-hard-collinear Wilson line Whc in the current operator
(6) gets replaced by
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ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (32)

Note that, as mentioned earlier in Section 2.2, the regularized Feynman rule for the anti-hard-
collinear Wilson line is no longer invariant under the rescaling transformation p → λp. As
seen in Figure 2, the regulator α plays a double role: it regularizes the fermion propagators
in hard-collinear diagrams and the Wilson lines in anti-hard-collinear diagrams. Both classes
of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
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1-LOOP RESULT
Taking first           , then           , one finds (               )

In the product the        divergences vanish, but anomalous M2 
dependence remains.
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
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Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉

(9)

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ)Bq̄/N2

(ξ2, x
2
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If the expansions are performed in the opposite order, then β acts as the analytic regulator,
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1/α

3

anomalous M2 dep.
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×
[

Cqi

(

z1, αs(µb)
)

Cq̄j

(

z2, αs(µb)
)

φi/N1
(ξ1/z1, µb) φj/N2

(ξ2/z2, µb) + (q, i ↔ q̄, j)

]

,

µb = b0/xT , and we adopt the standard choice b0 = 2e−γE

L⊥ = ln
x2

T µ2

4e−2γE

5



• For the functions I and F, one then obtains

• Solving its RG and using Davies, Stirling and Webber ’84 and 
de Florian and Grazzini ’01, we extract the two-loop F 
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For the first two expansion coefficients, we obtain
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3

Casimir scaling
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3

All the necessary input for NNLL resummation!
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RESUMMED RESULT

The hard-scattering kernel is

• Two sources of M dependence: hard function and anomaly

• Fourier transform can be evaluated numerically or 
analytically, if higher-log terms are expanded out.
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For the first two expansion coefficients, we obtain
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d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(22)

3
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RESULT IN MOMENTUM SPACE
Using the relation (                     )

one obtains an analytic expression for the rate in momentum 
space. 

However, the x-space result contains terms                        . 
Since      .is a small log for the proper scale choice, this can 
formally be expanded, but higher order terms are factorially 
enhanced.  Frixione, Nason, Ridolfi ’98      

→ Keep the double log terms in exponent, perform Fourier 
transform numerically. 

where

ηF (M2, µ) =
CF αs

π
ln

M2

µ2
(56)

counts as an O(1) quantity as long as µ2 ! M2.

4.2 Fourier transformation – a first analysis

Our last task is to perform the Fourier transformation (23) from xT space to transverse-
momentum space. Since all our functions depend on xT either via a power, like in (55), or via
the logarithm L⊥ defined in (30), it suffices to consider the relation

1

4π

∫

d2x⊥ e−iq⊥·x⊥ Ln
⊥

(

x2
T µ2

4e−2γE

)−η

= (−∂η)
n 1

q2
T

(

q2
T

µ2

)η Γ(1 − η)

e2ηγE Γ(η)
. (57)

While qT serves as an infrared regulator, the integral converges in the ultraviolet, for xT → 0,
only as long as η < 1. In our formulae below we will always assume that the condition
ηF (M2, µ) < 1 is fulfilled. For M = MZ or MW , for example, this implies that µ should be
larger than about 2GeV. Note that the higher-derivative terms in (57) are accompanied by
powers of 1/(1 − η), so that for η very close to 1 a reorganization of the perturbative series
becomes necessary. This will be discussed in detail in a forthcoming article [39].

Using the above result, we obtain a closed-form expression for the resummed hard-scattering
kernels, which reads

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2
Iq←i(z1,−∂η, αs) Iq̄←j(z2,−∂η, αs)

× Eqq̄(−∂η, αs, ηF )
1

q2
T

(

q2
T

µ2

)η Γ(1 − η)

e2ηγE Γ(η)

∣

∣

∣

∣

η=ηF

,
(58)

where ηF ≡ ηF (M2, µ), and the arguments of the Ii←j(z, L⊥, αs) functions are those shown in
(39). It is understood that for |CV |2 one uses the resummed expression in (50). All remaining
quantities have perturbative expansions in powers of αs = αs(µ) free of large logarithms. In
writing the above result we have introduced the function

Eqq̄(L⊥, αs, η) = exp
[

− L⊥Fqq̄(L⊥, αs) − η fqq̄(L⊥, αs)
]

= 1 −
αs

4π

[

ΓF
0 L2

⊥ + η

(

β0

2
L2
⊥ +

ΓF
1

ΓF
0

L⊥ +
dq

2

ΓF
0

)]

+ O(α2
s) ,

(59)

which is completely determined in terms of Fqq̄. The two-loop coefficients dq
2 and ΓF

1 enter here
already at next-to-leading order in αs. For a consistent resummation at NNLL order (or next-
to-leading order in RG-improved perturbation theory), we need the one-loop expressions for
the matching coefficients CV and Ii←j, the two-loop expression for the exponent Fqq̄, the two-
loop expression for the anomalous dimension γq, and the three-loop cusp anomalous dimension
and β function. All of these ingredients are known.

