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The Standard Model (SM)

•• A quick introduction to non-Abelian gauge theories: many formulae but
they will look familiar!

– QED

– Yang-Mills theories

– Electroweak interactions

•• Spontaneous symmetry breaking and mass generation: the Higgs boson

•• Theoretical bounds on the mass of the Higgs boson

•• Experimental bounds on the mass of the Higgs boson

Exercise: Please, do the exercises! You will be given all the elements to solve them.
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Abelian gauge theory: QED

We start with a Lagrangian (density)

L0 = ψ̄(x) (i∂/−m)ψ(x)

invariant under a GLOBAL U(1) symmetry (θ is constant)

ψ(x) → eiqθψ(x)

∂µψ(x) → eiqθ∂µψ(x)

From Noether’s theorem, there is a conserved current:

Jµ(x) = qψ̄(x)γµψ(x) =⇒ ∂µ Jµ(x) = 0

To gauge this theory, we promote the GLOBAL U(1) symmetry to local symmetry:

ψ(x) → eiqθ(x)ψ(x)

∂µψ(x) → eiqθ(x)∂µψ(x) + iqeiqθ(x)ψ(x)∂µθ(x)
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Covariant derivative

Invent a new derivative Dµ such that

ψ(x) → eiqθ(x)ψ(x) = U(x)ψ(x)

Dµψ(x) → eiqθ(x)Dµψ(x) = U(x)Dµψ(x)

i.e. both ψ(x) and Dµψ(x) transform the same way under the U(1) local symmetry

Dµ ≡ ∂µ + iqAµ

where Aµ transforms under the local gauge symmetry as

Aµ→ Aµ − ∂µθ(x)

The commutator of the covariant derivatives gives the electric and the magnetic fields, i.e. the

field strength tensor

Fµν(x) =
1

iq
[Dµ ,Dν] =

1

iq
[∂µ + iqAµ , ∂ν + iqAν ] = ∂µAν(x)− ∂νAµ(x)

Fµν is invariant under a gauge transformation.
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From global to local symmetry

From

L0 = ψ̄(x) (i∂/−m)ψ(x)

invariant under GLOBAL U(1), to

L1 = ψ̄(x) (iD/ −m)ψ(x)

= ψ̄(x) (i∂/−m)ψ(x)− qψ̄(x)γµψ(x)Aµ(x)

invariant under LOCAL U(1) and interpret Aµ(x) as the photon field and Jµ = qψ̄γµψ as the

electromagnetic current. The only missing ingredient is the kinetic term for the photon field

L2 = L1 −
1

4
Fµν(x)F

µν(x)

L2 cannot contain a term proportional to AµAµ (a mass term for the photon field) since this term
is not gauge invariant under the local U(1)

Aµ→ Aµ − ∂µθ(x)
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Non-Abelian (Yang-Mills) gauge theories

The starting point is a Lagrangian of free or self-interacting fields, that is symmetric under a

GLOBAL symmetry

Lψ(ψ, ∂µψ)

where

ψ =








ψ1
...

ψn








= multiplet of a compact Lie group G

The Lagrangian is symmetric under the transformation

ψ→ψ′ = U(θ)ψ U(θ) = exp(igTaθa) unitary matrix UU† = U†U = 1

If U is unitary, the Ta are hermitian, and are called group generators (they “generate”

infinitesimal transformation around the unity

U(θ) = 1+ igTaθa +O
(

θ2
)

If U ∈ SU(N) matrix (unitary and detU = 1), then there are N2 − 1 traceless, hermitian
generators Ta = λa/2.

Exercise: Show this.



Gauging the symmetry

The generators satisfy the relation
[

Ta, Tb
]

= i f abcTc

and the f abc are called the structure functions of the group G. The starting hypothesis is that L is
invariant under G

Lψ(ψ, ∂µψ) = Lψ(ψ′, ∂µψ′) ψ′ = U(θ)ψ

Gauging the symmetry means to allow the parameters θa to be function of the space-time

coordinates θa→θa(x) so that =⇒ U→U(x)

U(x) = 1+ igTaθa(x) +O
(

θ2
)
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From ∂µ →Dµ

We obtain a LOCAL invariant Lagrangian if we make the substitution

Lψ(ψ, ∂µψ)→Lψ(ψ,Dµψ) Dµ = ∂µ − igAaµ(x)Ta ≡ ∂µ − igAµ(x)

with the transformation properties

ψ(x) → U(x)ψ(x) =
(

1+ igθa Ta + O(θ2)
)

ψ(x)

Dµ → U(x)Dµψ(x) = U(x)DµU
−1(x)U(x)ψ(x)

i.e. the covariant derivative must transform as

Dµ→U(x)DµU
−1(x) implying Aaµ→ Aaµ + ∂µθa(x) + g f abcAbµθ

c + O(θ2)

We can build a kinetic term for the Aaµ fields from

Fµν = Faµν T
a =

i

g
[Dµ ,Dν] with Faµν = ∂µAaν − ∂νAaµ + g f abcAbµA

c
ν

which transforms homogeneously under a local gauge transformation

Fµν→UFµνU−1 =⇒ FaµνF
µν
a ≡ Tr FµνFµν→ TrUFµνU−1UFµνU−1 = Tr FµνF

µν

where FaµνF
µν
a is gauge invariant (F

a
µν in not singularly gauge-invariant).



The Lagrangian for gauge and matter field

Gauge invariant Yang-Mills (YM) Lagrangian for gauge and matter fields

LYM = −1
4
FaµνF

µν
a +Lψ(ψ,Dµψ)

where

Dµ = ∂µ − igAaµTa
Faµν = ∂µAaν − ∂νAaµ + g f abcAbµA

c
ν

[

Ta, Tb
]

= i f abcTc
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Remarks on Yang-Mills theories

•• Mass terms AaµAµa for the gauge bosons are NOT gauge invariant!
No mass term is allowed in the Lagrangian.

Gauge bosons of (unbroken) YM theories are massless.

