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OUTLINE

* Factorization of the cross section at low transverse
momentum gr

* The collinear anomaly and the definition of transverse
momentum dependent PDFs

* Resummation of large log's
» Relation to the Collins Soper Sterman (CSS) formalism

* Numerical results to NNLL
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in 7 TeV collisions

The production of a lepton pair with large invariant mass Is the
most basic hard-scattering process at a hadron collider. This is the
place for HP? at hadron colliders!

BMIE- —ihas 5.5 pb' of data: ~ 7 x1 02 W's and 2|02 ZsH



PERTURBATIVE EXPANSION

The perturbative expansion of the gr spectrum contains singular
terms of the form (M is the invariant mass of the lepton pair)

d I M? M?
% = [A(l)ozs In | ozSA(()l) +A§2)a§ In° o
dgr g7 qr dT
M2
B ot } TR
Yiry

which ruin the perturbative expansion at gr <« M and must be
resummed to all orders.

classic example of an observable
which needs resummation!
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RESUMMATION

A formula which allows for the resummation of the
logarithmically enhanced terms at small gr to arbitrary precision
was first obtained by Collins, Soper and Sterman (CSS) In ‘84,
based on earlier work of Collins and Soper.

A corresponding expression for the simpler case of soft-gluon
resummation was derived only later by Sterman in '8/, and by
Catani and Trentadue in ‘89.

We will now analyze the factorization properties of the cross
section In these kinematic configurations.
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SOFI-COLLINEAR FACTORIZATION

» Starting point Is the factorization of the electroweak current in
the Sudakov limrt

hard-collinear

p

P e =1k anti-hard-collinear

* In Soft-Collinear Effective Theory (SCET) this can be written in
operator form as

vy — Cv(M?, 1) Xz SE Y Sn Xne
SCET hc quark field



The Drell-Yan cross section 1s obtained from the matrix
element of two currents

(=guw) (N1(p) Na(B)] I () J7(0) [N1(p) Na(P)) — 53 oy (a2, )

P P

5 Xhe(0) |N1(p)) (N2(P)| X7c(0) 5 Xel) | V2(P))

X Woy (z) (N1(p)| Xne() 5

n and N are light-cone reference vectors along pand p.

The soft function contains a product of four Wilson lines along
the directions of large energy flow

(0] Te[S1(x) Sa(z) S1(0) 5.,(0)][0)

WDy((L‘) - N

R i
Sn(z) = Pexp z/ dsn - As(x + sn)
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DERIVATIVE EXPANSION

Final step Is to expand the matrix elements in small momentum
components, I.e. to perform a derivative expansion.

The light-cone components (n - k, 7 - k, k1) scale as

e O 1)), pe=~ M (1,05 )). expansion parameter
A=1T

PR 2 D2 M

while the separation between the two currents scales as

ol e (B10 [

— A¥(z) = AH0) + - DAP(0) + . ..

S

power suppressed, can be dropped
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NAIVE FACTORIZATION

Dropping power suppressed x-dependence leads to the result

Wit (0) (N ()] el + 1) B xe0) INu(0)) (NaP)] 5(0) & Xl +0) [N}

——
[ e iransverse PODFE'  x  transverse FlBiEs

this spells trouble: well known that transverse

o
KLN cancellation! PDF not well defined w/o additional regulators

For comparison: for soft-gluon resummation, the result Is

Wi (20) (Na(0)] Te(4) E x1e(0) 1N ) {80 0) & ) 1V

Gy Ssianadard PRDET < standare R



CROSS SECTION

In terms of the hadronic matrix elements

1 —12tn- — (1=
Bz, o) = 5 [ dte =0 (N ) x(en+ 1) §

x(0) [N(p))

on then obtains the DY cross section

dSO' % de) 2 21 9 TN,
dM2dgzdy  3N.M2s Cv (=M, ) 47r/d e

X Z [ q/N1 fl,ﬂjT,,U) BQ/NQ (527 x?l”?:u) T (q i q)] iy O(

with
— a9 G — Wi TR




CROSS SECTION

d3(7 4o e 21 9 i e
dMZdg%dy ~ 3N,M2s Cv (=M, ) 47r/d ALl

X Z [ /N (81, %, 18) By (§2, 27, 1) + (g < Q)] +O<M2)

The resummation would then be obtained by solving the RG
equation

d
dln

Co (M2, ) = {rfs;sp< ) n ‘342 42y <as>} Cy (M2, 1)

see SCET papers: Gao, Li, Liu 2005; Idilby, Ji, Yuan 2005; Mantry, Petriello 2009

This cannot be correct! If Byn, (&1, 27, 1) By, (&2, 27, 1) IS
independent of M, the above cross section is ¢4 dependent!



