Higgs Pseudo-Observables

Sandro Uccirati *KIT*

In collaboration with G. Passarino, C. Sturm

HP2.3rd – Firenze, 14-17 September 2010

Standard Model hadronic Higgs production channels

Hahn, Heinemeyer, Maltoni, Weiglein, Willenbrock [hep-ph/0607308]

Gluon-fusion \rightsquigarrow **largest cross section**

Higgs decays in the Standard Model

W, Z

W, Z

 γ

 \dot{W}, Φ

 \underline{H}

Problems with gauge invariance: $H(P) \rightarrow \gamma(p_1) + \gamma(p_2)$

Amplitude
$$\rightarrow \qquad \mathcal{A}^{\mu\nu} = \frac{g^3 s_{\theta}^2}{16 \pi^2} \left(F_D \,\delta^{\mu\nu} + F_P \, p_2^{\mu} \, p_1^{\nu} \right).$$

Ward Identity: $F_D + p_1 \cdot p_2 F_P = 0$

Renormalization (Ren)
$$\rightarrow M_{H,0}^2 = M_H^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re} \Sigma_{HH}^{(1)}(M_H^2) \right]$$

$$F_D = F_D^{(1)} \otimes (1 + \text{Ren}) + F_D^{(2)}$$
 $F_P = F_P^{(1)} \otimes (1 + \text{Ren}) + F_P^{(2)}$

• 2-loop level $\underbrace{F_{D}^{(2)} + p_{1} \cdot p_{2} F_{P}^{(2)}}_{P} + \underbrace{(F_{D}^{(1)} + p_{1} \cdot p_{2} F_{P}^{(1)}) \otimes \operatorname{Ren}}_{H} \neq \mathbf{0}$ $\underbrace{H}_{\Phi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Phi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Phi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Phi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \underbrace{H}_{\Psi} \xrightarrow{\Phi} \underbrace{H}_{\Psi} \underbrace{H} \underbrace{H}_{\Psi} \underbrace{H} \underbrace{H}_{\Psi} \underbrace{H$

- Unstable particles can not be asymptotic states
- Higgs production and decay are not well defined

 $^{\psi}$ complete process

 $pp \rightarrow \gamma \gamma + X$

which consists of

Signal
$$\left[pp \rightarrow (gg \rightarrow H \rightarrow \gamma\gamma) + X \right]$$

+ Background

How to extract a pseudo-observable to be termed *Higgs partial decay* width into two photons which does not violate first principles?

Higgs self-energie

$$\Sigma_H(s, M_{H,0}^2) = H_{-}$$

Complex pole:
$$s_H - M_{H,0}^2 + \Sigma_H(s_H, M_{H,0}^2) = 0$$

- gauge invariant definition
- $M_{H,0}$ real by construction $\rightsquigarrow s_H = \mu_H^2 i \,\mu_H \,\gamma_H$

Dyson-resummed Higgs propagator

Amplitude for $gg \to \gamma\gamma$:

Signal

Background

In general S-matrix for $i \to f$:

$$S_{fi} = V_i(s) \Delta_H(s) V_f(s) + B_{nr}$$

= $\left[Z_H^{-1/2}(s) V_i(s) \right] \frac{1}{s - s_H} \left[Z_H^{-1/2}(s) V_f(s) \right] + B_{nr},$
 $Z_H = 1 + \Pi_H$ B_{nr} = non-resonant background

Expand the square brackets around $s = s_H$

$$S_{fi} = \frac{S(i \to H_c) S(H_c \to f)}{s - s_H} + \text{non resonant terms.}$$

where

Production:
$$S(i \to H_c) = Z_H^{-1/2}(s_H) V_i(s_H)$$

Decay: $S(H_c \to f) = Z_H^{-1/2}(s_H) V_f(s_H)$

gauge invariant order per order in perturbation theory

• Diagrams and renormalization evaluated at the complex pole

$$Z_H(s_H) = 1 + \lim_{s \to s_H} \frac{\Sigma_H(s) - \Sigma_H(s_H)}{s - s_H} = 1 + \frac{\partial \Sigma_H}{\partial s}(s_H)$$

• Universal and well-defined parametrization of experimantal data

 \Rightarrow Definition of a gauge-invariant decay width:

$$\Gamma(H_c \to f) = \frac{(2\pi)^4}{2\mu_H} \int d\Phi_f(P_H, \{p_f\}) \sum_{\text{spins}} \left| S(H_c \to f) \right|^2$$

Analytical continuation

- We have diagrams with complex external squared momenta
- We must understand how is defined the physical Riemann sheet

 $i0^+$ Feynman prescription

Example:

$$-\frac{s}{2} - \frac{m}{2} - \frac{1}{2} \Delta - \int_{0}^{1} dx \ln \chi, \qquad \chi = -s x (1-x) + m^{2} - i0^{+}$$