•• From the FaµνFµνa =
(
∂µAaν − ∂νAaµ + g f abcAbµA

c
ν

)(
∂µAνa − ∂νAµa + g fabcA

µ
b A

ν
c

)
part of the

Lagrangian, we have cubic and quartic gauge boson self interactions

•• gauge invariance, Lorentz structure and renormalizability (absence of higher powers of
fields and covariant derivatives in L) determines gauge-boson/matter couplings and
gauge-boson self interaction

•• if G =SUc(N = 3) and the fermion are in triplets,

ψ =







ψred

ψblue

ψgreen







=







ψ1

ψ2

ψ3







we have the QCD Lagrangian and N2 − 1 = 8 gauge bosons = gluons.

Exercise: Derive the form of the three- and four-gluon vertex starting from gauge invariance,

Lorentz structure and renormalizability of the Lagrangian.



Electroweak sector

From experimental facts (charged currents couple only with left-handed fermions, the existence

of a massless photon and a neutral Z. . . ), the electroweak group is chosen to be SU(2)L× U(1)Y.

ψL ≡
1

2
(1− γ5)ψ ψR ≡ 1

2
(1+ γ5)ψ ψ = ψL +ψR

LL ≡
1

2
(1−γ5)




νe

e



 =




νeL

eL



 νeR ≡ 1
2
(1+ γ5)νe eR ≡ 1

2
(1+γ5)e

•• SU(2)L: weak isospin group. Three generators =⇒ three gauge bosons: W1,W2 andW3.
The generators for doublets are Ta = σ a/2, whereσ a are the 3 Pauli matrices (when acting on

the gauge singlet eR and νR, T
a ≡ 0), and they satisfy

[

σ a,σb
]

= iǫabcσ c.

The gauge coupling will be indicated with g.

•• U(1)Y: weak hypercharge Y. One gauge boson B with gauge coupling g′.
One generator (charge) Y(ψ), whose value depends on the corresponding field.



Gauging the symmetry: fermionic Lagrangian

Following the gauging recipe (for one generation of leptons. Quarks work the same way)

Lψ = i L̄L D/ LL + i ν̄eR D/ νeR + i ēR D/ eR

where

Dµ = ∂µ − igWµ
i T
i − ig′Y(ψ)

2
Bµ Ti =

σ i

2
or Ti = 0 i = 1, 2, 3

Lψ ≡ Lkin +LCC +LNC

Lkin = i L̄L ∂/ LL + i ν̄eR ∂/νeR + i ēR ∂/ eR
LCC = gW1µ L̄L γ

µ σ1

2
LL + gW2µ L̄L γ

µ σ2

2
LL =

g√
2
W+
µ L̄L γ

µ σ+ LL +
g√
2
W−
µ L̄L γ

µ σ− LL

=
g√
2
W+
µ ν̄L γ

µ eL +
g√
2
W−
µ ēL γ

µ νL

LNC =
g

2
W3µ [ν̄eL γ

µ νeL − ēL γµ eL] +
g′

2
Bµ

[

Y(L) (ν̄eL γ
µ νeL + ēL γ

µ eL)

+Y(νeR) ν̄eR γ
µ νeR +Y(eR) ēR γ

µ eR

]

with

W±
µ =

1√
2

(

W1µ ∓ iW2µ
)

σ± =
1

2

(

σ1 ± iσ2
)



Electroweak unification

LNC =
g

2
W3µ [ν̄eL γ

µ νeL − ēL γµ eL] +
g′

2
Bµ
[

Y(L) (ν̄eL γ
µ νeL + ēL γ

µ eL)

+Y(νeR) ν̄eR γ
µ νeR +Y(eR) ēR γ

µ eR

]

NeitherW3µ nor Bµ can be interpreted as the photon field Aµ, since they couple to neutral fields.

Ψ ≡










νeL

eL

νeR

eR










T3 ≡










1/2 0

0 −1/2
0

0










Y ≡










Y(L)

Y(L)

Y(νeR)

Y(eR)










LNC = g Ψ̄γµ T3 ΨW3µ + g′ Ψ̄γµ
Y
2
Ψ Bµ
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Weak mixing angle

We perform a rotation of an angle θW , the Weinberg angle, in the space of the two neutral gauge

fields (W3µ and Bµ). We use an orthogonal transformation in order to keep the kinetic terms

diagonal in the vector fields

Bµ = Aµ cosθW − Zµ sinθW
W3µ = Aµ sinθW + Zµ cosθW

so that

LNC = Ψ̄γµ
[

g sinθW T3 + g′ cosθW
Y
2

]

Ψ Aµ + Ψ̄γµ
[

g cosθW T3 − g′ sinθW
Y
2

]

Ψ Zµ

We can identify Aµ with the photon field provided

eQ = g sinθW T3 + g′ cosθW
Y
2

Q = electromagnetic charge

The weak hypercharges Y appear only through the combination g′ Y . We use this freedom to fix

Y(L) = −1
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Weak mixing angle

With this choice, the doublet of left-handed leptons gives
(

eQ = g sinθW T3 + g′ cosθW Y
2

)

0 =
g

2
sinθW − g

′

2
cosθW

−e = − g
2
sinθW − g

′

2
cosθW

so that

g sinθW = g′ cosθW = e

and

Q = T3 +
Y
2

Gell-Mann–Nishijima formula.

From this formula we have Y(νeR) = 0 and Y(eR) = −2.
Notice that the right-handed neutrino has zero charge, zero hypercharge and it is in a SU(2)

singlet: it does not take part in electroweak interactions.

Exercise: Verify that, with the previous hypercharge assignments, one can generate the correct

electromagnetic current.
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The neutral current

LNC = Ψ̄γµ
[

g sinθW T3 + g′ cosθW
Y
2

]

Ψ Aµ + Ψ̄γµ
[

g cosθW T3 − g′ sinθW
Y
2

]

Ψ Zµ

= e Ψ̄γµQΨ Aµ + Ψ̄γµQZΨ Zµ

where QZ is a diagonal matrix given by

QZ =
e

cosθW sinθW

(

T3 −Q sin2θW
)

Exercise: Show this.