COLLINEAR ANOMALY

RG Invariance of cross section implies that the product of
transverse PDFs By, (&1, 27, i) By, (§2, 27, 1) must contain
nidden M? dependence.

Analyzing the relevant diagrams, one finds that an additional
regulator 1s needed to make transverse PDFs well defined. In
the product of the two PDFs, this regulator can be removed, but
anomalous M? dependence remains. Can refactorize

—F—azQ,
:E%M2> qq(T7,1)

[Bq/Nl (217 ZC%, /'L) BC}/NQ (Z27 SU%, :u)} et (46_2%3 Bq/N1 (Zla $%, :u) BQ/NQ (Z27 Z’%, :u) )

quCY(x2Tv :LL)

with 0

— R )

cusp

Note that M? dependence exponentiates!
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TRANSVERSE PDFs

What God has joined together, let no man separate..

IliEseperator detinition of TMD PDFs Is quite’ probiermsieenis
and I1s nowadays under active investigation'.

quote from Cherednikov and Stefanis '09. For reviews, see Collins ‘03, '08

Regularization of the individual transverse PDFs Is delicate, but

the product is well defined, and has specific dependence on the
nard momentum transfer M?.

Anomaly: Classically, (N1(p)| Xne(z+ 4+ 1)t Xre(0) [N1(p)) is invariant
under a rescaling of the momentum of the other nucleon Na.

Quantum theory needs regularization. Symmetry cannot be
recovered after removing regulator.

Not an anomaly of QCD, but of the low energy theory.



RESUMMATION
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SIMPLIFICATION FOR ¢% > Aqcp

-or perturbative values of gr we can perform an operator
broduct expansion

Ldz
z/N f :ETa / ey Z xT? ¢]/N( /Z ,LL) +O(A2QCD :UT)

Again, only the product of two Zi—;(z, 27, 1) functions is well
defined.

_FQJ@%»M)

.I2q
Zoi(2, T, 1) Tgej (22, 77, )] o = ( . ) Iji(21, @7, ) Igej (22, T, 1)

Ae—27E

Effective theory diagrams for Z;—;(z, 27, ) are not well-defined

in dm. reg.. Following Smirnov '83, we use addritional analytical
regularization, which Is very economical, since it does not
introduce additional scales into the problem.
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ANALY TICAL REGULARIZATION

hc — hc hc — hc

AR -l TR

» Raise QCD propagators carrying large momentum p, (p) to
fractional powers a, (3):

20
1 Vs

~(p—kZ—ic  [~(p— k)2 —ie] ™"

* Limit o — 0, B — 0 1s trnivial for QCD, but effective theory
diagrams have poles, which only cancel in the sum of collinear
and anti-collinear diagrams.



ANALY TICAL REGULARIZATION

Il K TR

* Regulators play double role. k.g. v regulates hc propagators
and hc Wilson line

200 =
s \ Ve T o B

n-k—ie (n kn-p—ie)

14+

* Regulator breaks invariance of anti-hard-collinear sector under
a rescaling of the hard-collinear momentump — Ap .



[-LOOP RESULT

Taking first § — 0,then o — (), one finds (L. =1 5

5 _ e X e Sy e g
Iq<—q(z7 L, :u) = 5(1 Z) I { ( ™ LJ‘) [(Oé Z V12>5(1 Z) - (]- = Z)—|—]

€

T

LAl =2 (—%+Li+g) —(l—z)}

€

anomalous M? dep.

!

Crog 1 . M?
R o — 1 2) — 5: {(—%—LL) (—a+2lny—%)(5(1—z)

€

i i _(1_2)}

b ]

In the product the 1/« divergences vanish, but anomalous M?
dependence remains.



* For the functions | and F one then obtains

Crag
RGO " 1 O(c?)

T

CF&S 2 7T2
]q<—q(zv Li,os)= I@_q(z, L= ol b il AT e — 6

O [ P ()~ (1-9)] + O(@)

TFQS

Tyeg (5, L1, 05) = Igeg(, L1, 05) = =22 | Lu Py (2) — 22(1 — 2) | + O(ad)

» Solving 1ts RG and using Davies, Stirling and VWebber '84 and
de Florian and Grazzini '0Ol, we extract the two-loop F

F ' : ’
R o) — Z‘—; ST (Z‘—;)Q [F‘Jfo L2 +TFL, + dg] Casimir scaling

Fog(L1,as) - FQQ(LJ—7 Q)
808 ) 224 ] G =

dg = CF [CA (f = 28C3 i 2—7Tpnf

All the necessary input for NNLL resummation!
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RESIUIMMIEDE RESIUIL |
e DI

==l &2

X [qu—%'] (gla f27 %7 M27 /u) ¢Z/N1 (Zl ,LL) ¢J/N2<227 ,u) + (Q7Z e Q7])]