- Complex mass: $m^2 \rightarrow \mu^2 i\mu\gamma \quad \rightsquigarrow \quad \text{Im}\chi \text{ does not change sign}$
- Complex s: $s \to M^2 iM\Gamma \quad \rightsquigarrow \quad \text{Im}\chi \text{ changes sign } \to \text{ Problem}$

General rule: $\lim_{\gamma,\Gamma\to 0} \operatorname{Ampl}(s,m) = \operatorname{Ampl}(M^2,\mu)$ If $\operatorname{Re}\chi < 0$ and $\operatorname{Im}\chi > 0$ (second quadrant):

$$\lim_{\gamma,\Gamma_H\to 0} \operatorname{Im}[\ln \chi] = \pi \quad \neq \quad \begin{array}{l} \text{Feynman prescription for} \\ \text{real masses } (\mu^2 \to \mu^2 - i0) \end{array} = -\pi$$

• If $\text{Re}\chi < 0$ and $\text{Im}\chi > 0$ (second quadrant), we have to change the definition of the log.

Analytical continuation on the second Riemann sheet:

$$\ln(z) \to \ln^{-}(z) = \ln(z) - 2i\pi \underbrace{\theta(-\operatorname{Re}z)\,\theta(\operatorname{Im}z)}_{\text{second quadrant}} \quad \Leftrightarrow$$

move the cut on the positive imaginary axis

- This changes the computation of loop functions (analytical continuation for Li_n , HPLs, etc.)
- Change of the integration contour in integral representations:
 - The integration contour $(x \in [0, 1])$ never crosses the cut of $\ln \chi$ (negative real axis), but ...
 - ... it can cross the cut of $\ln^- \chi$ (positive imaginary axis) \rightarrow Problem

In the example this happens for

$$M^2 \ge 4\,\mu^2 \qquad \& \qquad \mu\Gamma - M\gamma \ge 0$$

${\ensuremath{\bullet}}$ Diagrams \rightarrow integrals of polynomial (quadratic in some variables)

to negative/non-integer power

• Diagrams \rightarrow integrals of polynomial (quadratic in some variables)

to negative/non-integer power

• Pick up one variable x (quadratic):

 $\chi = a \, x^2 + b \, x + c$

 $\operatorname{Re}\chi = 0, \quad \operatorname{Im}\chi = 0 \quad \rightarrow \quad \operatorname{Hyperbolas}$

- Diagrams → integrals of polynomial (quadratic in some variables) to negative/non-integer power
- Pick up one variable x (quadratic):

$$\chi = a \, x^2 + b \, x + c$$

 $\operatorname{Re}\chi = 0, \quad \operatorname{Im}\chi = 0 \quad \rightarrow \quad \operatorname{Hyperbolas}$

Find the cuts \Leftrightarrow

study intersections of hyperbolas.

- Diagrams → integrals of polynomial (quadratic in some variables) to negative/non-integer power
- Pick up one variable x (quadratic):

$$\chi = a x^2 + b x + c$$

 $\operatorname{Re}\chi = 0, \quad \operatorname{Im}\chi = 0 \quad \rightarrow \quad \operatorname{Hyperbolas}$

Find the cuts \Leftrightarrow

study intersections of hyperbolas.

- Deform just the contour of x, for general values of the others
- Deformation for the general case can be easily automatized (numerically)

Numerical effects: Notation

$\mathrm{RMRP} \rightarrow \mathrm{Real}$ Masses and Real Momenta.

The usual on-shell scheme where all masses and all Mandelstam invariants are real.

 $\mathrm{CMRP} \rightarrow \mathrm{Complex}$ Masses and Real Momenta.

The complex mass scheme (Denner-Dittmaier-Roth-Wieders [hep-ph/0505042]) with complex internal W and Z poles (extendable to top complex pole) but with real, external, on-shell Higgs and with the standard LSZ wave-function renormalization.

 $\mathrm{CMCP} \rightarrow \mathrm{Complex}$ Masses and Complex Momenta.

The (complete) complex mass scheme with complex internal W and Z poles and complex, external, Higgs where the LSZ procedure is carried out at the Higgs complex pole (on the second Riemann sheet).

Numerical effects: $H \rightarrow gg$

Numerical effects: $pp \rightarrow H$

Numerical effects: $H \rightarrow \gamma \gamma$

Summary

- Proposal for a gauge invariant parametrization of experimental distributions for Higgs physics
- Gauge invariant definition of production cross section and decay width
- Numerical effects: negligible below $t\bar{t}$ threshold, but sizable for large M_H
- Computational recipe:

Analytical continuation and contour distortion for diagrams with complex Mandelstan invariants