We can proceed, in a similar way, with quarks (see more later)

QiL =




uL

dL



 ,




cL

sL



 ,




tL

bL




uiR = uR, cR, tR

diR = dR, sR, bR
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Fermion fields of the SM and gauge quantum numbers

SU(3) SU(2) U(1)Y Q = T3 + Y
2

QiL =




uL

dL








cL

sL








tL

bL



 3 2 1
3

2
3

− 13

uiR = uR cR tR 3 1 4
3

2
3

diR = dR sR bR 3 1 − 23 − 13

LiL =




νeL

eL








νµL

µL








ντL

τL



 1 2 −1 0

−1

eiR = eR µR τR 1 1 −2 −1

νiR = νeR νµR ντR 1 1 0 0



Electroweak gauge-boson sector

Gauge invariance and renormalizability completely determine the kinetic terms for the gauge

bosons

LYM = −1
4
BµνB

µν − 1
4
WaµνW

µν
a

Bµν = ∂µBν − ∂νBµ

Waµν = ∂µWaν − ∂νWaµ + gǫabcWb,µWc,ν

The gauge symmetry does NOT allow any mass terms forW± and Z.

Mass terms for gauge bosons

Lmass =
1

2
m2A Aµ A

µ

are not invariant under a gauge transformation

Aµ → U(x)

(

Aµ +
i

g
∂µ
)

U−1(x)

However, the gauge bosons of weak interactions are massive (short range of weak interactions).



Symmetries and conservation laws

To any continuous symmetry of the Lagrangian we can associate a conservation law and a

conserved current.

Noether’s theorem: if, without using the equation of motion, one can show that the Lagrangian

density changes by a total divergence under and infinitesimal transformation

φ→ φ+ δφ ∼ φ+ i δθφ
(

φ j → φ j + i δθ
a tajkφk

)

δθ ≪ 1

δL (φ, ∂φ) = δθ ∂µKµ δS = 0

then

Jµ =
δL
δ ∂µφ

δφ− Kµ is conserved ∂µ Jµ = 0

Important consequences

✓

Q =
∫

d3x J0(~x, t)

is conserved (dQ/dt = 0) and is a Lorentz scalar

✓ After canonical quantization, i δθ [Q,φ] = δφ, hence Q generates the symmetry acting on the

fields



Symmetries in quantum field theories

Two ways of realizing symmetries in a QFT. Suppose we have a charge Q (obtained from

Noether’s theorem) that commutes with the Hamiltonian [Q,H] = 0. Then

•• Wigner–Weyl
[Q,H] = 0 Q|0〉 = 0

The spectrum falls in explicit multiplets of the symmetry group (the vacuum |0〉 is the state
of lowest energy)

•• Nambu–Goldstone
[Q,H] = 0 Q|0〉 6= 0

The symmetry is not manifest in the spectrum.

There is a third way too: the anomalous symmetries. In this case, the classical theory respects the

symmetry, that is violated by quantum fluctuations

∂µ Jµ = 0+O(h̄)

As we have stressed up to now, another important distinction is between global and local

symmetries.



Spontaneous symmetry breaking

A symmetry is said to be spontaneously broken when the vacuum state is not invariant

exp (i δθ a ta) |0〉 6= |0〉 =⇒ Qa|0〉 6= 0

This condition is equivalent to the existence of some set of fields operatorsφk with non-trivial

transformation property under that symmetry transformation, and non-vanishing vacuum

expectation values

〈0|φk|0〉 = vk 6= 0
Proof

If the set of fieldsφ j transforms non-trivially

φ j →
(

ei δθ
a ta
)

jk
φk ∼ φ j + i δθ a tajkφk

︸ ︷︷ ︸

δφ j

= φ j + i δθ
a
[
Qa,φ j

]

Taking the expectation value on the vacuum

tajk 〈0|φk|0〉 = 〈0|
[
Qa,φ j

]
|0〉6= 0 ⇐⇒ Qa|0〉 6= 0
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Spontaneous symmetry breaking

Observations

•• Experimentally, the space is isotropic, soφk must be a scalar, otherwise its
vacuum expectation value would be frame-dependent.

•• Experimentally, the space is homogeneous, so that 〈0|φk|0〉 is a constant.
In fact, if the vacuum state is invariant under translations

〈0|φk(x)|0〉 = 〈0|eiPxφk(0)e−iPx|0〉 = 〈0|φk(0)|0〉

•• φk is not necessarily an elementary field
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Spontaneous symmetry breaking in the SM

✓ Experimentally, the weak bosons have masses.

✓ The only way to introduce masses for theW and Z vector bosons, without

spoiling unitarity and renormalizability, is spontaneous breaking of the

gauge symmetry.

✓ The simplest way is through the (minimal) Higgs mechanism.
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Spontaneous symmetry breaking in the SM

We give mass to the gauge bosons through the Higgs mechanism: generate mass terms from the

kinetic energy term of a scalar doublet field Φ that undergoes a broken-symmetry process.

Introduce a complex scalar doublet: four scalar real fields (why will become clear later)

Φ =




φ+

φ0



 , Y(Φ) = 1

LHiggs = (DµΦ)†(DµΦ)−V
(

Φ†Φ
)

Dµ = ∂µ − igWµ
i

σ i

2
− ig′Y(Φ)

2
Bµ

V
(

Φ†Φ
)

= −µ2Φ†Φ + λ
(

Φ†Φ
)2
, µ2, λ > 0

Notice the “wrong” mass sign.

)
V
(|

Φ+ |
0

Φ| ,
|

|Φ +|

Φ0||

µ <02

µ>02

v/ 2

V
(
Φ†Φ

)
is SU(2)L×U(1)Y symmetric.

• The reason why Y(Φ) = 1 is not to break electric-charge conservation.

• Charge assignment for the Higgs doublets is done according to Q = T3 +Y/2.