2\ )

The hard-scattering kernel Is

2 2 lg 2 1 5 . x%]\lﬁ —Fag(x7 )
qu—>z'j(Z1,22,qT, M ,,M) = ’CV(—M ”u) — /d T, e tILTL ( )

47 de—27E

X ]q<—i(217 ﬁlf%, /'L) [(j<—j(z27 ZE?F? :u)

» Two sources of M dependence: hard function and anomaly

* Fourier transform can be evaluated numerically or
analytically, It higher-log terms are expanded out.
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RESULT IN MOMENTUM SPACE

C’ozs

Using the relation (n = 1n - )

1 4 THH - 1 (gr\" I'(1-mn)
o d2 igLTL T Ly LR
b e - (4627E) (=0h) qr (/ﬂ) e L)

one obtains an analytic expression for the rate in momentum
space.

However, the x-space result contains terms exp (—ozscLi) |
Since L is a small log for the proper scale choice, this can
formally be expanded, but higher order terms are factorially
enhanced. Frixione, Nason, Ridolfi 98

S e doUble log terms In exponent, perermiFCURIE
transform numerically.

Dk



BEHAVIOR AT VERY LOW qr

~or moderate gr, the natural scale choice Is u = gr.
This 1s no longer true at very small gr. Detailea

analysis shows that near gr= 0 the Fourier integral
s dominated by

T

2Cras(qy)

==y — Mexp ( ) = 1.75GeV for M = M,

Small scale gr drops out of integrall Spectrum Is
perturbative even at very low gr! Parisi and Petronzio '80

We choose p = max (., qr) for general gr.

B



NUMERICAL RESULTS

25

203— NLL
g s NINLL
gic; o LO

| pp-Z°+X-171"+X
bands from scale

| Vs=1.96 TeV ~ MSTW2008 | variation by factor 2

Preliminary: no matching to fixed order; narrow width
approximation, no photon contribution.

Pich



do/dqr (pb/GeV)
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[AV)
o
T

R@EE S CONPARISON WITH BEOZZBSINGS

Bozzi, Catani, Ferrera, de Florian and Grazzini, arXiv:1007.235 |

—
(@]
] T

[/ \\\ pp »Z°+X-1717+X

. Vs=1.96 TeV  MSTW2008 - INLL } our

~

~
~

Q variations e

SN result

1 TTTT o B0zzl
et al.

] NNLL+NLO

5 10 15
dr (GeV)
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Our result does not (yet!) include the matching to fixed order,

which 1s about 2pb/GeV

Taking this into account, t

el beozZzllctalf it e S

ne results are In good agreement.
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COLLINS SOPER STERMAN FORMULA

d>o Ao dz1 B
d2 —1q | T | i Yo
vtk LT DL IPS [&[E

—q, 0 =0y 2

p{ / d; [mﬂj_ﬁ( (7)) + B(a <>>]}

b

X [qu (2’1, ozs(,ub)) qu (2’2, OZS(,Ub)) (/bi/Nl (Sl/zla :ub) ¢j/N2 (SQ/Z% :ub) o <Q7Z S 67.]>

» The low scale is py, = by /x7 , and we set by = 2e7E.

» Landau-pole singularity in the Fourier transform. To use the
formula, one needs additional prescription to deal with this.
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RELATION TO CS5

If adopt the choice pt = pp = 2e77% /21 in our result reduces to CSS
formula, provided we identity

anomaly contribution

) —T" (o) — ﬁ(;)és) dg;(()zs) | g1(as) = F(0, o)

B(as) dga(as)
2 o, 92(&8) = |CV(_M27 :u)‘Q

B(Ozs) = 29%(as) + gilos) —

Cij (Za Ozs(,ub)) = ’CV( e :uga :ub) ’ [z<—j (Za Oa Oés(,ub)) )

Use these relations to derive unknown three-loop coefficient, necessary
for NNLL resummation

A®) = TF 1 25,d7 = 239.2 — 652.9
Not equal to the cusp anom. dim. as was usually assumed!

LTl



CONCLUSION

* Have performed a factorization analysis of the Drell-Yan cross section
at low transverse momentum and derived a resummed result for the

spectrum, free of large logarithms

* No Landau-pole ambiguity. Have analytic expression iIn momentum
space, which allows for simple matching to fixed order.

* Reduces to the known CSS result for a special scale choice.

» Have derived unkown three-loop coefficient A®) | the last missing
plece needed for NNLL accuracy.

* The product of two transverse PDFs is well defined but has
anomalous dependence on the large momentum transfer

» we show that this dependence exponentiates

* Phenomenological analysis at NNLL+NLO is in progress.
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