18

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2

T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(23)

µ = µb = 2e−γE x−1
⊥

µ = qT

(24)

µ = µb = 2e−γE/x⊥

A(3) = ΓF
2 + 2β0d

q
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BEHAVIOR AT VERY LOW     .
For moderate qT, the natural scale choice is μ = qT. 
This is no longer true at very small qT. Detailed 
analysis shows that near qT ≈ 0 the Fourier integral 
is dominated by 

Small scale qT drops out of integral! Spectrum is 
perturbative even at very low qT! Parisi and Petronzio ’80

We choose                          for general qT. 
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NUMERICAL RESULTS

Preliminary: no matching to fixed order, narrow width 
approximation, no photon contribution.
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Figure 2: The qT spectrum of Z bosons at the Tevatron Run II. The bands are obtained by varying
µF and µR (left panel) and Q (right panel) as described in the text.

lines) results. In the left panel we consider variations of the renormalization and factorization
scales. The bands are obtained by varying µR and µF as previously described in this section.
We note that, in the region of small and intermediate transverse momenta (qT ∼< 30 GeV), the
NNLL+NLO and NLL+LO bands overlap. This feature, which is not present in the case of the
fixed-order perturbative results at LO and NLO (see Figs. 2 and 3 in Ref. [24]), confirms the
importance of resummation to achieve a stable perturbative prediction. In the region of small and
intermediate values of qT , the main difference between the NNLL+NLO and NLL+LO predictions
is in the size of the scale variation bands. Going from NLL+LO to NNLL+NLO accuracy, we
observe a reduction of the scale dependence from ±4% to ±3% at the peak, from ±7% to ±3%
at qT ∼ 20 GeV, and from ±7% to ±5% at qT ∼ 50 GeV. We point out that the qT region where
resummed perturbative predictions are definitely significant is a wide region from intermediate
to relatively-small (say, close to the peak of the distribution) values of qT . In fact, at very small
values of qT (e.g. qT ∼< 5 GeV) the size of non-perturbative effects is expected to be important,
while in the high-qT region (e.g. qT ∼> 60 GeV) the resummation of the logarithmic terms cannot
improve the predictivity of the fixed-order perturbative expansion. The inset plot in the left panel
of Fig. 2 shows the region from intermediate to large values of qT . At large qT , the NLL+LO
and NNLL+NLO results deviate from each other, and the deviation increases as qT increases. As
previously stated, this behaviour is not particularly worrying since, in the large-qT region, the
resummed results loose their predictivity and can (should) be replaced by customary fixed-order
results.

In the right panel of Fig. 2 we consider resummation scale variations. The bands are ob-
tained by fixing µR = µF = mZ and varying Q between mZ/4 and mZ . Performing variations
of the resummation scale, we can get further insight on the size of yet uncalculated higher-order
logarithmic contributions at small and intermediate values of qT . We find that the scale depen-
dence at NNLL+NLO (NLL+LO) is about ±5% (±12%) in the region of the peak, and about
±5% (±16%) in the region where qT ∼ 20 GeV. We note that in a wide region of qT values,
5 GeV∼<qT ∼< 50 GeV, the resummation scale dependence is reduced by, roughly, a factor of 2 in
going from the NLL+LO to the NNLL+NLO result. Comparing the left and right panels of Fig. 2,
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ROUGH COMPARISON WITH BOZZI ET AL.

Our result does not (yet!) include the matching to fixed order, 
which is about 2pb/GeV for Bozzi et al. at the peak.

Taking this into account, the results are in good agreement.

Bozzi, Catani, Ferrera, de Florian and Grazzini, arXiv:1007.2351   
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Figure 2: The qT spectrum of Z bosons at the Tevatron Run II. The bands are obtained by varying
µF and µR (left panel) and Q (right panel) as described in the text.
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COLLINS SOPER STERMAN FORMULA

• The low scale is                   , and we set                 . 

• Landau-pole singularity in the Fourier transform. To use the 
formula, one needs additional prescription to deal with this.
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If adopt the choice                               in our result reduces to CSS 
formula, provided we identity 

Use these relations to derive unknown three-loop coefficient, necessary 
for NNLL resummation

Not equal to the cusp anom. dim. as was usually assumed!

RELATION TO CSS
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The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(

7π2

3
− 16

)

. (74)

The two-loop coefficient dq
2 has been given in (49), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.2 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (49). Inserting the coefficients
dq,g

2 into (75), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.

2The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4]. For reasons
that are not known to us, the fact that A "= ΓF

cusp is nevertheless largely ignored in the literature.
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Using these results, we have derived the anticipated relation (49). Inserting the coefficients
dq,g

2 into (75), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.
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21

find

A
(

αs

)

= ΓF
cusp(αs) −

β(αs)

2

dg1(αs)

dαs
,

B
(

αs

)

= 2γq(αs) + g1(αs) −
β(αs)

2

dg2(αs)

dαs
,

Cij

(

z, αs(µb)
)

=
∣

∣CV

(

− µ2
b , µb

)
∣

∣ Ii←j

(

z, 0, αs(µb)
)

,

(72)
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The one-loop coefficients are dq
1 = 0 and
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The two-loop coefficient dq
2 has been given in (49), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.
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2 = 239.2 − 652.9 #= ΓF
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CONCLUSION
• Have performed a factorization analysis of the Drell-Yan cross section 

at low transverse momentum and derived a resummed result for the 
spectrum, free of large logarithms

• No Landau-pole ambiguity. Have analytic expression in momentum 
space, which allows for simple matching to fixed order.

• Reduces to the known CSS result for a special scale choice.

• Have derived unkown three-loop coefficient A(3) , the last missing 
piece needed for NNLL accuracy.

• The product of two transverse PDFs is well defined but has 
anomalous dependence on the large momentum transfer

• we show that this dependence exponentiates

• Phenomenological analysis at NNLL+NLO is in progress.
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