Spontaneous symmetry breaking

The potential has a minimum in correspondence of

|Φ|2 =
µ2

2λ
≡ v

2

2

All these minimum configurations (ground states) are connected by gauge transformations, that

change the phase of the complex field Φ, without affecting its modulus.

v is called the vacuum expectation value (VEV) of the neutral component of the Higgs doublet.

When the system chooses one of the minimum configura-

tions, this configuration is no longer symmetric under the

the gauge symmetry.

This is called spontaneous symmetry breaking.

The Lagrangian is still gauge invariant and all the prop-

erties connected with that (such that current conservation)

are still there!

6
q)

V (�)
�1 �2



Expanding Φ around the minimum

Φ =




φ+

φ0



 =




φ+

1√
2
[v+ H(x) + iχ(x)]



 =
1√
2
exp

[
iσiθ

i(x)

v

]



0

v+ H(x)





We can rotate away the fields θi(x) by an SU(2)L gauge transformation

Φ(x)→Φ′(x) = U(x)Φ(x) =
1√
2




0

v+ H(x)





where U(x) = exp
[

− iσiθi(x)v

]

.

This gauge choice is called unitary gauge, and is equivalent to absorbing the Goldstone modes

θi(x). Three would-be Goldstone bosons “eaten up” by three vector bosons (W±, Z) that acquire

mass. This is why we introduced a complex scalar doublet (four elementary fields).

The vacuum state can be chosen to correspond to the vacuum expectation value

Φ0 =
1√
2




0

v





Carlo Oleari Introduction to EW theory and Higgs boson physics at the LHC 25



SU(2)L× U(1)Y → U(1)em

We can easily verify that the vacuum state breaks the gauge symmetry.

A state Φ̃ is invariant under a symmetry operation exp(igTaθa) if

exp(igTaθa)Φ̃ = Φ̃

This means that a state is invariant if (just expand the exponent)

TaΦ̃ = 0

For the SU(2)L× U(1)Y case we have

σ1Φ0 =




0 1

1 0








0

v/
√
2



 =




v/

√
2

0



 6= 0 broken

σ2Φ0 =




0 −i
i 0








0

v/
√
2



 =




−iv/

√
2

0



 6= 0 broken
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SU(2)L× U(1)Y → U(1)em

σ3Φ0 =




1 0

0 −1








0

v/
√
2



 =




0

−v/
√
2



 6= 0 broken

YΦ0 = Y(Φ)




0

v/
√
2



 = +1




0

v/
√
2



 6= 0 broken

But, if we examine the effect of the electric charge operator Q̂ = Y/2+ T3 on the (electrically

neutral) vacuum state, we have (Y(Φ) = 1)

Q̂Φ0 =
1

2
(σ3 +Y)Φ0 =

1

2




Y(Φ) + 1 0

0 Y(Φ)− 1



Φ0 =




1 0

0 0








0

v/
√
2



 =




0

0





the electric charge symmetry is unbroken!
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Consequences for the scalar field H

The scalar potential

V
(

Φ†Φ
)

= −µ2Φ†Φ + λ
(

Φ†Φ
)2

expanded around the vacuum state

Φ(x) =
1√
2




0

v+ H(x)





becomes

V =
1

2

(

2λv2
)

H2 + λvH3 +
λ

4
H4 − λ

4
v4

•• the scalar field H gets a mass
m2H = 2λv2

•• there is a term of cubic and quartic self-coupling.
•• a constant term: the cosmological constant (irrelevant in the Standard Model)

ρH ≡ λ

4
v4 =

v2m2H
8



Cosmological constant

Up to now, we don’t have a theory of gravitation. Gravitational interactions are commonly

introduced by replacing ∂µ by an appropriate derivative Dµ, containing the gravitation field

gµν ≡ ηµν +κhµν ηµν ≡








1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1








Furthermore, the Lagrangian must be given the overall factor
√

− det(gµν). At this point, the
addition of a constant to the Lagrangian is of physical consequence.

The coefficient of the term that contains no other field dependence other than
√

− det(gµν) is the
cosmological constant.

Rµν −
1

2
gµνR+ Cgµν = −8πGNTµν

where Rµν is the curvature tensor, and Tµν is the energy-matter tensor. A non-zero value implies

that a curved Universe in the absence of energy-matter. The cosmological constant defines the

curvature of the vacuum.
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Cosmological constant

Experimentally the Universe is known to be very flat, with a very tiny vacuum energy density

ρvac ≤ 10−46 GeV4

Inserting the current experimental lower bound for the Higgs boson mass, mH ≥ 114 GeV, and
the value of v = 246.22 GeV (see more later), we find

ρH ≥ 108 GeV4

some 54 order of magnitude larger than the upper bound inferred from the cosmological

constant!

The smallness of the cosmological constant needs to be explained.

Either we must find a separate principle to zero the vacuum energy density of the Higgs field, or

we may suppose that a proper quantum theory of gravity, in combination with the other

interactions, will resolve the puzzle of the cosmological constant.

The vacuum energy problem must be an important clue. But to what?
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Kinetic terms

DµΦ =

(

∂µ − igWµ
i

σ i

2
− ig′ 1

2
Bµ
)
1√
2




0

v+ H(x)





=
1√
2




0

∂µH



− i

2
√
2



g




Wµ
3 Wµ

1 − iW
µ
2

Wµ
1 + iWµ

2 −Wµ
3



+ g′Bµ








0

v+ H





=
1√
2








0

∂µH



− i
2
(v+ H)




g
(
Wµ
1 − iW

µ
2

)

−gWµ
3 + g′Bµ









=
1√
2








0

∂µH



− i
2

(

1+
H

v

)



gvWµ+

−v
√

(g2 + g′2)/2Zµ









(DµΦ)† DµΦ =
1

2
∂µH∂µH +

[
( gv

2

)2
Wµ+W−

µ +
1

2

(
g2 + g′2

)
v2

4
ZµZµ

](

1+
H

v

)2

Exercise: Show this.



Consequences

•• TheW and Z gauge bosons have acquired masses

m2W =
g2v2

4
m2Z =

(
g2 + g′2

)
v2

4
=

m2W
cos2θW

From the measured value of the Fermi constant GF

GF√
2

=

(
g

2
√
2

)2 1

m2W
=⇒ v =

√

1√
2GF

≈ 246.22 GeV

•• the photon stays massless
•• HWW and HZZ couplings from 2H/v term (and HHWW and HHZZ couplings from H2/v2

term)

LHVV =
2m2W
v
W+
µ W

−µH +
m2Z
v
ZµZµH ≡ gmwW+

µ W
−µH +

1

2

gmZ
cosθW

ZµZµH

Higgs coupling proportional to mass

•• tree-level HVV (V = vector boson) coupling requires VEV!
Normal scalar couplings give Φ†ΦV or Φ†ΦVV couplings only.



Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −Γ i jd Q̄′ i
LΦd

′ j
R − Γ i j∗d d̄′ iRΦ†Q′ j

L

−Γ i ju Q̄′ i
LΦcu

′ j
R + h.c.

−Γ i je L̄iLΦe
j
R + h.c.

−Γ i jν L̄iLΦcν
j
R + h.c.

Φc = iσ2Φ
∗ =

1√
2




v+ H(x)

0





where Q′, u′ and d′ are quark fields that are generic linear combination of the mass eigenstates u
and d and Γu, Γd and Γe are 3× 3 complex matrices in generation space, spanned by the indices i
and j.

LYukawa is Lorentz invariant, gauge invariant and renormalizable, and therefore it can (actually it
must) be included in the Lagrangian.

Notice: neutrino masses can be implemented via the Γν term. Since mν ≈ 0, we neglect it.



Expanding around the vacuum state

In the unitary gauge we have

Q̄′ i
L Φ d

′ j
R =

(

ū′ iL d̄
′ i
L

)




0

v+H√
2



 d
′ j
R =

v+ H√
2
d̄′ iL d

′ j
R

Q̄′ i
L Φc u

′ j
R =

(

ū′ iL d̄
′ i
L

)





v+H√
2

0



 u
′ j
R =

v+ H√
2
ū′ iL u

′ j
R

and we obtain

LYukawa = −Γ i jd
v+ H√
2
d̄′ iL d

′ j
R − Γ i ju

v+ H√
2
ū′ iL u

′ j
R − Γ i je

v+ H√
2
ēiL e

j
R + h.c.

= −
[

M
i j
u ū

′ i
L u

′ j
R +M

i j
d d̄

′ i
L d

′ j
R +M

i j
e ē
i
L e
j
R + h.c.

] (

1+
H

v

)

Mi j = Γ i j
v√
2
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A little help from linear algebra

Theorem: For any generic complex squared matrix C, there exist

two unitary matricesU, V such that

D = U† CV

is diagonal with real positive entries
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Diagonalizing M f

Using the previous theorem, we know that we can diagonalize the matrix M f

( f = u, d, e) with the help of two unitary matrices,U
f
L and U

f
R

(

U
f
L

)†
M f U

f
R = diagonal with real positive entries

For example:

(UuL)
†MuUuR =







mu 0 0

0 mc 0

0 0 mt







(

UdL

)†
Md U

d
R =







md 0 0

0 ms 0

0 0 mb






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Mass terms

We can make the following change of fermionic fields

f ′Li =
(

U
f
L

)

i j
fLj f ′Ri =

(

U
f
R

)

i j
fRj

LYukawa = − ∑
f ′ ,i, j
f̄ ′ iL M

i j
f f

′ j
R

(

1+
H

v

)

+ h.c.

= − ∑
f ,i, j

f̄ iL

[(

U
f
L

)†
M f U

f
R

]

i j

f
j
R

(

1+
H

v

)

+ h.c.

= −∑
f

m f
(
f̄L fR + f̄R fL

)
(

1+
H

v

)

•• We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling
proportional to the fermion mass.

•• Notice that the fermionic field redefinition preserves the form of the kinetic terms in the
Lagrangian (ψ̄/∂ψ = ψ̄R /∂ψR + ψ̄L /∂ψL invariant for left and right field unitary
transformation).

•• The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.



Mass diagonalization and charged current interaction

The charged current interaction is given by

e√
2 sinθW

ū′ iL /W
+ d′ iL + h.c.

After the mass diagonalization described previously, this term becomes

e√
2 sinθW

ūiL

[

(UuL)
†UdL

]

i j
/W+d

j
L + h.c.

and we define the Cabibbo-Kobayashi-Maskawa matrix VCKM

VCKM = (UuL)
†UdL

•• VCKM is a complex not diagonal matrix and then it mixes the flavors of the different quarks.
•• For N flavour families, VCKM depends on (N − 1)2 parameters. (N − 1)(N− 2)/2 of them
are complex phases. For N = 3 there is one complex phase and this implies violation of the

CP symmetry (first observed in the K0-K̄0 system in 1964).

•• It is a unitary matrix and the values of its entries must be determined from experiments.
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Feynman rules for Higgs couplings

H

f

f

−im fv

H

Wµ
+

Wν
-

ig mW gµν

H

Zµ

Zν

i g 1
cosθW

mZ gµν

Within the Standard Model, the Higgs couplings are almost completely constrained. The only

free parameter (not yet measured) is the Higgs mass

m2H = 2λv2



Constraints on the Higgs boson mass

We have found that the Higgs boson mass is related to the value of the quartic Higgs coupling λ

LHiggs = (DµΦ)†(DµΦ)−V
(

Φ†Φ
)

V
(

Φ†Φ
)

= −µ2Φ†Φ+ λ
(

Φ†Φ
)2

leads to

m2H = 2λv2

So far we have measured neither mH nor λ =⇒ no direct experimental information.

This raises several questions

•• Can we get rid of the Higgs boson by setting mH = ∞ and λ = ∞? Can we eliminate the

Higgs boson from the SM?

•• Does consistency of the SM as a renormalizable field theory provide constraints?

•• Is there indirect information on mH, e.g. from precision observables and loop effects?

Carlo Oleari Introduction to EW theory and Higgs boson physics at the LHC 40



The perturbative unitary bound

A very severe constraint on the Higgs boson mass comes from unitarity of the scattering

amplitude.

unitarity⇐⇒ probability
and probability is the link between the theoretical calculations and reality!

Considering the elastic scattering of longitudinally polarized Z bosons

ZLZL→ ZLZL

M = −m
2
H

v2

[

s

s−m2H
+

t

t−m2H
+

u

u−m2H

]

in the s≫ m2Z limit

where s, t and u are the usual Mandelstam variables.

The perturbative unitary bound on the J = 0 partial amplitude takes the form

|M0|2 =

[

3

16π

m2H
v2

]2

< 1 =⇒ mH <

√

16π

3
v ≈ 1 TeV

More restrictive bounds (∼ 800 GeV) are obtained with other scattering processes, such as
ZLWL→ ZLWL



The perturbative unitary bound

If the bound is respected, weak interactions remain weak at all

energies, and perturbation theory is everywhere reliable.

If the bound is violated, perturbation theory breaks down, and

weak interactions among W±, Z and H become strong on the
1 TeV scale.
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Running of λ

The one-loop renormalization group equation (RGE) for λ(µ) is

dλ(µ)

d logµ2
=

1

16π2

[

12λ2 +
3

8
g4 +

3

16

(

g2 + g′2
)2

−3h4t − 3λg2 −
3

2
λ
(

g2 + g′2
)

+ 6λh2t

]

where

mt =
htv√
2

m2H = 2λv2

This equation must be solved together with the one-loop RGEs for the gauge and Yukawa

couplings, which, in the Standard Model, are given by

dg(µ)

d logµ2
=

1

32π2

(

− 19
6
g3
)

dg′(µ)

d logµ2
=

1

32π2
41

6
g′3

dgs(µ)

d logµ2
=

1

32π2

(

−7g3s
)

dht(µ)

d logµ2
=

1

32π2

[
9

2
h3t −

(

8g2s +
9

4
g2 +

17

12
g′2
)

ht

]

here gs is the strong interaction coupling constant, and the MS scheme is adopted.



Solutions for λ(µ)

Solving this system of coupled equations with the initial condition

λ (mH) =
m2H
2v2



Lower bound for mH : vacuum stability

It can be shown that the requirement that the Higgs potential be bounded from below, even after

the inclusion of radiative corrections, is fulfilled if λ(µ) stays positive, at least up to a certain

scale µ ≈ Λ, the maximum energy scale at which the theory can be considered reliable (use

effective action).

✗ This limit is extremely sensitive to the top-quark mass.

✓ The stability lower bound can be relaxed by allowing metastability
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Upper bound for mH : triviality bound

For large values of the Higgs boson mass, the coupling

λ(µ) grows with increasing µ, and eventually leaves the

perturbative domain (λ <∼ 1): the solution has a singular-
ity in µ , known as the Landau singularity.

For the theory to make sense up to a scale Λ, we must ask

λ(µ) <∼ 1 (or something similar), for µ ≤ Λ.

Neglecting gauge and Yukawa coupling, we have

λ(µ2) =
λ(m2H)

1− 3
4π2
λ(m2H) log µ2

m2H

singular when µ2 ≈ Λ2L ≡ m2H exp
[

4π2

3λ
(
m2H
)

]

•• For any value of λ
(
m2H
)
the theory

has an upper scale Λ of validity.

•• Λ→∞ for pure scalar theory pos-

sible only if λ(m2H) ≡ 0, i.e. no

scalar self-coupling =⇒ free or

“trivial” theory



Higgs boson mass bounds

Riesselmann, hep-ph/9711456

Notice the small window 150 GeV < mH < 180 GeV, where the theory is valid up to

the Planck scale MPlanck = (h̄c/GNewton)
1/2 ≈ 1.22× 1019 GeV.



Hierarchy, naturalness and fine tuning

Apart from the considerations made up to now, the SM must be considered as an effective

low-energy theory: at very high energy new phenomena take place that are not described by the

SM (gravitation is an obvious example) =⇒ other scales have to be considered.
Why the weak scale (∼ 102 GeV) is much smaller than other relevant scales, such as the Planck
mass (≈ 1019 GeV) or the unification scale (≈ 1016 GeV) (or why the Planck scale is so high with
respect to the weak scale =⇒ extra dimensions)?

This is the hierarchy problem.

And this problem is especially difficult to solve in the SM because of the un-naturalness of the

Higgs boson mass.

As we have seen and as the experimental data suggest, the Higgs boson mass is of the same

order of the weak scale. However, it’s not naturally small, in the sense that there is no

approximate symmetry that prevent it from receiving large radiative corrections.

As a consequence, it naturally tends to become as heavy as the heaviest degree of freedom in the

underlying theory (Planck mass, unification scale).
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Toy model

Two scalars interacting through the potential

V(ϕ,Φ) =
m2

2
ϕ2 +

M2

2
Φ2 +

λ

4!
ϕ4 +

σ

4!
Φ4 +

δ

4
ϕ2Φ2

which is the most general renormalizable potential, if we require the symmetry underϕ→ −ϕ
and Φ→ −Φ. We assume that M2 ≫ m2. Let’s check if this hierarchy is conserved at the
quantum level. Compute the one-loop radiative corrections to the pole mass m2

m2pole = m2(µ2) +
λm2

32π2

(

log
m2

µ2
− 1
)

+
δM2

32π2

(

log
M2

µ2
− 1
)

where the running mass m2(µ2) obeys the RGE

dm2(µ2)

d logµ2
=

1

32π2

(

λm2 + δM2
)

Corrections to m2 proportional to M2 appear at one loop. One can choose µ2 ≈ M2 to get rid of
them, but they reappear through the running of m2(µ2).
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Toy model, cont’d

The only way to preserve the hierarchy m2 ≪ M2 is carefully choosing the coupling constants

λm2 ≈ δM2

and this requires fixing the renormalized coupling constants with and unnaturally high accuracy

λ

δ
≈ m

2

M2

This is what is usually called the fine tuning of the parameters.

The same happens if the theory is spontaneously broken (m2 < 0, M2 ≫ |m2| > 0).

Therefore, without a suitable fine tuning of the parameters, the mass of the scalar Higgs boson

naturally becomes as large as the largest energy scale in the theory. And this is related to the fact

that no extra symmetry is recovered when the scalar masses vanish, in contrast to what happens

to fermions, where the chiral symmetry prevents the dependence from powers of higher scales,

and gives a typical logarithmic dependence.
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Solutions to the naturalness problem?

Leaving the toy model and back to the Standard Model, the corrections to m2H due to a top-quark

loop is given by

δm2H =
3GFm

2
t√

2π2
Λ2 ≈ (0.27Λ)2

where we are assuming that the scale Λ that characterizes non-standard physics acts as a cut-off

for the loop momentum.

So, how can we prevent these large corrections to the Higgs boson mass?

•• SUperSYmmetry offers a solution to the naturalness problem: exploiting the fact that
fermion loops contribute with an overall minus sign (because of Fermi statistics), SUSY

balances the contributions of fermion and boson loops.

In the limit of unbroken SUSY, in which the masses of bosons are degenerate with those of

their fermion counterparts, the cancellation is exact.

If the supersymmetry is broken (as it must be in our world), the contribution of the integrals

may still be acceptably small if the fermion-boson mass splittings ∆M are not too large. The

condition that g2∆M2 be “small enough” leads to the requirement that superpartner masses

be less than about 1 TeV.



Solutions to the naturalness problem?

•• A second solution is offered by theories of dynamical symmetry breaking
such as technicolor. In technicolor models, the Higgs boson is compos-

ite, and new physics arises on the scale of its binding, ΛTC ≃ O (1 TeV).

Thus the effective range of integration is cut off, and mass shifts are under

control.

•• A third possibility is that the gauge sector becomes strongly interacting.
This would give rise to WW resonances, multiple production of gauge

bosons, and other new phenomena at energies of 1 TeV or so.
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Constraints from precision data

α =
1

4π

g2g′2

g2 + g′2
=

1

137.03599976(50)

GF =
1√
2v2

= 1.16637(1)× 10−5 GeV−2

mZ =
1

2

√

g2 + g′2 v = 91.1875(21) GeV ,

where the uncertainty is given in parentheses. The value ofα is extracted from low-energy

experiments, GF is extracted from the muon lifetime, and mZ is measured from e
+e− annihilation

near the Z mass.

We can express mW as

m2W =
1

sin2 θW

πα√
2GF

where

sin2 θW = 1− m
2
W

m2Z
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Clues to the Higgs boson mass

From the sensitivity of electroweak observables to the mass of the top quark, we are able to

measure its mass, even without directly producing it

W W

t

b

Z Z

t

t

These quantum corrections alter the link betweenW and Z boson masses

m2W =
1

sin2 θW (1− ∆ρ)
πα√
2GF

∆ρ(top) ≈ − 3GF

8π2
√
2

1

tan2 θW
m2t

The strong dependence on m2t accounts for the precision of the top-quark mass estimates derived

from electroweak observables.
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The Higgs boson quantum corrections are typically smaller than the top-quark corrections, and

exhibit a more subtle dependence on mH than the m
2
t dependence of the top-quark corrections.

H

+

H

∆ρ(Higgs) =
11GFm

2
Z cos

2θW

24
√
2π2

log

(

m2H
m2W

)

Since mZ has been determined at LEP to 23 ppm, it is interesting to examine the dependence of

mW upon mt and mH .

Indirect measurements of mW and mt (solid line)

Direct measurements of mW and mt (dotted line)

mt = 170.9± 1.8 GeV
mW = 80.398± 0.025 GeV

both shown as one-standard-deviation regions.
80.3

80.4

80.5

150 175 200

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

The indirect and direct determinations are in reasonable agreement and both favor a light Higgs

boson, within the framework of the SM.



Summary of EW precision data

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Better estimates of the SM Higgs boson mass

are obtained by combining all available data.

Summary of electroweak precision measure-

ments (status winter 2007) are given on LEP-

EWWG page

http://lepewwg.web.cern.ch/LEPEWWG

Exercise: Derive the slope of the lines of constant Higgs mass of the previous slide and compare

numerically with the plot.



Blue band plot

The indication for a light Higgs boson becomes

somewhat stronger when all the electroweak ob-

servables are examined.

mH = 76+33−24 GeV

Including theory uncertainty

mH < 144 GeV (95%CL)

Direct search limit from LEP

mH > 114.4 GeV (95%CL)

But the χ2 of the fit is very bad!

χ2/dof = 25.4/15

χ2/dof = 16.8/14 without NuTeV

0
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∆χ

2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

mLimit = 144 GeV



Up to now. . .

Peter W. Higgs, University of Edinburgh

⇐=

Only unambiguous example of

observed Higgs

(D. Froidevaux, HCP School, 2007)



Final remarks

The Standard Model is not the whole story

Open questions

✗ gravity

✗ neutrino masses and oscillations (heavy sterile neutrinos + see-saw

mechanism)

✗ dark matter/dark energy

✗ baryogenesis
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Higgs boson at the LHC

Two steps

•• Production of the Higgs boson
•• Detection of the decay products of the Higgs
boson and identification of the events



Production Modes

g
p t

H
p

X

X

p

V H
p

V

q

q
Gluon fusion Weak-Boson Fusion

V

p Hq

p

_

q p

H
_p t

t

Higgs Strahlung tt̄H
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Total cross sections at the LHC

σ(pp → H + X) [pb]
√s = 14 TeV

NLO / NNLO

MRST

gg → H (NNLO)
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qq
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Branching fractions of the SM Higgs
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Exercise: compute, at leading order, Γ(H→ f f̄ ) and Γ(H→VV). More challenging (one-loop

integral) Γ(H→ gg) and Γ(H→γγ). [Spira (hep-ph/9705337)]



Total decay width
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[Spira and Zerwas]
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Inclusive search channels

•• inclusive search for
H→γγ

invariant-mass peak, for mH < 150 GeV

•• inclusive search for
H→ ZZ∗ → ℓ+ℓ−ℓ+ℓ−

for mH ≥ 130 GeV and mH 6= 2mW .

•• inclusive search for
H→W+W− → ℓ+ν̄ℓ−ν

for 140 GeV ≤ mH ≤ 200 GeV
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H→γγ

H

g

g

γ

γ

W/tt

✗ BR(H→γγ) ≈ 10−3

✗ large backgrounds from qq̄→γγ and gg→γγ

✓ but CMS and ATLAS will have excellent

photon-energy resolution (order of 1%)

Look for two isolated photons.
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H→γγ

K. Jakobs, CSS07

✓ σγj∼106σγγ with large uncertainties

✓ we can at most misidentify 1 jet in 103

✓ we need an efficiency ǫγ ∼ 80% to get
σγj+jj ≪ σγγ
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H→γγ

✓ Look for a narrow γγ invariant

mass peak

✓ extrapolate background into the

signal region from sidebands.
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✓ 1 fb−1

✓ cut-based analysis

✓ discovery with less than 30 fb−1

✓ assumes ECAL intercalibration, for which

10 fb−1 are needed

✓ optimized analysis: assumes perfect under-

standing of detector. Uses Neural Net

CMS PTDR



H→ ZZ→ ℓ+ℓ−ℓ+ℓ−

The gold-plated mode

H

g

g

l+

l-

l+

l-

Z

Z

✓ This is the most important and clean

search mode for 2mZ < mH < 600 GeV.

✓ continuum, limited, irreducible back-

ground from qq̄→ZZ
✗ small BR(H→ ℓ+ℓ−ℓ+ℓ−) ≈ 0.15%
(even smaller when mH < 2mZ)
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H→ ZZ→ ℓ+ℓ−ℓ+ℓ−

✓ invariant mass of the charged leptons

fully reconstructed

m4e (GeV/c2)
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25 H → ZZ* → 4e       
CMS, 100 fb-1        

mH = 130 GeV/c2    

mH = 150 GeV/c2    

mH = 170 GeV/c2    

b + ZbtZZ* + t

For mH ≈ 0.6-1 TeV, use the “silver-plated” mode H→ ZZ→νν̄ℓ+ℓ−

✓ BR(H→νν̄ℓ+ℓ−) = 6 BR(H→ ℓ+ℓ−ℓ+ℓ−)

✓ the large ET missing allows a measurement of the transverse mass
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H→ ZZ→µ+µ−µ+µ−

with 30 fb−1

✓ mH measured with 0.1÷ 5%
precision

✓ production cross section

known at 30% precision



H→WW→ ℓ+ν̄ℓ−ν

H

g

g

ν

l-

l+

ν

W-

W+

✓ No reconstruction of clear mass peak.

Measure the transverse mass with a Jaco-

bian peak at mH

mT =
√

2 pℓℓT /ET (1− cos (∆Φ))

✓ Exploit ℓ+ℓ− angular correlations

✗ Background and signal have similar

shape =⇒ must know the background

normalization precisely

ATLAS TDR
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✓ best channel for mH ∼ 160 - 170 GeV
✓ systematic uncertainty 10 - 20%

✓ mH can be determined to 2 - 2.5 GeV

✓ production cross section known at ∼ 10%



Associated production search channels

•• pp→ tt̄H→ tt̄bb̄
for mH < 120 –130 GeV

•• qq→Hqq
in vector-boson fusion (VBF)

The particles produced in association with the Higgs boson are

the trigger of the event.
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tt̄H→ tt̄bb̄
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CMS Lint = 30 fb-1

k = 1.5

gen. mH: 115 GeV/c2

const. :  13.63 ± 3.76
mean  :  110.3 ± 4.14
sigma :  14.32 ± 3.70

✓ ht = tt̄H Yukawa coupling =⇒measure h2t BR(H→ bb̄)
✗ must know the background normalization precisely

✗ it has been shown recently that this channel is no longer feasible



Weak Boson Fusion

p

V H
p

V

q

q

W

W

H mH > 120 GeV

τ+

−τ

H mH < 140 GeV

γ

γ

W
H

mH < 150 GeV

_
b

b

H mH < 140 GeV

[Eboli, Hagiwara, Kauer, Plehn, Rainwater, Zeppenfeld . . . ] [Mangano, Moretti, Piccinini, Pittau, Polosa (’03)]

These measurements can be performed at the LHC with statistical accuracies on the measured

cross sections times decay branching ratios, σ× BR, of order 10% (sometimes even better).



VBF signature

pp

J1J2

µ+

e-

ϕ
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∆ϕjj

ϕ

η

η =
1

2
log
1+ cosθ

1− cosθ
Characteristics:

•• energetic jets in the forward and backward directions (pT > 20 GeV)

•• large rapidity separation and large invariant mass of the two tagging jets
•• Higgs decay products between tagging jets
•• Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange

(central jet veto: no extra jets with pT > 20 GeV and |η| < 2.5)



Statistical and systematic errors at LHC

•• QCD/PDF uncertainties
- ±5% for Weak Boson
Fusion

- ±20% for gluon fu-
sion

•• luminosity/acceptance
uncertainties

- ±5%



Higgs discovery potential with 30 fb−1

2003 no K-factors 2006 K-factors included

Full mass range can already be covered after a few years at low luminosity.

Vector-boson fusion channels play an important role at low mass!



ATLAS and CMS combined

K. Jakobs

Luminosity required for a 5σ discovery or

a 95% CL exclusion

•• ∼ 5 fb−1 needed to achieve a 5 σ
discovery (well-understood and cali-

brated detector)

•• < 1 fb−1 needed to set a 95% CL limit



Conclusions

More can be said about:

•• Higgs boson couplings to bosons and fermions

•• Higgs boson spin measurement from decay products and jet-
angular correlations in VBF and gluon fusion

•• CP properties

•• Higgs boson self couplings

•• SUSY Higgs bosons

•• . . .
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